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Abstract. Let k ≥ 2 be an integer and σk(n) be the sum of the kth powers
of the positive divisors of n. In this paper, we prove that if (Un)n≥1 is any
nondegenerate linearly recurrent sequence of integers whose general term is
up to sign not a polynomial in n, then the inequality σk(|Un|) ≤ |Uσk(n)|
holds for all n sufficiently large, and the inequality σ(|Unk |) ≤ |Uσk(n)| holds
for almost all natural numbers n, where σ(n) = σ1(n). In fact, the second
inequality fails on a set of n ≤ x of counting function O(x/ log x).
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1. Introduction
Let U := (Un)n≥1 be a linearly recurrent sequence of integers. Such a sequence
satisfies a recurrence of the form

Un+d = a1Un+d−1 + · · · + adUn for all n ≥ 1

with integers a1, . . . , ad, where U1, . . . , Ud are integers. Assuming d is minimal, Un

can be represented as

Un =
s∑

i=1
Pi(n)αn

i , (1.1)

where

Ψ(X) := Xd − a1Xd−1 − · · · − ad =
s∏

i=1
(X − αi)νi
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is the characteristic polynomial of U, α1, . . . , αs are the distinct roots of Ψ(X) with
multiplicities ν1, . . . , νs, respectively, and Pi(X) is a polynomial of degree νi − 1
with coefficients in Q(αi). The sequence is nondegenerate if αi/αj is not a root of
1 for any i ̸= j in {1, . . . , s}.

Recently (see [4]), we proved that if (Un)n≥1 is any nondegenerate linearly
recurrent sequence of integers such that |Un| is not a polynomial in n for large
values of n, then the inequalities

ϕ(|Un|) ≥ |Uϕ(n)| and σ(|Un|) ≤ |Uσ(n)|

hold for almost all natural numbers n. In fact, we showed that the set of pos-
itive integers n ≤ x for which the above inequalities fail has counting function
O(x/ log x).

Let σk(n) be the sum of the kth powers of the positive divisors of n. We denote
σ1(n) as σ(n). In this paper, we continue where we left off in the last paper [4] by
considering the inequalities of the arithmetic function σk(n) for k ≥ 2.

In this paper, we prove the following theorems. Recall that if f(x) and g(x)
are functions defined on R+ with values in R+ we write f(x) = O(g(x)) and
f(x) = o(g(x)) if the inequality f(x) < Kg(x) holds with some constant K > 0
and all x > x0, and limx→∞ f(x)/g(x) = 0, respectively. Further, the notations
f(x) ≪ g(x) and g(x) ≫ f(x) are equivalent to f(x) = O(g(x)).

Theorem 1.1. Let k ≥ 2 be an integer. Let U := (Un)n≥1 be a nondegenerate
linearly recurrent sequence of integers such that |Un| is not a polynomial in n for
all large n and let x be a large real number. Then the inequality

σk(|Un|) ≤ |Uσk(n)|

holds for all n sufficiently large.

Theorem 1.2. Let k ≥ 1 be an integer. Let U := (Un)n≥1 be a nondegenerate
linearly recurrent sequence of integers such that |Un| is not a polynomial in n for
all large n and let x be a large real number. Then the inequality

σ(|Unk |) ≤ |Uσk(n)|

holds for almost all positive integers n. In fact, the set of positive integers n ≤ x
for which it fails is of cardinality O(x/ log x).

2. Preliminary results
The following lemma follows from Theorem 323 in [3].

Lemma 2.1. Let n ≥ 3. We then have

σ(n) ≪ n log log n.
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The following lemma follows from a result on page 116 in [6].

Lemma 2.2. Let k ≥ 2. For all n ≥ 1, we have that

σk(n) ≤ 2nk.

For a positive integer n put p(n) to be the smallest prime factor of n with the
convention that p(1) = 1. For x ≥ y ≥ 2 put

Φ(x, y) := #{n ≤ x : p(n) > y}.

