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Abstract. In this work, we unveil an analogy between the well-known lat-
tice based learning with error problem and ill-posed inverse problems. We
show that LWE problem is a structured inverse problem. Further, we propose
a symmetric encryption scheme based on ill-posed problems and thoroughly
discuss its security. Finally, we propose a public key encryption scheme based
on our symmetric encryption scheme and CRYSTALS-Kyber KEM (key en-
capsulation mechanism) and discuss its security.
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1. Introduction and analogy

1.1. Learning With Error problem

The LWE (Learning With Error) problem is a well-known hard problem in cryp-
tography [3]. After undergoing nearly a decade of rigorous scrutiny, the crypto-
primitives CRYSTALS Kyber [5] and CRYSTALS Dilithium [7], whose security
inherently rely on LWE problem, have been standardized by NIST. The LWE
problem was put forward by Regev in his seminal work [20]. Formally, one may
define the LWE problem as follows:

Definition 1.1. For a prime g, let D be an error distribution over the modular
ring Z,. For a given m (also known as dimension parameter), let s < Z" be chosen
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uniformly at random and it is kept as a secret. For 1 < j < n, where n is some
polynomial in m, consider the samples

(aj,bj = (aj,5> + 6]‘) S Z;n X ZLq,

where a; < Zg is picked uniformly at random. Further, e; <— Z, is picked following
distribution D and typically, this is a short element (in terms of norm). The LWE
problem is to derive s from the knowledge of (a;,b;)1<;<n-

The LWE problem can also be formulated in terms of matrix form as follows:
Given

(a1) €1 (a1) €1
(az) €2 (az2) €2

A= | , e=| . | €Z;, b=Aste=| | Xs+ | | €Zy,
(an) mxn €n (an) €n

we need to find s € Zg" from the knowledge of A, b.

It is well-known that the LWE problem is very hard and solving it quantumly
(using quantum computers), on an average, is equivalent to solving certain lattice
problems in the worst-case [20]. This makes LWE a very strong candidate for post-
quantum cryptography and the worst-case advantage is not associated with any
other post-quantum candidates [3]. Next, to explore the roots of computational
hardness of LWE problem, we switch into the subject of inverse problems. We refer
to [8] for more preliminary details on this subject.

1.2. Well-posed and ill-posed problems
We consider the operator equations of the form
T:D(T)CU —V defined as T(u)=w, (1.1)

where U and V' denote Banach spaces and D(T') denotes the domain of T'. Given
u, deducing v = T'(u) is the direct problem. The corresponding inverse problem is
deducing u from the value of v. As per Hadamard criteria, a problem of the form
(1.1) is well-posed if the following three conditions are met.

(i) For a given v € V, (1.1) has a solution.
(ii) The solution is unique.

(iii) There must be continuous dependency, i.e., if v’ is given in place of v and it is
close to v, then the corresponding solutions u' and u should be near to each
other (in terms of norm).

Further, if any one of the above three conditions is not satisfied, then the problem
(1.1) is ill-posed. It is worth to note that the conditions (i)-(ii) are straight-forward
to understand. The condition (iii) is less clear. Before going further, we discuss
example of an ill-posed problem that does not fulfill condition (iii).
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Example of an ill-posed problem

Let L2[0,1] be the space of real-valued Lebesgue integrable functions g defined on
[0,1] such that fo y) dy < oco. We consider an operator

S: L?0,1] — L?[0,1]

defined as

O/e—ly I (s (1.2)

This operator is also known as Hilbert—Schmidt operator (HSO). For the integral
equation (1.2), the kernel K(y, s) = e~ !¥~#l is square-integrable as well as continu-
ous. Therefore, HSO is a compact operator. Further, we know that any compact
operator possesses a singular value decomposition (see [8]). Consequently, we may

write
E sk (W, Br) o,

where {s;} are singular values of S satisfying s — 0 as kK — oo and {ax}, {8k}
are orthonormal systems. For the operator S, its inverse operator can be written
as

U = ii ®, ) (1.3)

S
k=1

??‘

We assume the availability of perturbed data since exact data is not available in
practice. So, we may write

O =S(T)+E.

