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1. Introduction
In this article we deduct a Plancherel-type formula for the attenuated Radon trans-
form. We shall compute ∫

R2

f(x)g(x) dx

from the attenuated Radon transform of f , with any g of our choice (known exactly
or with arbitrary precision).

The problem is motivated by methods in stereology [1]. Using classical Radon
transform [2], it is easy to estimate the area or volume of a body, or an integral
of a function with compact support, as the expected value of sections, or that of
integrals over straight lines or planes, because the weights are constant. It does not
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work so easily for the attenuated Radon transform due to its complicated weights
over the line we integrate on. If the weights are non constants, we have to be
satisfied by not too good approximations.

If we know all the weighted sections, as in the case of attenuated Radon-
transform, then one would think that by applying a reconstruction formula, we
can compute this integral. But in practice we do not have stable reconstructions
due to the phenomena of “ghost images” and the unstability of the derivatives
in the reconstruction formula. (See [3–5, 7] for the case of the classical Radon-
transform.) This makes the integral of the reconstructed function very unstable.
Also, the computation is very costly, and we need much higher precision of data
for using a recontsruction formula, than necessary with our technique.

Our Plancherel type formula solves these issues: we can use less precise data
because we do not have to calculate (generalized) derivatives of the attenuated
Radon-transform Raf , just that of the exactly known test function g. So we can
apply Monte-Carlo methods for computing the integrals.

For deriving a Plancherel-type formula for the attenuated Radon transform, we
will use Natterer’s version [6] of Novikov’s inversion formula [8].

Definition 1.1. Let a : R2 → R be a sufficiently smooth and sufficiently decaying
function (as in [8]), e.g. an integrable C1 function whose partial derivatives are also
integrable. For ω ∈ S1 and x ∈ R2 we define

(Da)(x, ω) =
∞∫

0

a(x + tω) dt.

We will use (Da)(x, ω⊥), with ω⊥ defined below.

Remark 1.2. Depending on the context, the symbol ω can be understood as the
angle of the vector ω with the first coordinate axis, or the vector itself, that is,
ω = (cos ω, sin ω). There is a one-to-one correspondence between the vector ω ∈ S1

and ω ∈ [0, 2π) (geometrically equivalent to an angle). When the argument of the
function to be differentiated is x ∈ R2, then ∂ω (or ∂ω) means directional derivative
in the direction ω. When one of the arguments of the function to be differentiated
is ω, then ∂ω means partial derivative with respect to the angle ω. Occasionally
we underline the name of vectors for easier understanding.

Definition 1.3. The attenuated Radon transform Ra : [0, 2π) × R → R (or equiv-
alently, Ra : (−π, π] × R → R) is defined as

(Raf)(ω, p) =
∫

⟨x,ω⟩=p

e−Da(x,ω⊥)f(x) dx,

where dx is the Lebesgue measure on the line l(ω, p) :=
{

x ∈ R2 : ⟨x, ω⟩ = p
}

, and
ω⊥ is (cos ω, sin ω)⊥ = (cos(ω + π

2 ), sin(ω + π
2 )) = (− sin ω, cos ω).
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With a = 0 we get the classical Radon transform of f . We can rewrite this
definition as

(Raf)(ω, p) =
∞∫

−∞

e−Da(pω+uω⊥,ω⊥)f(pω + uω⊥) du.

Note that the line l(ω, p) is the same set as l(−ω, −p), but admits different ori-
entation. Also note that although defined on the same set, the integral (Raf)(ω, p)
usually differs from (Raf)(−ω, −p), unlike the special case of the classical Radon
transform where Rf(ω, p) = Rf(−ω, −p).

Our goal is to compute ∫
R2

f(x)g(x) dx

from the attenuated Radon transform Raf , knowing g with arbitrary precision.

2. The Plancherel formula
Let us define the function

h(ω, p) = 1
2(I + iH)Ra(ω, p),

where Ra(ω, p) is the classical Radon transform of the function a along the line
l(ω, p), and H is the Hilbert transform, defined by

Hg(p) = 1
π

∞∫
−∞

g(t)
p − t

dt,

where the integral is understood as a Cauchy principal value.

Theorem 2.1. With the conditions of Novikov’s inversion formula, the Plancherel
formula for the complete attenuated Radon transform Ra is as follows:∫

R2

f(x)g(x) dx

= 1
4π

∫
S1

∞∫
−∞

(Raf)(ω, p) Re
[
eh(ω,p)Hp

{
e−h(ω,p)(Ra ∂ωg)(ω, p)

}]
dp dω.

3. Proof of Theorem 2.1
First we prove the following lemma.
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Lemma 3.1.

f(x) = 1
4π

∫
S1

∂ω(eDa(x,ω⊥))(Re e−hHehRaf)(ω, ⟨x, ω⟩) dω

+ 1
4π

∫
S1

eDa(x,ω⊥) ∂p(Re e−hHehRaf)(ω, ⟨x, ω⟩) dω.