The following inequality is a consequence of the Brun sieve and appears, for exam-
ple, as an Exercise on page 11 in [2].

Lemma 2.3. We have uniformly for x ≥ y ≥ 2,

Φ(x, y) ≪ x

log y
.

Let Ω(n) be the total number of prime factors of n counting multiplicities.

Lemma 2.4. Let x ≥ 10. The number of positive integers n ≤ x such that Ω(n) ≥
10 log log x is O(x/(log x)2).

Proof. See Lemma 3 in [4].

Let τ(n) be the total number of divisors of n.

Lemma 2.5. Let x ≥ 10 and k ≥ 1 be an integer. The number of positive integers
n ≤ x such that τ(σk(n)) > exp (

√
log x) is O(x/(log x)2).

Proof. The remarks on page 128 in [5] show that

∑
n≤x

τ(σk(n)) = x exp
(

c(x)
(

log x

log log x

)1/2(
1 + O

(
log log log x

log log x

)))
,

holds with c(x) ∈ [α, β], where α and β are constants. Then following the proof of
Lemma 4 in [4] concludes the proof.

Lemma 2.6. Let U := (Un)n≥1 be a nondegenerate linearly recurrent sequence of
integers whose general term is given by (1.1) with s ≥ 2 and assume that |α1| =
max{|αi| : i = 1, . . . , s} > 1. Then for every ϵ ∈ (0, 1), there exist constants x0
and c := c(U) ∈ (0, ϵ) such that for all x ≥ x0, the number of n ≤ x such that

|Un| ≤ |α1|n(1−δ),

with δ := x−c is of cardinality O(xϵ).

The proof of the above lemma is similar to the proof of Lemma 5 in [4], by
considering the n ∈ (xϵ, x] because there are only O(xϵ) positive integers n ≤ xϵ

and by taking c := ϵ/7sr ∈ (0, ϵ), where r is as defined in [4].
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3. The proof of Theorem 1.1
Let k ≥ 2 be an integer. Assume that |α1| ≥ · · · ≥ |αs| and |Un| is not a polynomial
in n for large n. In particular, |α1| > 1. By an application of the subspace theorem
(see page 229 in [1]), we have that

|Uσk(n)| ≥ |α1|σk(n)/2

holds for all n ≥ n0, for some constant n0. By the fact that σk(n) ≥ nk, the above
inequality becomes

|Uσk(n)| ≥ |α1|n
k/2

for all n ≥ n0. On the other hand, using (1.1) and the triangle inequality, we have
that

|Un| = |
s∑

i=1
Pi(n)αn

i | ≪ nβ |α1|n,

where β := max{νi − 1 : i = 1, . . . , s} and νi − 1 is the degree of the polynomial
Pi(X). Using Lemma 2.2 and the above inequality, we have that

σk(|Un|) ≤ 2|Un|k ≪ nkβ |α1|kn.

Let c1 be the constant implied by the ≪ symbol in the above inequality. We claim
that

c1nkβ |α1|kn ≤ |α1|n
k/2 (3.1)

holds for all n ≥ n0, where n0 is some constant. Taking the logarithm on both
sides, the above inequality is equivalent to

2kn + O(log n) ≤ nk,

which holds for all n ≥ n0(k, U) sufficiently large because k ≥ 2. Thus, (3.1) holds
and hence,

σk(|Un|) ≤ |Uσk(n)|

holds for all n ≥ n0, where n0 is some constant depending both on k and on the
sequence U.

4. The proof of Theorem 1.2
Let us assume that |α1| ≥ · · · ≥ |αs| and |Un| is not a polynomial in n for large
n. In particular, |α1| > 1. We assume that k is an integer and k ≥ 2 because
for the case k = 1, it is already proved (see the proof of Theorem 1 in [4]). For a
positive integer n put p(n) be the smallest prime factor of n with the convention
that p(1) = 1. Let

A(x) = {n ≤ x : p(n)k > xc1},
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where c1 ∈ (0, 1/4k) is a constant to be determined later. Let

C(x) := {n ≤ x : σ(|Unk |) > |Uσk(n)|}.

