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Abstract. Maximizing the smallest eigenvalue of the grounded Laplacian
matrix is an NP-hard problem that involves identifying the Laplacian ma-
trix’s (n − k) × (n − k) principal submatrix obtained after removing k rows
and corresponding columns. The challenge is to determine optimally the rows
and columns to be deleted. Our proposed approach, motivated by the Gersh-
gorin circle theorem, is used together with the degree centrality of the corre-
sponding graph. Moreover, integer linear programming for the vertex cover
problem has been employed as an additional method of solving the problem.
The efficiency of the methods is demonstrated on real-world graphs.
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1. Introduction

The simplest way to represent graphs is their topological representation, where
the graph is a set of nodes and edges. However, the spectral representation, such
as Adjacency matrix or Laplacian matrix, can significantly help in describing the
structural and functional behavior of the graph. Let G = (V, E) be a simple,
undirected graph with nodes set V and edges set E, where |V | = n and |E| = m.
For an edge (i, j) we consider that (j, i) ∈ E for symmetry, but they count only
one edge in total. The Adjacency matrix A is defined as

Aij =
{

1 if (i, j) ∈ E,

0 otherwise.
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Let di denote the degree of node i ∈ V , i.e., di =
∑

j Aij for all i ∈ V . The
Laplacian matrix L of graph G is defined as follows:

Lij =


di if i = j,

−1 if (i, j) ∈ E,

0 otherwise,

Note that the Laplacian matrix is a symmetric positive semidefinite matrix. It is
well known that its n eigenvalues are non-negative real numbers, bounded by the
double of the maximum vertex degree [1]. As a consequence, we have 0 = λ1 ≤
λ2 ≤ . . . ≤ λn ≤ 2 maxi∈V di, where λi stands for the i-th eigenvalue of L.

Some applications of the Laplacian. According to Mohar et al. [12], the
eigenvalues of the Laplacian matrix have their applications in diverse fields. One
of the main applications is in graph theory, where the number of spanning trees of
a graph G is determined by the multiplication of all non-zero eigenvalues of L [9].
Moreover, the sum of resistance distances over all node pairs can also be determined
using the eigenvalues of the Laplacian matrix [6]. Another important implication
of the Laplacian matrix is the Fiedler value [4], which corresponds to the second
smallest eigenvalue (λ2) and plays a crucial role in determining the connectivity
of a graph. A graph is considered connected if its Fiedler value is greater than
zero. Finally, the number of components in G is equal to the multiplicity of the 0
eigenvalue of L.

Grounded Laplacian. Let G = (V, E), a simple undirected and connected
graph, be given together with its Laplacian matrix L. The grounded Laplacian
matrix L(S), which was introduced in [11], is an (n − k) × (n − k) submatrix
obtained by deleting k rows and their corresponding columns from the Laplacian
matrix L, where S ⊂ V , |S| = k, 0 < k ≪ n. The smallest eigenvalue of L(S) is
denoted by λ(S). Note that L(S) is a symmetric positive definite matrix, thus all
its eigenvalues are strictly positive real numbers. Hence, λ(S) > 0 holds.

Applications, complexity and algorithms. Without completeness, we men-
tion some applications of L(S). The value of the smallest eigenvalue λ(S) of matrix
L(S) determines the convergence rate of a leader-follower networked dynamical sys-
tem [13], as well as the effectiveness of pinning scheme of pinning control of complex
dynamical networks [10], with large λ(S) corresponding to fast convergence speed
and good pinning control performance.

Finding L(S) with the maximum possible λ(S) has been shown to be an NP-
hard problem [14]. Thus, solution methods based on heuristics are desired. The
authors in [14] introduced two greedy-type algorithms. The first one, referred as
the Naïve algorithm, involves k iterations. In each iteration, a candidate is chosen
if adding it to set S maximizes λ(S). The second algorithm, referred to as the
Fast algorithm, evaluates a candidate node based on the sum of the eigenvalues of
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its adjacent nodes. The optimal candidate is chosen based on the maximum sum
value. The eigenvalues for this computation are obtained from the eigenvector that
corresponds to the smallest eigenvalue of a grounded Laplacian matrix, which is
approximated using the SDDM solver [3] that determines the eigenvector without
having to calculate the entire eigensystem.

2. Methodology
We propose two algorithms that differ from the approaches mentioned above. The
first algorithm relies on the centrality of the nodes to select elements of set S, while
the second algorithm is based on the vertex cover problem.

First approach. Our first method, denoted by Degree-G, is motivated by the
well-known Gershgorin circle theorem [5]. The Gershgorin circle theorem provides
bounds on the eigenvalues of a square matrix. Let B be a square matrix, with
entries bij . For i ∈ {1, . . . , n}, let Ri =

∑
i ̸=j |bij |. Let D(bii, Ri) ⊆ C be a closed

circle centered at bii with radius Ri.

Theorem. Every eigenvalue of B lies within at least one of the Gershgorin circles
D(bii, Ri).

