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Abstract. The latest machine learning models are sensitive to adversarial
inputs, i.e., the neural network can give incorrect results even with small
changes in the learning case. To avoid this, techniques are used during learn-
ing, or verification is also possible. In many cases, these methods use interval
arithmetic, whose usefulness is severely limited by overestimation. In this
paper, we present and compare such methods that can handle this problem.
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1. Introduction
One of the most important topics in artificial intelligence research today is the
verification of neural networks. The accuracy of the networks has continuously
increased over the years, so more and more complex neural networks have been
created and many tasks could be solved by them. Many modern teaching methods
have been developed that have improved the quality of the networks. In certain
fields, it is inevitable to be precise and to have fast networks.

In many works, it has been shown that these nets, which are considered to be
safe, can also be wrong [10]. In many cases, noise on the input that is invisible
to the human eye can lead to a wrong classification. There are many methods
developed by researchers to solve these problems. The methods are mainly divided
into 2 classes: robust learning and adversary example detection.

For this reason, neural network verification is an important topic in today’s
artificial intelligence research. The neural network technique focuses on speed and
typically uses floating point arithmetic, while others prefer symbolic methods [15]
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used for reliability. Other important family of deep neural networks, the Binarized
Neural Networks (BNN) [4, 6], that are similar to regular feedforward neural net-
works. One difference is that the weights and activations in a BNN are constrained
to be only two values: 1 and −1, which implied other verification technique.

The standard numerical systems often have significantly longer run times [2, 11,
13]. In this paper, other methods have been described using the numerical result.
These methods have a correct evaluation and a manageable runtime. The system
we wrote defines not only the inputs but also the interval of values for the outputs
of the given network. When verifying the robustness of a neural network, these
intervals must be as small as possible. During the evaluation, in addition to the
nets with the ReLU activation function, the output widths and the running times
were also compared.

2. Motivation
During our work, we have developed a system based on reliable network assess-
ment. The system supports multiple evaluation methods, in both CPU and GPU
environments. Many current contemporary systems use floating-point arithmetic
with an emphasis on speed in evaluation. The big disadvantage of this is that
some numerical errors in the various operations can accumulate during the evalu-
ation [16].

A good way to get a handle on these errors is to use interval arithmetic [1, 5].
One solution is to compute an interval containing the given value instead of the
floating-point number. The method is well suited for neural networks and also for
their evaluation since the operations that can be performed on real numbers can be
easily extended to intervals. In this case, the inputs of the network are intervals.
One of the advantages of the method is that it increases the running time only
minimally compared to floating point evaluation. Since it is reliable and robust in
class, this method is also used in the evaluation phase.

At the last ICAI conference, the first results of an interval-based verification
algorithm [3]. In this approach, a simple natural interval expansion was used to
compute inclusion functions. This mod was able to include the values of the output
neurons in the input interval. This proves the correct result for each point of the
input.

The network shown in Figure 1 is evaluated according to the rules of naive
interval arithmetic. The ReLU activation function is contained in some neurons of
the network. The value of the output neuron x5 lies in the interval [0; 5]. It can
be observed that the upper limit of 5 would occur only if the neuron x3 had the
value 5 and the neuron x4 had the value 6. It can be seen that under the given
input conditions, these values can never occur simultaneously. As a result, the
upper bound of x5 was never sharp, leading to an overestimation in the evaluation.
The main reason for the overestimation is the dependency problem, which can
become quite strong and unmanageably wide in the results as the number of layers
increases.
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The goal of our work is to implement and compare numerically correct systems
that handle the dependency problem but do not drastically increase the runtime.

Figure 1. Naive interval arithmetic network evaluation.

3. Methods
In this work, three techniques were presented, each based on the use of a 1-1
function for the set of values of neurons on the given input set. The first technique
is symbolic propagation [12], where we search for the best-fitting function and
then handle the nonlinearity with new variables. In the second case, 2 separate
functions were held for each neuron and calculated with them. In the third case,
the well-known linear affine expression was used.

3.1. Symbolic function propagation
In our system, the overestimates resulting from the naive evaluation have been
effectively handled. The method has a ReLU activation function that is fully
feedforward and was used to evaluate networks with connected layers. The main
feature of the system is that the evaluation captures dependency relations rather
than the values of the current layer. In addition to a neuron of the input layer x1
and x2, the function x3 = x1 + 2x2 is recorded for the neuron x3 (Figure 1). When
the network is evaluated, the corresponding function is determined for all neurons,
and the result of its evaluation in intervals is the set of values of the neuron.

The transformations between layers can be easily extended to the functional
representation of neurons. The result of the product of a given function x and a
constant w is the function xw, which is obtained by multiplying all coefficients of
the function x by the constant w. For the sum of the functions, we calculate a
function formed by the sum of the coefficients. Since we examined ReLU networks
in the evaluation, the activation function had to be extended to functions as well.
To calculate the transformation, we used the method in the RefineZono article [8].
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In the operation, we can distinguish 3 cases. If the lower bound of the interval is
greater than 0, then ReLU is return with an original function, since there is no cut.
If the upper bound is less than or equal to zero, then ReLU nullifies all coefficients
of the input function, ensuring that the output is reduced to 0. On the other hand,
if the input function contains the value 0, the symbolic function ŷ = x̂ + xnew is
calculated from the input interval and the calculated output (see Figure 2).

l u
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α

Figure 2. ReLU inclusion with Symbolic propagation.