Here £ represents the small error. Applying S™! on this ® using (1.3) to derive
that

SHO) =V +8! Ty Si £, o) (1.4)
k=1

Since the operator S is compact, we note that

1
sp—>0 as k-0 —= — > as k— .
Sk

This and (1.4) derive that
[S~H(®) — U210, > C

for any positive constant C' > 0. Therefore, there is no continuous dependence
between the data and the solution. Hence, the operator S is ill-posed in the sense
of Hadamard due to violation of condition (iii).
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1.3. Degree of ill-posedness

In this subsection, we discuss about the operator equations of the form (1.1) with
the additional constraint that T is a compact operator between Hilbert spaces. The
singular value decomposition (SVD) theorem implies that T has singular values

812> 8y 2583 2>+ >8> 0.
We note that (1.1) is ill-posed if
s, —0 as k — oco.

This is also evident from (1.4) as decaying values of sj leads to instability of A~
Further, the degree of ill-posedness can be described by looking at rate at which
singular value decays. Accordingly, we have the following two categories of ill-posed
problems.

(i) Mildly ill-posed: If the decay is of the form
Sk ~ k_t, t>0,
i.e., i decays polynomially (or algebraic decay), then (1.1) is mildly ill-posed.

(ii) Severely ill-posed: If the decay is of the form

se~e ™ r>0,

i.e., s decays exponentially, then (1.1) is severely ill-posed.

We note that faster the rate at which s,s decay, more the degree of ill-posedness
of (1.1).

1.4. Structural analogy

In this subsection, we discuss the analogy between LWE problem and ill-posed
inverse problems. For LWE problem, the solution s belongs to finite dimensional
space Zy'. However, for the inverse problem associated with HSO, the solution W
belongs to the infinite dimensional space L2[0,1]. Further, for both LWE problem
and inverse problem for HSO, the common part is the availability of noisy sam-
ples or data. This is the main reason that lead to difficulty in determining their
respective solutions. For LWE problem, presence of noisy samples makes it compu-
tationally infeasible to determine the solution s whereas for inverse problem related
to HSO, noisy data leads to its ill-posedness and therefore, additional regularization
techniques are needed to find the approximate solution. The most important point
of difference is the type of noise present in both the problems. For LWE problem,
noise is discrete and it is added deliberately so that determination of s becomes
computationally hard whereas for inverse problem for HSO, noise is analytic and
continuous in nature and it is always present in real-world measurements. This
whole discussion is also given in brief in the following Table 1.
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Table 1. Analogy between LWE problem and Inverse problems.

Parameters LWE Problem Inverse Problem for HSO
Dimension | Finite: modular matrix multiplication | Infinite: Operator S : L2[0,1] — L2[0,1]
Data b = As + e with noise e in finite ® = S(¥) + £ with noise £ in infinite
dimensional space dimensional space
Solution Deduce s from noisy samples b but Deduce ¥ from noisy data ®. Noise
it is computationally hard due to presence makes it highly unstable and
presence of noise e therefore regularization techniques are
needed to reconstruct the exact solution
Noise Discrete in nature and makes deduction | Analytic and continuous in nature and,
of secret s computationally infeasible in practice, noisy data is available
Here, noise is added deliberately in place of exact data

We note the following:

e Both LWE problem and Inverse problem for HSO demand to invert a linear
operator, which is contaminated by noise. As a result, inversion is either
unstable or computationally hard.

e In inverse problem for HSO, a small noise £ makes the problem highly ill-
posed. In LWE problem, noise plays the role of a mask, which makes it
computationally infeasible to deduce the secret.

In this manner, we can see that LWE problem is a structured inverse problem.
Precisely, LWE problem can be seen as a special case of inverse problems, i.e.,

LWE problem € {P : P is an ill-posed inverse problem}.

In inverse problems, we aim for approximate solution (which is close to exact solu-
tion in terms of norm) using regularization techniques whereas for LWE problem,
we look for the exact solution. If noise samples in inverse problems are discrete in
nature, then LWE problem and inverse problem with matrix operator are same.

2. Symmetric encryption scheme based on ill-posed
problems

In this section, we propose a symmetric encryption scheme based on ill-posed in-
verse problems. This is defined through the following subsections.
2.1. Parameters and key generation

o Let S: L%[0,1] — L?[0,1] be a compact operator. Let S~! be the inverse of
S. We remark that both S and S~! are known publically.
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e Let &£ be the error and let it follow certain distribution, e.g., discrete Gaussian

2.2,

distribution or centered binomial distribution. This error is chosen secretly
and acts as a secret key. Further, the error space has atleast N > 2128
elements. For example, we take N = 2128 and partition [0, 1] into subintervals

We note that the subintervals I ]’-s are disjoint. We fix ¢ > 0 and define
hj(x) := VNe?1p,(z), 1<j<N.

