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Abstract. This article examined the issue of selection heuristics for the ABB
algorithm, a branch-and-bound method for determining the optimal solution
structure in P-graphs. Previous studies have not investigated the possible
effects of different heuristics on the running time of the ABB algorithm. In
this study, we represent the results of applying three basic heuristics in ran-
domly generated P-graphs. In particular, for P-graphs with matrix patterns,
the LIFO heuristic is recommended because it performed the best, while the
FIFO heuristic had the slowest running time.
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1. Introduction

Process network synthesis (or PNS) is a basic tool developed in the 1990s for chem-
ical process problems [14]. Process synthesis aims to find the optimal sub-structure
and configuration of an extensive system of functional units and materials [13]. The
method is applied in many fields, such as supply chain optimization [12], energy op-
timization[1], and vehicle scheduling [3, 6]. The search for the optimal sub-network
can be formulated as a MILP problem, where the number of binary variables equals
the number of units, meaning the complexity of the problem is NP-hard.

The algorithm that finds the optimal sub-network is an accelerated branch-
and-bound method (ABB). This method is very similar to the branch-and-bound
method for MILP problems. Dakin [5] proposed depth-first search for MILP. This
node selection rule always selects a node from the leaf queue with the maximum
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depth in its search tree. Depth-first search is the preferred strategy for feasibility-
only problems. Another technique is Breadth-first search algorithm. It starts at
the root of the tree and examines all nodes at the current depth before moving to
nodes at the next depth level. This technique is often used when the algorithm
needs to parallelize [2]. Besides these two basic algorithms, there are of course other
algorithms when additional information is available, such as a heuristic [11]. There
are several summary studies of these algorithms in the literature [4], but nowadays
more and more algorithms are appearing that use AI for decision making [15].

The ABB algorithm uses the axioms of synthesis to speed up the running of
the algorithm. In previous studies, no heuristic for processing order of the non-
closed branches to reduce running time was considered. In this work, we tried the
simplest heuristics to create an order between the non-closed branches. We tried
the following heuristics to determine the order of the non-closed branches: LIFO,
FIFO, and random order. We ran the algorithm over randomly generated examples
and compared the results based on the number of times the LP solver was called
and the runtime.

2. Definitions

2.1. P-Graphs and feasible solutions
P-Graphs. P-Graph is a basic tool for determining the optimal sub-solution
structure and configuration of partial solutions for large systems. The main strength
of the method is that it combines combinatorial and graph-theoretic techniques.

P-Graphs consist of pairs (M, O), where M is a finite set of materials, and
O(∈ ℘(M) × ℘(M)) is a finite set of operating units. The graphs can be described
as directed bipartite graphs. The set of vertices are O and M sets, and the directed
edges represent the connection between operating units and materials.

Process Network Synthesis (PNS) problems are defined by (P, R, O) triplets,
where O is similar to set of operating units previously defined in Subsection 2.1.
The following will be satisfied in Process In process network synthesis problems,
all materials in M can be classified into three categories: P , products, R, raw
materials, and I intermediate materials.

Combinatorially feasible solution. A combinatorially feasible solution or so-
lution structure is a special P-Graph, that is made by the materials and operating
units from a process network synthesis problem. A P-Graph(M, O) is a combina-
torially feasible solution if and only if it satisfies the following five axioms:

1. All materials from P are in the graph.

2. None of the operating units in the graph produces any materials from R.

3. All operating units represented in the graph are from the set O.
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4. Every operating unit in the graph has at least one path leading to a material
that belongs to the set P .

5. Every material from set M is either produced or consumed by at least one
operating unit belonging to O.

2.2. Basic notations linked to operating units and materials
An operating unit is defined by (α, β), where α, β ∈ ℘(M). Set of consumed
materials is defined by X ⊆ O denoted by matin(X) =

⋃
(α,β)∈o α. Set of produced

materials is matout(X) =
⋃

(α,β)∈o β. In both cases, the X ⊆ O. An operating
units in the configuration execute operations and during one operation, a predefined
constant amount of materials is consumed and produced. The operating unit o ∈
O has a cost value, which is defined by the formula, cost(o) = fix_cost ∗ y +
operational_cost ∗ x, i.e. the weighted sum of y ∈ {0, 1}, which is set to 1 if the
operating unit o is installed in the P-Graph, and x ∈ R≥0, which defines how many
operations are executed. Besides the cost of operating units, the raw materials may
also have a cost. It is the cost to buy them if they are not available by default.