The first step in determining y is the green line through 0 defined in Figure 2.
To do this, we first calculate the slope of the line, which is arbitrarily [l; u] in the
case of an interval:

λ = u

u − l
.

Then the coefficients of the input function x were multiplied by λ, and the result
is a line passing through zero, which is the lower bound of inclusion. To determine
the upper bound, the function x + M must be calculated. For the result of the
inclusion to be a function, a new variable is introduced. The output can be easily
handled in the form of the function, only the coefficients need to be stored. Also,
by introducing the new variables, we can handle a larger dependency. The value
interval of the new variable can be calculated with the following formula:

xnew = [0, λ|l|].

The result of the transformation will be a new function ŷ = λx̂ + xnew.

3.2. ReLU inclusion with 2 functions
The major advantage of the inclusion shown in Figure 2 is that it can be computed
quickly, and the newly introduced variable makes it easier to handle dependency
relationships in the computation. However, a disadvantage is that the inclusion
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does not guarantee that the 0 lower bounds will be overestimated in the calcula-
tion of the lower bound. To deal with this, we also investigated an evaluation in
which we maintain separate lower and upper inclusion functions for each neuron.
The investigated to determine the value set of a neuron, both functions must be
evaluated. The lower bound of the lower inclusion function gives the lower bound
of the neuron. For the upper bound, we take the upper bound of the inclusion
function.

In this case, we also had to handle the ReLU transformation. ReLU’s input,
in this case, was 2 functions that were evaluated to get the boundaries. If the
lower bound is at least 0, the transformation leaves both functions unchanged. If
the upper bound was less than 0, then the coefficients of the boundary function
were set to zero by zero to obtain the interval [0; 0]. In the case where the interval
encompasses zero, the inclusion shown in Figure 2 is calculated. By setting the
coefficients of the lower bound function to zero, the lower bound 0 can be ensured so
that no overestimation occurs here. Determining the upper bound for the method
is shown in Figure 3 and proceeds similarly. First, we determine the value by which
we multiply the above coefficients of the function λ, then we add the value of the
shift M . Then we get the transformation:

ŷ lower = 0,

ŷ upper = x̂λ + M.

The advantage of inclusion is that a zero lower bound can be guaranteed for
output. However, the disadvantage is that a new variable was not introduced and
use two separate limit functions, so the dependence information registered between
neurons is reduced and the computing demand increases.

l u
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α

Figure 3. Layer transformation for separate boundary functions.

3.3. Affine representation of neurons
To further manage dependency information, we also explored a method in which
input intervals were recorded in the affine form [7]. Then, any input x was treated
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in the following form:
x̂ = x0 + x1ϵ1 · · · xnϵn.

The coefficients xi are floating point values, and the ϵi are independent in the
[−1; 1] interval is given. The x0 value is used as the mean, and the ϵi are to be
referred to as noise symbols.

The conversion between the affine and interval forms is easy to write. A x
result interval in the case of an affine expression can be given in the following form:
x0 indicates the center of the interval and the radius can be calculated from the
absolute sum of the corresponding coefficients.

x = [x0 − r, x0 + r], where r =
n∑

i=1
|xi|.

For an interval x = [a; b] the corresponding affine form x can be calculated with
the following relation: x̂ = x0 + xkϵk, where x0 = a−b

2 , xk = b−a
2 and ϵk is a new

variable.
The layer transformations can be easily extended in this case as well. The

result of the product of an affine expression x and the constant α is an affine form
where the coefficients of x have been multiplied by the value α. The sum of an
affine expression and a constant value is also an affine form where the mean x0 is
increased by the specified number.

An extension of the ReLU transformation similar to the method shown in Fig-
ure 3. In the first step, we calculate the slope by which we multiply the coefficients
of the input function. On the other hand, when introducing the new variables, so
that the values remain in the range [−1; 1], we perform the following transforma-
tion:

[0, λ|l|] = ϵk

[
0,

λ|l|
2

]
+ λ|l|

2 , where ϵk = [−1; 1].

Two methods have been used to handle numerical errors. One solution is the
coefficients of the affine expression x are stored with interval inclusion and in the
evaluation, and the transformations were calculated according to the rule of interval
arithmetic. The other solution is to expand our expression with a new zk k-error
term during each operation. Here zk is the upper bound of the absolute error in
the coefficients of the affine expression and k is a completely new symbol.

4. Results
During the evaluation, our goal was to make as diverse as possible examples. Our
methods were tested on different sizes, types, and quality networks. For this reason,
the networks were examined on those published in the ERAN [9] system. 6 networks
from the set, on which we also studied the runtime, output widths, and robustness.
The parameters of each network are listed in Table 1. All trained networks have a
ReLU activation function.
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Table 1. Parameters of the ERAN networks.