Figure 1 represents the Gershgorin circles of a Laplacian matrix. Note that we
obtain the sharp, yet trivial, lower bound 0 on the eigenvalues of L.

L =


3 −1 −1 −1 0

−1 2 0 −1 0
−1 0 3 −1 −1
−1 −1 −1 4 −1
0 0 −1 −1 2

 Re

Im
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Figure 1. A Laplacian matrix (left) and its Gershgorin circles (right).

Before we give the details of our first approach, the concept of graph centralities
needs to be briefly introduced. Given graph G = (V, E), centrality is a function
that assigns a non-negative real number to the nodes of G. Thus, upon calculating
centrality values for G, it is possible to rank the nodes, which can be thought of as
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Algorithm 1: Centrality-based Algorithm
1 node_cen = sort(centrality(V ))
2 for i ∈ 1 → k do
3 remove(L, node_cen[i])
4 compute(min_eigen(L))

assigning importance to the nodes. Traditionally, a larger centrality value indicates
a higher importance of the node.

It is obvious that maximizing the lower bound on the smallest eigenvalue re-
quires moving the circles further from the origin. Thus, the idea is to rank the
nodes according to specific centrality, and then remove the corresponding row and
column from the Laplacian matrix. The method is described in Algorithm 1. In
this work, the degree centrality has been used.

As a simple demonstration, by applying the idea on the Laplacian matrix in
Figure 1 with k = 2 we obtained λ(S) = 1.27, the output represented in Figure 2.
In contrast, the greedy-type Naïve algorithm of [14] gives the set S = {2, 4} for
which we obtain λ(S) = 1.2. Note that none of these methods were able to obtain
the optimal solution, that is λ(S) = 1.47 with S = {1, 5}, for this simple problem.
Note that we ranked the nodes in ascending order for this method. We tried using
the descending ranking as well, but overall it did not yield satisfactory results.

L =

 3 −1 −1
−1 3 −1
−1 −1 4
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Figure 2. Illustration of the result of Algorithm 1 using degree centrality.

Second approach. The second method called Cover, also uses the Gershgorin
circles, but it utilizes the so-called maximum k vertex cover problem as well. The
maximum k vertex cover is based on the vertex cover problem [2], with the differ-
ence, that in the k vertex cover the search is for a set of k nodes that incident to
the maximum number of edges of the graph rather than the minimum number of
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nodes that each edge in the graph is incident to. The integer linear programming
model of the vertex cover is as follows:

min
∑
i∈V

xi,

xi + xj ≥ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1} ∀i ∈ V.

Note that the objective function represents the minimum number of nodes that
incident to all the edges in the graph, where xi = 1 are the covering nodes. The
constraint requires that for each edge at least one of its endpoints should be a
covering node.

The integer linear program of the maximum k vertex cover is defined as follows:

max
∑
j∈V

yj ,

∑
i∈V

xi = k,

yj ≤
∑

∀i∈V :(j,i)∈E

xi ∀j ∈ V,

k ∈ N, xi, yi ∈ {0, 1}, i = 1, . . . , n.

Again, the variables xi stand for the nodes that cover, by the edges, the max-
imum number of vertices in the graph, while yi represents the vertices that are
covered. The constraints ensure that only k vertices can be selected and that the
value of yi is 1 iff at least one of its adjacent nodes, xi, is selected. Once we solve
the above IP, we delete the rows and columns that correspond to the solution from
the Laplacian matrix and then determine its smallest eigenvalue.

The maximum k vertex cover problem can have multiple solutions, so we
thought that combining vertex cover and degree centrality could enhance our re-
sults. As a result, we modified the objective function in our linear program to the
following:

max
∑
j∈V

yj − δ
∑
j∈V

djxj ,

where δ is a small number so as to not change the main objective. For instance
δ = 1/

∑
j∈V dj can be chosen. This modification aims to select k nodes with the

lowest degree to maximize the objective. The approach is denoted as Cover1.

Moreover, as the maximum k vertex cover problem can have multiple solutions,
we utilized a method to explore the possibility of obtaining a better value for λ(S)
by the alternate solutions. The idea is to solve the linear program iteratively while
including a constraint that prevents the solution from resembling previous ones.
By checking various solutions, we can obtain different values for λ(S) and select the
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one that gives the optimal result. This additional constraint is defined as follows
for a given solution S ⊂ V obtained before:∑

i∈S

xi ≤ k − 1.

At each iteration, we need to ensure that the solution covers the maximum number
of nodes, nc, that is,

∑
i∈V yi = nc must hold, otherwise, we need to stop the iter-

ation. This approach is denoted as Cover2. The maximum number of iterations
– and so the maximum number of alternative solutions – is fixed to be 100.

3. Numerical results
To demonstrate and compare the efficiency of the proposed methods we compare
them with the two algorithms proposed by Wang et al. [14]. We implemented all
the algorithms in Julia 1.7.0 using the package JuMP 0.22.1. As a solver, we used
Gurobi 9.5.0., all on a computer with Intel Core i7-4600U CPU and 8GB RAM
running Windows 10. Experiments were conducted on real-world networks, all
of which are publicly accessible in KONECT [7], SNAP [8], and RWC at http:
//tcs.uos.de/research/lip.