2.3. Decision mappings
It was shown that P-Graphs are basic tools to define the sub-structure of a PNS
problem. Another tool, so-called decision mapping[9] equivalent to the P-Graph,
can describe sub-substructures. Let ∆(m) = {(α, β) | (α, β) ∈ O and m ∈ β}.
Let δ(m) be a subset of ∆(m), where m ∈ M . δ is also extended to sets, δ[m] =
{(X, δ(X)) | X ∈ m}. The complement of decision mapping δ(m) is δ(m) =
∆(m) \ δ(m), if m ∈ M . Included operating unit set in the decision mapping δ[m]
will be op(δ[m]) =

⋃
X∈m δ(X). The other notation of the included operating units

of decision mapping δ[m] is OI . The set of excluded operating units is denoted by
OE = op(δ[m]).

3. Mathematical model of solution structure
Among possible solution structures of a PNS problem, the solution structure that
contains all other possible solution structures of the problem is called the maxi-
mal solution structure. The algorithm that finds the maximal solution structure
is called MSG (Maximal Solution structure Generation) algorithm [7]. Finding
a solution structure with minimal total cost for the PNS problem is equivalent
to finding an optimal sub-solution structure of the maximal solution structure of
the problem. The cost function is composed of the cost of operating units and
materials. As mentioned earlier, finding a sub-solution structure forms a MILP
problem[10]. The variables come from the operating units. An example of the
MILP transformation is shown in Figure 1. The graph in the figure on the left is
the maximal structure of the problem. In the object function, the summed cost is
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minimized. The first six inequalities define that x is 0 if an operating unit is not
installed. B and C are intermediate materials (shown as black circles). Material
balance conditions should be defined for intermediate products. These conditions
state that at least as much of each intermediate product must be produced as is
necessary for the operation of the operating units that use it, otherwise the manu-
facturing process would come to a standstill. A is the raw material. The aim is to
produce the products from the raw materials.

A

4,401

B

3,204

2,102
3,203

C

2,405

D

2,106

Minimize obj :
4y1 + 2y2 + 3y3 + 3y4 + 2y5 + 2y6+
4x1 + 1x2 + 2x3 + 3x4 + 4x5 + 1x6
Subject to :
O1 : x1 ≤ 1000y1

. . .
O6 : x6 ≤ 1000y6
B: x1 − x4 ≥ 0
C: x2 + x3 − x5 − x6 ≥ 0
x1, x2, ..., x6 ≥ 0
General
x1, x2, ..., x6
Binary
y1, y2, ..., y6

Figure 1. Transform the maximal structure into a MILP mathe-
matical model.

4. Accelerated Branch and Bound (ABB) method

As it was mentioned in [8], the problem of finding the optimal sub-solution structure
is NP-hard. To find the optimal solution, a branch-and-bound technique is used.
The algorithm is given in Algorithm 1. The input of the algorithm is the set of
materials M and the PNS problem whose optimal partial solution structure is to
be found, as well as the datastructure used in the branching method to keep an
ordering between the unsolved branches.

The ABBD sub-method is called for each node of the branch-and-bound tree.
The parameters of the function are as follows. The first parameter is the set of
materials to be produced. Initially, it is set to the set of products. The second
parameter is the materials that were already produced. The third parameter is the
current decision mapping. The materials that currently need to be produced are
in the set p.

The halting condition of the algorithm is when there are no more materials to
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produce. A lower bound for the optimal value is calculated for each branch since the
value should be minimized. In each branch, a decision is made as to which operating
unit set will produce material from p, i.e., a new entry is added to the current
decision mapping. When the branching strategy runs, different strategies can be
applied as to which node should be extracted next. The strategy is determined by
the datastructure. The datastructure stores elements of p in a predefined order.
The GetElement() method returns a material, and the sub-branches of the current
branch are all possible decision mappings where the material x is produced by a
set of operating units. The set of operating units is denoted by c in the algorithm,
and it is checked in line 16 that c is consistent with current decision mapping.