Here, 1;, represents the indicator function of I;. It can be easily noted that
h; € L?[0,1] for each j and norm of each h; is ¢ as

1
Ikl = VNEE 15, [l2 = VN2 - \/;:5

since [|1z,]]2 = ﬁ We consider the error set as {hi, ha,...,hn}. Clearly,

this set has cardinality N = 2'2%. Further, all the errors are of small size .

Encoding
Let {0,1}! be the message space containing all bit-strings of length ¢.

Let g € {0,1} be an arbitrary message string. Then one may see the space
{0,1}! as a subset of L2[0,1] using one of the following two mappings.

Map-1: Using Fourier or Haar basis, generate an orthonormal sequence
{er} C L?[0,1]. We enumerate elements in {0, 1}¢ as {1, 2, .. ., pio¢ }. Then
consider the map

o1: {0,1} — L2[0,1] defined as 1 (ux) = ex. (2.1)
This map is injective.

Map-2: This map is defined using piecewise constant functions. Consider a
string 1 = s152--- s € {0,1}'. We define ¥, € L?[0,1] as

L
U, (y) =s;, ifye Fti) 1<j<t.

It can be verified that ¥, € L?[0,1]. Accordingly, we define the map
©2: {0,1}" — L?[0,1] defined as gpo(pu) = ¥,,. (2.2)
This map is also injective.

Clearly, g1, g2 represent the desired encoding of binary messages as elements
of L?[0,1].
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2.3. Encryption
o Let = s152---5; € {0,1} be the message to be encrypted.
o Apply g1 given by (2.1) (or po given by (2.2)) on u to obtain p; () € L]0, 1].

e The ciphertext is
C=S(p1(n) +¢, (2.3)

where & is the secret key. This error introduces noise in the data.

2.4. Decryption and decoding

e The decryptor after receiving C, uses secret key £ to obtain

C—&=3S(p1(n)-

« Apply S7! on the exact data to obtain
STHC &) =pi(n).

o Represent p;(u) as an element of {0,1}* by using o' (which exists on its
range). This yields the message.

Next, we discuss the security of our encryption scheme along with its certain char-
acteristics.

2.5. Security analysis

2.5.1. Brute force attack

The adversary needs to try all the possible errors £ from the set of errors to
get the message from the knowledge of C. In our case, the error space has N
elements, where NN is atleast 2!2® (see subsection 2.1). A brute-force search over
this space is not computationally feasible, as no polynomial-time algorithm can
exhaustively explore a set of this size, even under the most powerful currently
conceivable computational resources.

2.5.2. Error should be ephemeral

Suppose two messages 1 and ps are such that same error £ is taken to encrypt
both. Then, (2.3) implies that

C1=S(p1()) +&
Ca = S(p1(p2)) +E.

These two imply that

C1 —C2 = S(p1(p1)) — S(p1(p2))-
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If the operator S is linear, then this means

C1r —Cy =S(p1(p1) — p1(p2))- (2.4)

Further, if g, is also linear, then (2.4) gives the encryption of 1 — ps. Therefore,
for every message, error £ should be chosen uniformly at random. In our case,
the probability that £ is same in C; and Cy is 27128 since the error space contains
2128 elements and error is chosen uniformly at random for each message. This
probability is very near to 0. Additionally, one can further reduce this probability
by increasing V.

2.5.3. Probabilistic encryption

Our scheme comes under the category of probabilistic encryption [10]. Given a
fixed message p, there can be many ciphertexts corresponding to this message.
This is because by changing the error, ciphertext gets changed corresponding to a
fixed message.

2.5.4. Security against ciphertext only attack
The adversary 2 knows C and S—!. Using these in (2.3), 2 computes

S7HEC) = pu1(p) +S7H(E).

But due to ill-posedness of the compact operator equation S(¥) = ® (or inverse
problem), the small error € leads to large error in S~1(C) as shown in subsection 1.2.
Therefore, it becomes computationally infeasible for 2 to deduce p without apply-
ing regularization techniques. We remark that the application of regularization
techniques further depends on the degree of ill-posedness of the inverse problem as
discussed in subsection 1.3.