We need to prove that the set C(x) has counting function of O(x/ log x). Let us
split the set C(x) into the following three subsets

C1(x) := {n ≤ x : n ∈ A(x) and n ∈ C(x)},

C2(x) := {n ≤ x1/2k : n ̸∈ A(x) and n ∈ C(x)},

C3(x) := {n ∈ (x1/2k, x] : n ̸∈ A(x) and n ∈ C(x)}.

The set C1(x) is a subset of A(x). By Lemma 2.3 with y := xc1/k, we have that

#A(x) = Φ(x, y) ≪ x

log y
≪ x

log x
.

Thus, the subset C1(x) has counting function of O(x/ log x). The second subset
has counting function of O(x1/2k) = o(x/ log x) because the set C2(x) has at most
x1/2k positive integers n ≤ x1/2k. From now on, let n ∈ C3(x).

Then n ∈ (x1/2k, x] and p(n)k ≤ xc1 . Since p(n) divides n, then (n/p(n))
divides n as well. Thus, we have that

σk(n) ≥ nk + nk

p(n)k
≥ nk + nk

xc1
= nk(1 + δ),

where δ := 1/xc1 . The above inequality gives

nk ≤ σk(n)
1 + δ

≤ σk(n)(1 − δ1),

where δ1 := δ/2. Let

Un =
s∑

i=1
Pi(n)αn

i .

The case s = 1 needs to be treated separately as there are only finitely many n.
Assume that s = 1. In this case Ψ(X) = (X − α1)d and α1 is an integer with
|α1| ≥ 2. Thus,

Un = P1(n)αn
1 ,

where P1(X) ∈ Z[X]. Let n be large (say larger than the maximal real root of
P1(X)). By Lemma 2.1, we have that

σ(|Unk |) ≪ |Unk | log log |Unk |

≪ |P1(nk)||α1|n
k

log log |P1(nk)||α1|n
k

≪ nk(d−1)|α1|σk(n)(1−δ1) log n. (4.1)

5



Annal. Math. et Inf. F. Luca, M. C. Manape

On the other hand, we have that

|Uσk(n)| = |P1(σk(n))||α1|σk(n) ≫ σk(n)d−1|α1|σk(n) ≫ nk(d−1)|α1|σk(n). (4.2)

Since n ∈ C3(x), then
|Uσk(n)| < σ(|Unk |).

Using the above inequality together with (4.1) and (4.2), we have that

nk(d−1)|α1|σk(n) ≪ |Uσk(n)| < σ(|Unk |) ≪ nk(d−1)|α1|σk(n)(1−δ1) log n.

The above inequality leads to the following inequality

|α1|δ1σk(n) ≪ log n.

Let c2 be the constant implied by the ≪ symbol in the above inequality. Then the
above inequality is equivalent to

|α1|δ1σk(n) ≤ c2 log n.

Taking the logarithm on both sides, this is equivalent to

δ1σk(n) log |α1| ≤ log c2 + log log n.

Since n ∈ (x1/2k, x], then the right–hand side of the above inequality is O(log log x).
Since δ1 = 0.5δ, then δ1σk(n) ≥ 0.5δnk > 0.5x−c1x1/2 = 0.5xγ , where γ :=
0.5−c1 > 0.5−1/4k > 0. Thus, the left–hand side is ≫ xγ . Then above inequality
becomes

xγ ≪ δ1σk(n) log |α1| ≤ log c2 + log log n ≪ log log x,

which does not hold for large n because log log x = o(xγ). Thus, x is bounded and
so is n.