Layer number Layer width Training method
3 50 regular
3 100 regular
4 1024 regular
6 500 regular
6 500 PGD (0.1) robust
6 500 PGD (0.3) robust

4.1. Results for 0.02 wide input intervals

The average total output width of the symbolic propagation (Table 3) was 0.41.
For the symbolic system (Table 2), this value is 210, which is about a 510 times
improvement over the naive method. The most significant reduction in width is
the PGD (0.3) teaching network, where the improvement was nearly 3000 times.
Overall, symbolic propagation produced the narrowest results in this case as well.
Using the affine method (Table 4) produced an average improvement of about 108
times compared to the naive method. However, for the network with the most
neurons (4X1024), we obtained outputs that were about 7 times wider than those
of the symbolic propagation next to it. The results of the solution with separate
constraint functions are visible in Table 5. Compared to the naive method, the
average improvement was about 10 times.

Table 2. Naive interval arithmetic.

Network Training ϵ Mean time(s)
ϵ = 0.02 ϵ = 0.1 CPU GPU

3×50 regular 4.70 24.31 0.0006 0.0005
3×100 regular 9.62 53.41 0.001 0.0005
4×1024 regular 1088.51 5385.14 0.058 0.00089
6×500 regular 35.15 315.58 0.042 0.0012
6×500 PGD (0.1) robust 96.23 444.36 0.027 0.0012
6×500 PGD (0.3) robust 29.60 170.57 0.059 0.0012

4.2. Results for 0.1 wide input intervals

With wider input bounds, we obtain almost 578 times narrower intervals with
symbolic propagation, than with the naive method. With the affine method, this
quotient reduces to about 6. The average width with separate limit functions is
420, which turns out to be about 2.5 times narrower than with the naive method.
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Table 3. Symbolic function propagation.

Network Training ϵ Mean time(s)
ϵ = 0.02 ϵ = 0.1 CPU GPU

3 × 50 regular 0.62 2.5 0.0038 0.0021
3 × 100 regular 0.56 2.41 0.006 0.0021
4 × 1024 regular 1.20 4.85 0.092 0.0046
6 × 500 regular 0.08 0.41 0.076 0.0046
6 × 500 PGD (0.1) robust 0.02 0.10 0.058 0.0047
6 × 500 PGD (0.3) robust 0.01 0.11 0.094 0.0046

Table 4. Affine propagation.

Network Training ϵ Mean time(s)
ϵ = 0.02 ϵ = 0.1 CPU GPU

3 × 50 regular 0.89 14.14 0.0045 0.0016
3 × 100 regular 1.06 28.48 0.0059 0.0016
4 × 1024 regular 9.35 843.41 0.093 0.0035
6 × 500 regular 0.19 131.77 0.061 0.0039
6 × 500 PGD (0.1) robust 0.06 15.67 0.056 0.0040
6 × 500 PGD (0.3) robust 0.05 13.39 0.062 0.0037

Table 5. Separated propagation.

Network Training ϵ Mean time(s)
ϵ = 0.02 ϵ = 0.1 CPU GPU

3 × 50 regular 1.15 12.83 0.179 0.0023
3 × 100 regular 1.85 26.91 0.325 0.0024
4 × 1024 regular 123.84 2260.3 11.10 0.0064
6 × 500 regular 2.83 101.89 25.21 0.0061
6 × 500 PGD (0.1) robust 3.67 82.27 5.99 0.0061
6 × 500 PGD (0.3) robust 1.36 36.38 50.91 0.006

4.3. Effect of robust training
For 6-layer networks with 500 neurons, we compared how robust training affects the
average output width. During the test, we calculated the robust of the average out-
put widths of the simple trained network and the robustly trained network, which
represents the degree of improvement compared to the simple training method.
Table 6 shows the symbolic propagation (S_ IA), the affine method (S_ AFF),
and the results of the evaluation under separate boundary functions (S_ SEP).
Robust teaching had a positive effect on the increase in initial width in almost all
cases. The reason is that the networks trained in this way are prepared for a given
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input change in their environment.

Table 6. Roboust teaching effect.

Methods Training ϵ Mean improvement

S_IA
PGD(0.1) 0.02 3.46

0.1 3.88

PGD(0.3) 0.02 9.40
0.1 10.95

S_AFF
PGD(0.1) 0.02 3.27

0.1 10.80

PGD(0.3) 0.02 16.10
0.1 290.90

S_AFF
PGD(0.1) 0.02 0.74

0.1 1.23

PGD(0.3) 0.02 13.59
0.1 3.49

5. Conclusion
In this work, we demonstrate the effectiveness of different techniques for multiple
neural networks. The CPU/GPU time of the algorithms was shown on self-trained
networks of different sizes and on ERAN networks. We will also separately explain
how the computation time evolves in the case of networks trained with other robust
techniques. We hope that these methods will be more effective in training than the
interval method used robust training [14].
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