2.5.5. Security against known/chosen plaintext attacks

The adversary knows (or demands) polynomially many plaintext-ciphertext pairs
(ux, Cr) (these may be chosen adaptively). The main purpose of 2 is to derive £.
It follows from (2.3) that

Cr =S(p1(ux)) + &, k>1.
Since & is different and randomly chosen for every message, it becomes computa-
tionally infeasible to deduce £ for a new message.
2.5.6. CCA2 security (security against adaptive chosen ciphertext at-
tack)

Due to inclusion of unique/random errors at each instance, it would not be pos-
sible for 2 to deduce the key/encryption of new message from previous adaptive
plaintext-ciphertext queries in polynomial time. Thus, the scheme is CCA2 secure.
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2.5.7. Security against differential cryptanalysis

We recall that for a block cipher, differential cryptanalysis looks for differential
trails [12]. Let Ej denote an encryption scheme with key &k and let p, ' denote
two different plaintexts. Then differential cryptanalysis studies

Ap=p®p = AC= Ex(n) ® Ep(1).
In our scheme, we have
C=8(pr(m)+&, € =8(pa(u)) +€"
Taking their difference yields
AC=C—C" = (S(pi(w) — Spr(n)) + (£ = &).
By definition of S, we can write above as

C—C' = (S(pr(n) —pr (1)) + (£ = &).

Any stable differential propagation in our case would be destroyed by the noise term
E — &'. Consequently, differential cryptanalysis does not provide any advantage.

2.5.8. Quantum security

Unlike classical schemes such as RSA and elliptic curve cryptography [17], our
scheme relies on analytical inverse problems. Therefore, Shor’s algorithm [16] has
no impact on our scheme. Additionally, Grover’s searching algorithm [9] offers
no quantum speedup. This is because the structure of L?[0,1] is different from
linear algebra over finite fields. Therefore, our scheme is post-quantum in nature
since there is no efficient quantum algorithm to solve ill-posed inverse problems in
polynomial time.

Remark 2.1 (Requirement of a synchronized error generator). For a symmetric
encryption scheme, both sender and receiver should have the same secret key. In
our case, the secret key is error. Consequently, both the parties should have a
synchronized error generator that generates error uniformly at random (or following
certain distribution).

2.6. Advantages and disadvantages of our scheme along with
comparison analysis

In this subsection, we briefly discuss the advantages and disadvantages of our
scheme. We also perform a comparison analysis and compare our scheme with
various other well-known schemes.
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2.6.1. Advantages

Infinite dimensional structure: Working in L?[0, 1] offers no direct quan-
tum speedups and the scheme is resistant to attacks based on Grébner basis
and algebraic attacks (see [6]). Further, our scheme offers operator-theoretic
hardness since the corresponding inverse problem is highly ill-posed.

Implementation: The encryption scheme can be interpreted as
hidden linear system + noise.

This is very easy to implement.

Flexibility: One can obtain many variants of the scheme by choosing differ-
ent encodings, compact operator and noise shapes.

Large error space: The error space can be easily generated with the ap-
proach discussed in subsection 2.1. Additionally, its size can be easily changed
by changing N. This renders brute force search infeasible and also offers an-
alytic flexibility in selecting noise.

Potential post-quantum security: As there are no known efficient quan-
tum algorithms for inverting a compact operator with noisy data, our scheme
offers post-quantum security.

2.6.2. Disadvantages

No formal hardness reduction: Although our scheme is CCA2 secure,
but unlike well-known schemes such as LWE [20], classic McEliece [4] etc.,
there is no proof of its hardness in the worst case. This may be taken up as
a future task.

Performance concerns: It may be costly to simulate the discretize ver-
sion of infinite dimensional operators. Accordingly, key and ciphertext sizes
depend on discretization.