Results for different k values. Figure 3 shows the results achieved by apply-
ing the tested methods to various real-world graphs. The figure shows the smallest
eigenvalue, λ(S), for six different values of k using the discussed methods on se-
lected graphs. The evaluated cases are connected with a solid line, representing
an approximate value, since λ(S) increases monotonically with k for each method.
The higher the lines, the better the results are. The presented results show that
method efficiencies vary from graph to graph, but there are some common features.
It is obvious that the Degree-G and Fast methods are inferior to the Naïve and
Cover methods. Interestingly, the Naïve method outperforms the other methods,
although the Cover methods perform equally well or even better than Naïve at
specific values of k.

Results for specific k values. Instead of using ad-hoc k values, we utilized the
vertex cover integer program to obtain the lowest value of k that can provide a
sufficient value for certainly increasing the lower bound of λ(S). Table 1, displays
the corresponding values of k and λ(S) for various real-world graphs using the
different methods we have discussed. The Naïve and Cover methods are clearly
more effective than Degree-G and Fast methods. However, the Cover methods
perform equally or even better than Naïve in all cases.

Additionally, we performed a time comparison between the different methods.
Table 2 presents the runtime for k = 5 of each method with a time limit of one
hour. The results demonstrate that the Degree-G and Fast methods are notably
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faster than the Naïve and Cover methods. It is clear that the Naïve and Cover
algorithms exceeded the time limit for graphs containing thousands of nodes and
edges, and it is evident that the Cover methods are generally faster than Naïve
in completing the task.

(a) Prison (b) Huck

(c) Sanjuansur (d) Jean

(e) Sfi (f) Anna

Figure 3. Values of λ(S) obtained by the algorithms for different
k values.

7



Annal. Math. et Inf. A. T. Anaqreh, B. G.-Tóth, T. Vinkó

Table 1. Values of λ(S) for k value obtained from vertex cover.

Graph N M k Naïve Fast Degree-G Cover Cover1 Cover2

Prison 67 142 41 1 0.48 1.97 1.59 1.63 2.38
Huck 69 297 44 1 1 1.7 1 2.48 3.5
Sanjuansur 75 144 40 1.59 0.84 0.95 1.29 1.27 1.59
Jean 77 254 42 1 0.37 0.67 1 1.24 1.24
David 87 406 51 1 1 2.45 3.44 2.65 2.77
ieeebus 118 179 61 1 0.59 0.73 1 1.06 1.2
Sfi 118 200 53 1 0.27 0.24 1 1 1
Anna 138 493 58 1 0.83 0.87 1 1.65 1.65
Usair 332 2126 149 1 0.74 1 1 1.59 1.59
494bus 494 586 216 0.38 0.07 0.14 1 1 1
average 0.99 0.62 1.07 1.33 1.56 1.79

Table 2. The time (in seconds) for k = 5 to compute λ(S).

Graph N M Naïve Fast Degree-G Cover Cover1 Cover2

Prison 67 142 0.63 0.005 0.002 0.031 0.028 1.139
Huck 69 297 0.785 0.008 0.003 0.036 0.038 5.686
Sanjuansur 75 144 1 0.008 0.003 0.031 0.036 7.712
Jean 77 254 1.02 0.008 0.004 0.035 0.034 13.615
David 87 406 1.418 0.014 0.008 0.041 0.041 2.213
ieeebus 118 179 2.868 0.011 0.003 0.043 0.042 9.127
Sfi 118 200 2.708 0.011 0.008 0.041 0.041 7.724
Anna 138 493 3.88 0.016 0.014 0.067 0.066 14.543
Usair 332 2126 29.773 0.049 0.034 0.651 0.513 21.856
494bus 494 586 102.975 0.057 0.051 0.382 0.323 15.712
Email-Univ 1133 5451 1589.445 0.55 0.531 13.632 17.497 104.342
Routers-RF 2113 6632 >3600 1.448 1.515 55.288 57.114 272.99
US-Grid 4941 6594 >3600 14.255 15.551 312.706 315.643 1947.852
WHOIS 7476 56943 >3600 50.343 50.425 >3600 >3600 >3600
PGP 10680 24340 >3600 140.943 143.747 >3600 >3600 >3600
average 1075.789 13.852 14.126 505.532 506.094 641.634

4. Conclusion

Given the fact that maximizing the smallest eigenvalue of the grounded Laplacian
matrix is NP-hard, it is desirable to establish efficient algorithms that can provide
solutions of acceptable quality and reasonable running time. We have proposed
two approaches and experimentally shown that, compared to the algorithms in the
literature, these algorithms are competitive. The covering methods provide a better
solution in a shorter time as the Naïve method, while Degree-G is almost as fast
as the Fast method giving competitive results, especially for higher k values.
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