The material set p′ is the previous state of the materials to be produced, and p
will be the state of the new materials to be produced in the sub-branch. It is input
materials of the included operating units in the decision mapping, as to operate
a unit the input materials have to be produced (except raw materials). The raw
materials and currently produced materials (m′) do not need to be produced. New
materials to be produced (p \ p′) are added to the data structure, and materials
newly left out from p are erased.

The ABBD sub-method is recursively called then for the sub-branch with the
modified parameters.

Algorithm 1 ABB algorithm
Input M, PNS(P, R, O), datastructure
Global variables R, ∆(x), (x ∈ M), U, currentbest

1: U := ∞; currentbest := ∞
2: O := MSG(PNS(P, R, O))
3: ABBD(P, ∅, δ[∅])
4: return
5: end procedure

1: procedure ABBD(p, m, δ[m])
2: bound = Lower_Bound(PNS(P, R, 0), OI , OE)
3: if p = ∅ then Halting condition.
4: if U ≥ bound then
5: U = bound;
6: update currentbest;
7: end if
8: return
9: end if

10: if bound ≥ U then Cutting the branch.
11: return
12: end if
13: x := datastructure.GetElement();
14: C := ℘(∆(x)) \ {∅};
15: for ∀c ∈ C do
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16: if ∀y ∈ m, c ∩ δ(y) = ∅&(∆(x) \ c) ∩ δ(y) = ∅ then
17: m′ := m ∪ {x};
18: if S(δ[m′]) = ∅ then
19: Continue;
20: end if
21: δ[m′] := δ[m] ∪ {(x, c)};
22: p′ := p;
23: p := (matin(op(δ[m′])) ∪ P ) \ (m′ ∪ R);
24: datastructure.Insert(p \ p′);
25: datastructure.Erase(p′ \ p);
26: OI := op(δ[m′]);
27: OE := op(δ[m′]);
28: ABBD(PNS(P, R, O), p, m′, δ[m′])
29: end if
30: end for
31: return
32: end procedure

4.1. Heuristics
When selecting a new material to process, various strategies can be used to expand
the current decision mapping. In previous studies, nodes were selected according to
the alphabetical order of materials. It was not examined, how the selection methods
affect the total running time of the ABB algorithm. The following strategies were
tried: FIFO, LIFO, and Random Pick (RND). During the LIFO, the algorithm
works as a DFS (Depth-first search) algorithm, and for the FIFO case, it is a BFS
(Breadth-first search) algorithm.

Consider the P-Graph shown in Figure 2 and assume that no heuristics is spec-
ified for the traversal of the graph. The default values are applied when there is
no specified amount of materials produced and consumed.

The simplest way is to order the nodes in alphabetical order of the names. In
this case, the G, H will be the first materials to produce the p. If G is first produced
then there are two ways to produce G by the path of O3, O4 or by O1, O4. According
to the ABB algorithm, in this scenario, the path O3, O4 is examined first, and then
all possible steps are executed to produce material H. It took extra five steps to
find out. The same is repeated for the other two additional branches of producing
G, the cases O4, O1 and O4, O1, O3. The reason is that branch in both cases cannot
be cut by the relaxed lower bound. This is because the upper bound is 12 since
all fixed and default costs of operating units are 1. If O3 and also O1 produce
D, then the relaxed bound is calculated from the costs of the included operating
units added to the operating costs of the free operating units. The number of steps
evaluated to 15. If in the root node, when deciding whether to produce G or H
first, it is decided that H should be produced first, then the algorithm would stop
running after 11 steps. If the decision in the first step were completely random
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in which orders the products, then the expected value of the run in the case of
alphabetical order would be 1

2 · 17 + 1
2 · 11 = 14.

If the graph is evaluated according to the heuristic of LIFO, the last added
material is always processed. In the original case, this is product H. In this
heuristic, the algorithm finds the shortest chain of materials and operating units
that leads to the raw material A. In the example, this takes five steps. After
that, G is considered. If D is produced from raw material B, the process takes
two additional steps, and the same is true if the source material is A, and if D
is produced by both O3 and O4, one additional step is needed to examine this
branch. This results in a total of 9 steps to find the optimal solution. This is the
best-case scenario. If H and G are swapped, then the same worst-case scenario is
executed when the algorithm is run in the order G, H using the alphabetic heuristic.
The result is the same running time 17. Overall, the expected value of the LIFO
heuristic for this example is 9+17