2.6.3. Comparison analysis

In this subsection, we compare our scheme with several other well-known encryp-
tion schemes available in literature. Specifically, we consider RSA and ECC (elliptic
curve cryptography) schemes [13, 17], scheme based on learning with error problem
[20], McEliece scheme [4], group ring based schemes [14, 15, 18], Advance encryp-
tion standard (AES) [21], symmetric encryption scheme based on Reed-Solomon
codes (SERSC) [11], ChaCha20 [1] and Salsa20 [2]. The comparison is given in
Table 2. The abbreviations used in Table 2 are as follows: DLP means discrete
logarithm problem, ECDLP means elliptic curve DLP, GRDLP means group ring
DLP, SPN means substitution-permutation network, ARX means add-rotate-XOR,

10
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PQ denotes post-quantum, CS denotes computationally secure (it means that is not
possible to break the scheme in polynomial time with the best available resources).

It is clear from Table 2 that the main highlight of our scheme is that it is
based on a different Mathematical setup which is not yet explored. Overall, the
associated Mathematical problem with our scheme is believed to be hard since it
is analogous to LWE problem.

Table 2. Comparison of our scheme with several other schemes.

Scheme ‘ Structure ‘ Security Basis ‘ PQ? ‘ Our Scheme vs. this scheme
RSA Number theory Factoring X Our scheme is PQ-secure
ECC Number theory ECDLP X Our scheme is PQ-secure
LWE Matrix algebra Lattice hardness v Security of LWE scheme is very well
studied whereas the security of our
scheme relies on a hard problem
problem analogous to LWE but it
needs more scrutiny
McEliece Coding theory Decoding v Security depends on NP-hard problem
which is not the case with our scheme
Group ring Group algebra GRDLP v This require more sophisticated

implementation in comparison

to our scheme
AES-128 SPN CS X AES is extremely fast in comparison
to our scheme but our scheme

offers different mathematics

SERSC Coding theory Decoding v Based on a technique to construct a
binary code from a non-binary
Reed-Solomon code. Mathematics of
both the schemes is different
Salsa20 ARX CS X This is very fast in software and
incorporates basic mathematical

operations unlike our scheme
ChaCha20 ARX CS X This scheme is a variant of Salsa20
Our Scheme | Functional analysis | Ill-posedness v -

3. Public key encryption scheme based on ill-posed
problems

In this section, we build on the work of previous section and propose a public
key encryption (PKE) scheme based on ill-posed problems. Specifically, we in-
tegrate the symmetric encryption scheme proposed in the previous section with
CRYSTALS-Kyber key encapsulation mechanism (KEM) [5].

11
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3.1. Key generation

We run CRYSTALS-Kyber KEM key generation algorithm to generate a pub-
lic/private key pair. We denote it by pk and sk, respectively.

3.2. Encryption

Let u € {0,1}* be the message to be encrypted. We run CRYSTALS-Kyber KEM
encaps algorithm to generate a key K’ (of length 256 bits) and the corresponding
ciphertext C;. Further, we instantiate XOF function [19] on K’ to get a key K of
desired length to be used for symmetric encryption scheme S described in section 2.
Finally, we encrypt p using the encryption function of the scheme S to get cipher-
text Co. The final ciphertext is (C1,C2).

3.3. Decryption

After receiving (C1,Cs), the decryptor first run CRYSTALS-Kyber KEM decaps
algorithm with input C; to get the key K’. Then, the decryptor runs XOF function
on K’ to get the key K. Finally, using the decryption function of the scheme S on
ciphertext Co with key K, we get the message u.

3.4. Security analysis

The security of our PKE clearly depends on the security of Kyber KEM and sym-
metric encryption scheme S. The security of Kyber KEM depends on lattice prob-
lem, i.e., module-LWE (module learning with errors), whose hardness is very well
understood (see [5]). The security of S is already discussed, i.e., it is CCA2 secure.
Consequently, it follows from [5] that our PKE is IND-CCA2 secure (indistin-
guishability under adaptive chosen ciphertext attack), which is the golden security
standard.

4. Discussion

We have unveiled a canonical analogy between post-quantum lattice based learning
with error problems and ill-posed inverse problems. Precisely, we have shown that
LWE problem is a special case of solving ill-posed inverse problems (subsection 1.4).
Motivated from this fact, we have proposed two encryption schemes. The first one
is symmetric and other one is asymmetric (or PKE) based on ill-posed inverse
problems. We also thoroughly discussed the security of these schemes. In future,
this work can be extended in a number of ways. The first one is to look at the
impact of regularization techniques on the security of these schemes. The second
one is to look at the efficient ways of sampling errors in (2.3).

12
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