Proof. We have the following reconstruction formula due to Natterer [6] based on
Novikov’s [8], if a and f are sufficiently smooth functions decaying sufficiently fast
at infinity:

f(x) = 1
4π

div
∫
S1

ω
{

eDa(x,ω⊥)(Re e−hHehRaf)(ω, ⟨x, ω⟩)
}

dω

= 1
4π

∂

∂x1

∫
S1

cos ω
{

eDa(x,ω⊥)(Re e−hHehRaf)(ω, ⟨x, ω⟩)
}

dω

+ 1
4π

∂

∂x2

∫
S1

sin ω
{

eDa(x,ω⊥)(Re e−hHehRaf)(ω, ⟨x, ω⟩)
}

dω

= 1
4π

∫
S1

∂ω(eDa(x,ω⊥))(Re e−hHehRaf)(ω, ⟨x, ω⟩) dω

+ 1
4π

∫
S1

eDa(x,ω⊥) ∂p(Re e−hHehRaf)(ω, ⟨x, ω⟩) dω,

as div(ωc(x)) = cos ω ∂
∂x1

c(x) + sin ω ∂
∂x2

c(x), and ∂ω = cos ω ∂
∂x1

+ sin ω ∂
∂x2

is the
directional derivative of a function (defined in R2) in the direction ω, which is
now acting on the first variable of eDa(x,ω⊥), and ∂p is the partial derivative of a
function defined on P2 = S1 ×R+, the space of all straight lines, with respect to its
second variable (the distance from the origin). The latter comes from ∂

∂x1
and ∂

∂x2
acting on the scalar product ⟨x, ω⟩ as an inside function, with derivatives cos ω and
sin ω, respectively, multiplying cos ω and sin ω that were already there, so adding
up to 1.

Note that if p is changing with the direction ω fixed, that has the same geometric
meaning as the directional derivative in the direction ω, as shown in Figure 1.

6(∆p)ω 66
6
pω

Figure 1
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Now we will compute
∫
R2 f(x)g(x) dx from the attenuated Radon transform

Raf , and an other function g that is known.
We multiply the above expression of f(x) by g(x) and integrate it on R2, then

change the order of integration. The differentiation with respect to p when u and
ω are fixed, and the directional derivative in the direction ω, are exactly the same,
so the two terms of our previous expression for f(x) can be contracted to a total
derivative (using the substitutions ⟨x, ω⟩ = p and ⟨x, ω⊥⟩ = u):∫
R2

f(x)g(x) dx

=
∫
R2

{
1

4π

∫
S1

∂ωeDa(x,ω⊥)(Re e−hHehRaf)(ω, ⟨x, ω⟩)

+ eDa(x,ω⊥) ∂p(Re e−hHehRaf)(ω, ⟨x, ω⟩) dω

}
g(x) dx

= 1
4π

∫
S1

∞∫
−∞

∞∫
−∞

{
∂p{e

∫ ∞

0
a(pω+uω⊥+tω⊥)dt}(Re e−hHehRaf)(ω, p)

+ e

∫ ∞

0
a(pω+uω⊥+tω⊥)dt

∂p(Re e−hHehRaf)(ω, p)
}

g(pω + uω⊥) dp du dω

= 1
4π

∫
S1

∞∫
−∞

∞∫
−∞

∂p

{
e

∫ ∞

0
a(pω+uω⊥+tω⊥)dt Re e−hHehRaf(ω, p)

}

· g(pω + uω⊥) dp du dω

= − 1
4π

∫
S1

∞∫
−∞

∞∫
−∞

{
e

∫ ∞

0
a(pω+uω⊥+tω⊥)dt Re e−hHehRaf(ω, p)

}

· ∂p

{
g(pω + uω⊥)

}
dp du dω

= − 1
4π

∫
S1

∞∫
−∞

Re e−hHehRaf(ω, p)

·


∞∫

−∞

e

∫ ∞

0
a(pω+uω⊥+tω⊥)dt(∂ωg)(pω + uω⊥) du

 dp dω

= − 1
4π

∫
S1

∞∫
−∞

Re e−hH
{

ehRaf(ω, p)
}

· Ra(∂ωg)(ω, p) dp dω. (3.1)
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Here we used integration by parts with respect to p. Now observe the following
property of the Hilbert transform:

Lemma 3.2. ∫
f(x)Hg(x) dx = −

∫
g(r)Hf(r) dr.

Proof.∫
f(x)Hg(x) dx =

∫
f(x)

{∫
g(r)
x − r

dr

}
dx =

∫ ∫
f(x)g(r)

x − r
dr dx

= −
∫ ∫

g(r)f(x)
r − x

dx dr = −
∫

g(r)
{∫

f(x)
r − x

dx

}
dr = −

∫
g(r)Hf(r) dr.

Thus, from the end of (3.1):

∫
R2

f(x)g(x) dx

= − 1
4π

∫
S1

∞∫
−∞

Re e−hH
{

ehRaf(ω, p)
}

· Ra(∂ωg)(ω, p) dp dω

= 1
4π

∫
S1

∞∫
−∞

Re ehRaf(ω, p)H
{

e−hRa(∂ωg)(ω, p)
}

dp dω.

This way both the differentiation and the Hilbert transform was “transferred” from
the unknown f to the known g. The proof of Theorem 2.1 is completed.

Remark 3.3. If g is known to arbitrary precision, because for example it is of our
choice, e.g. it can be constant on a big circular disc containing the support of f ,
then this computes the integral of f , which is of major concern in stereology. If
a = 0, we deal with the classical Radon transform, and through the Fubini theorem,
having the integral of f is trivial. But not so, if a is non-zero. To our knowledge,
this is the first formula for that problem. Observe that we need no derivatives or
Hilbert transform of Raf . If g is known, then Ra(∂ωg) can be computed. So our
formula is numerically stable and e.g. Monte Carlo and related methods can be
applied.

Although our formula is “ideal” for the needs of stereology, for the same reason,
due to its asymmetry in f and g it is not so for theoretical reasons, like extension of
the attenuated Radon transform to L2 spaces. Finding a useful symmetric version
(except the obvious one, when we express g from Rag using Novikov’s formula) is
still open.
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