2 = 13.
In the case FIFO, if the order of processing is G, H first, then after G is produced

by O4, H is examined. Then H is produced by O7, and after that D will be the
selected material. The production of D has three branches, and these branches
have the same additional four steps to reach the raw material A. So, in total, there
are 15 steps. In the case of H, G, first H is produced by O7, then G is examined and
produced by O4. After that, the F is produced by O6, and then the branching is
done how to produce the material D. A total of four steps are used to examine how
D can be produced. After the three branches were examined, it took additional
three steps to be processed. This means that in this case, the algorithm would stop
running after 13 steps. The expectation value of the FIFO case heuristic will be
15+13

2 = 14.
This simple example shows that the LIFO strategy works the fastest on average

(13 steps), compared to the random and FIFO algorithms (14 steps). Of course,
this strategy also depends heavily on which product of the same step in the ABB
algorithm is processed first. There are two cases, one with 9 and the other with 17
steps.

5. Results
The algorithm was also tried on randomly generated examples. The operating units
and materials are ordered in a matrix pattern. The graph has a height number of
layers and in each layer, there is a width number of operating units or neighbour
materials. The first layer consists only of raw materials, and the last layer contains
only product materials. The type of neighbor layers alternates between material
and operating unit. Connections are made only between two consecutive layers.
Every material in the i-th layer except raw materials is produced by at least one
operating unit from the (i−1)-th layer. Accordingly, they are also consumed by at
least one operating unit from the (i + 1)-th layer. In addition to these connections,
other connections with random p-value (0 ≥ p ≥ 1) are randomly produced between
two layers. All connections are generated by a uniform random distribution. The
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graph generation pattern can be seen in Figure 4. In our experiment, the width
and height were set to 5, and p was set to 0.2.

A

O1 O2
D

O3

O4

B

G

I

O5
E

O6
F

O7
H

Figure 2. Example P-Graph for different heuristics.

100 examples were generated uniformly at random and the ABB algorithm was
run with three different heuristic settings. The random selection heuristic was
solved so that the nodes were indexed in random order. In the node selection
part, the elements of the materials to be produced were ordered by increasing
indexes. The results are grouped by heuristics and the average running time values
are collected. Two types of running times were measured. The first is the CPU
per clock per second multiplied by 1000. The second is the number of LP solver
callings. The lower bound sub-method is used to calculate the relaxation of the
MILP transform associated with the current sub-problem. It is particularly relevant
to consider the number of solver callings, as well, since the operating units can differ
from the simple linear transition between the produced and consumed materials,
i.e. they may also be nonlinear or stochastic.

Running time was calculated as CPU clock per second multiplied by 1000. For
these randomly generated graphs, the LIFO algorithm performed the best. The
FIFO algorithm was the slowest, and the random pick over-performed it as well.

The random pick heuristic itself can be interpreted as choosing the nodes in the
graph by alphabetical order where randomly assigning the name of the materials.
In the previous cases, generally alphabetical order was used for every case. The
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present paper shows that it is worth reconciling the node selection heuristic.

RND LIFO FIFO

1.2

1.4

1.6

1.8
·105

1.42 · 105

1.21 · 105

1.75 · 105

Heuristics

Av
g

R
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ni
ng

T
im

e
(m

s)

(a) Average running time of heuristics.

RND LIFO FIFO
5,500

6,000

6,500

7,000

6,206.42

5,703.8

7,109.58

Heuristics
Av

g
LP

ca
lli

ng
s

(b) Average number of LP callings of
heuristics.

Figure 3. Comparison of different heuristics.

Figure 4. The basic structure of the examined p-graphs.
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6. Conclusion and future work
In this article, we have presented the algorithm ABB, which is used in the con-
text of the P-graph. This is very similar to a branch-and-bound method used for
standard binary LP problems. We have studied the effect of different traversals of
the branches on the running time and the number of LP problems to be solved. In
the paper we studied only the 3 best known and simplest versions, but this also
shows how differences arise on general graphs. From these results, it can be con-
cluded that it is worth trying other algorithms that are even more computationally
demanding. These selection heuristics can be used to achieve even further opti-
mizations that also improve runtime. Such algorithms can be especially interesting
when the evaluation of the optimization models is even more time-consuming, for
example in nonlinear or stochastic cases.

In the future, we plan to investigate more sophisticated heuristics that use the
cost functions and the structural nature of the possible solution structures or other
factors.
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