From now on, we assume that s ≥ 2. Then the inequality

|α1|n
k/2 ≤ |Unk | ≪ nkd|α1|n

k

holds for all n ≥ n0, where n0 is some constant. The left-hand side is by an
application of the subspace theorem (see page 229 in [1]) and the right-hand side
is by triangle inequality. Thus, for n ≥ n0, we have that

log log |Unk | = log nk + O(1).

Using the above inequality, we have that

σ(|Unk |) ≪ |Unk | log log |Unk | ≪ nkd|α1|n
k

(log nk + O(1))
≤ σk(n)d|α1|σk(n)(1−δ1)(log σk(n) + O(1)).

Let c3 and c4 be constants implied by the ≪ symbol and O(1) in the above inequal-
ity, respectively. We claim that with δ2 := 1/x2c1 and m = σk(n), the inequality

c3md|α1|m(1−δ1)(log m + c4) < |α1|m(1−δ2)
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holds for all n ≥ n0, where n0 is some constant. Taking logarithm on both sides,
the above inequality is equivalent to

log c3 + d log m + log (log m + c4) < m(δ1 − δ2) log |α1|. (4.3)

Since n ∈ (x1/2k, x] and m = σk(n) ≤ 2xk (by Lemma 2.2), then the left–hand
side of (4.3) is O(log x). Since δ1 = δ/2 and δ2 = δ2, then it follows that δ1 − δ2 ≥
0.25δ = 0.25x−c1 for x ≥ x0, for some constant x0. Thus, the right–hand side of
(4.3) is ≫ xγ , where γ := 0.5 − c1 > 0. Thus, since log x = o(xγ), then we have
that

log c3 + d log m + log (log m + c4) ≪ log x ≪ xγ ≪ m(δ1 − δ2) log |α1|

holds for all n ≥ n0. Thus, inequality (4.3) holds for all n ≥ n0 and hence,

|Um| < |α1|m(1−δ2)

holds for all x ≥ x0, for some constant x0. Note that by Lemma 2.2 (since k ≥ 2),
m = σk(n) ≤ 2xk. By Lemma 2.5, we can choose c1 := c/2 with ϵ = 1/2k and then
the set of m ≤ 2xk satisfying the above inequality is of cardinality

O(
√

x).

But this is only an upper bound on the number of distinct values of m = σk(n) and
we have to get the upper bound on the number of n′s themselves. By Lemmas 2.3
and 2.4, we may assume that Ω(n) ≤ 10 log log x and τ(σk(n)) ≤ exp (

√
log x) since

the number of n ≤ x for which one of the above inequalities fails is O(x/(log x)2) =
o(x/ log x). Writing

n = pa1
1 · · · paℓ

ℓ

with distinct primes p1, . . . , pℓ and positive exponents a1, . . . , aℓ, so

σk(n) =
ℓ∏

i=1

(
p

k(ai+1)
i − 1

pk
i − 1

)
.

Given m = σk(n), each of di := (pk(ai+1)
i − 1)/(pk

i − 1) is a divisor of σk(n).
Additionally, given di and also ai, pi is uniquely determined. Thus, since di can be
fixed in at most τ(σk(n)) ways and ai ≤ Ω(n) can be fixed in at most Ω(n) ways,
it follows that pai

i can be fixed in at most τ(σk(n))Ω(n) ways. This is so for a fixed
i, but i ≤ ℓ = ω(n) ≤ Ω(n). Thus, the number of such n when given σk(n) and
Ω(n) is at most(

(10 log log x) exp (
√

log x)
)10 log log x

< exp
(

20(log log x)
√

log x
)

for all x ≥ x0, for some constant x0. Now varying Ω(n) up to 10 log log x and σk(n)
up to O(

√
x), we get that the number of possible n ≤ x is

≪
√

x(log log x) exp
(

20(log log x)
√

log x
)

= o(x/ log x)

as x → ∞. Hence, the set C3(x) has counting function o(x/ log x) and thus the set
C(x) has a counting function of O(x/ log x). This concludes the proof.
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