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1. Introduction
Let U(FqG) be the unit group of the group algebra FqG of a group G over a finite
field Fq of order q = pk, for some prime p. For H ◁ G, one can extend the canonical
homomorphism ω : G → G/H to form an epimorphism ω′ : FqG → Fq(G/H) which
is defined by ω′(

∑
g∈G αgg) =

∑
g∈G αgω(g). Let ∆(G, H) = Ker(ω′) and J(FqG)

be the Jacobson radical of FqG. The canonical involution ∗ : FqG → FqG is defined
by (

∑
g∈G αgg)∗ =

∑
g∈G αgg−1. The dihedral group of order 2n is represented

by D2n = ⟨r, s | rn = s2 = 1, rs = sr−1⟩. For basic definitions and results, we
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refer to [12].
The structure of U(FqG) has been presented for many different groups G in [6, 8,

9, 13–16]. In [7], Kaur and Khan studied U(F2k D2p) for prime p. Furthermore, the
structure of U(F2k D2n) for odd integers n was described by Makhijani and Sharma
[10]. In [11], authors have provided characterizations of U(ZD8) and U(ZD12).
Creedon and Gildea [3, 4] provided the structures of U(F3k D6) and U(F2k D8) in
terms of explicit extensions of elementary cyclic groups. The unitary units of some
group algebras have been studied in [1, 2]. The description of U(FqG) for a non
semi-simple group algebra FqG is quite challenging.

In this paper, we aim to establish the structures of the unit groups U(F3k D6n)
and U(FqD42). Some associated useful results are listed in Section 2. The result
related to U(F3k D6n) is discussed in Section 3. Section 4 of this article identifies
the structure of U(FqD42) for characteristic 2 by employing the result in [10].
Additionally, the characterization of U(FqD42) is established for the other two non
semi-simple cases for p = 3, 7. Finally, we discuss the semi-simple case for FqD42
and consequently describe U(FqD42) by means of the Wedderburn decomposition.

2. Preliminaries
If p = 2, then from [10] we get a generalized result given as follows:

Lemma 2.1 ([10], Theorem 3.2). Let q = 2k and n be a positive odd integer. Then,

U(FqD2n) ∼= Ck
2 × Cq−1 ×

∏
d|n,d>1

GL(2,Fqcd )
ϕ(d)
2cd

where ϕ is the Euler totient function,

cd =
{

bd

2 , if bd is even and q
bd
2 ≡ −1 mod d;

bd, otherwise

and bd is the multiplicative order of q under mod d.

We recall a useful result from [12, Proposition 3.6.11] to determine the Wed-
derburn decomposition of semi-simple group algebras which states that if FqG is
semi-simple, then

FqG ∼= Fq(G/G′)
⊕

∆(G, G′)

where Fq(G/G′) is the sum of all the commutative simple components of FqG and
∆(G, G′) is the sum of all others.

In order to describe the structure of FqG/J(FqG), we utilize some results given
by Ferraz [5]. Let G be a finite group. An element g ∈ G is said to be a p′-element
if the order of g is not divisible by p. Let A be the set of all p′-elements in G and
e be the l.c.m. of the orders of all the elements in A. Let ξ be the primitive e-th
root of unity over Fq. Define the set

B = {t | ξ → ξt is an automorphism of Fq(ξ) over Fq}.
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Then B = {1, q, . . . , qx−1} mod e, where x is the multiplicative order of q mod e.
Let g ∈ G be a p′-element and βg be the sum of all conjugates of g. The cyclotomic
Fq-class of βg is defined by

S(βg) = {βgt | t ∈ B}.

We use the above description and the following two results to characterize U(FqD42)
when FqD42 is semi-simple.

Lemma 2.2 ([5]). The number of cyclotomic Fq-classes in G is equal to the number
of simple components of FqG/J(FqG).

Lemma 2.3 ([5]). Let t be the number of cyclotmic Fq-classes in G and ξ be
the same as defined above. If S1, . . . , St are the cyclotomic Fq-classes in G and
P1, . . . , Pt are the simple components of the center of FqG/J(FqG), then an appro-
priate ordering of the indices gives |Si| = [Pi : Fq].

3. The structure of U(F3kD6n)

Theorem 3.1. Let Fq be a finite field of order q = 3k and n be a positive integer
not divisible by 3. Then,

U(FqD6n) ∼= ((· · · (C3nk
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ · · · ⋊ Ck

3︸ ︷︷ ︸
n times

) ⋊ U(FqD2n).

Proof. Let G = D6n and N = ⟨rn⟩. Then, N ◁ G and G/N ∼= ⟨r3, s⟩. Let
K = ⟨r3, s⟩ and define a ring epimorphism ϕ : FqG → FqK by

ϕ

n−1∑
j=0

2∑
i=0

rni+3j(xi+3j + xi+3j+3ns)

 =
n−1∑
j=0

2∑
i=0

r3j(xi+3j + xi+3j+3ns).

By restricting the map ϕ, we find a group epimorphism ϕ′ : U(FqG) → U(FqK).
The inclusion map from FqK → FqG is a ring monomorphism. Restricting this
map, we get a group monomorphism θ : U(FqK) → U(FqG) given by

θ

(
n−1∑
i=0

r3i(zi + zi+ns)
)

=
n−1∑
i=0

r3i(zi + zi+ns).

Observe that ϕ′◦θ = 1U(FqK) and hence, U(FqG) ∼= S⋊U(FqK) where S = Ker(ϕ′).
Let u =

∑n−1
j=0

∑2
i=0 rni+3j(xi+3j + xi+3j+3ns) ∈ S. Then, ϕ′(u) = 1. Solving

this, we obtain the following equations:

x0 + x1 + x2 = 1, x3m + x3m+1 + x3m+2 = 0 for m = 1, . . . , 2n − 1.

=⇒ x0 = 1 − x1 − x2, x3m = −x3m+1 − x3m+2 for m = 1, . . . , 2n − 1.
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In view of this, the set S can be equivalently written as

S =
{

1 +
n−1∑
j=0

2∑
i=1

(rni − 1)r3j(yi+2j + yi+2j+2ns) | yi ∈ Fq

}
.

It is trivial to check that S is a non-abelian group and that S3 = 1. Since q = 3k,
therefore |S| = 34nk. Assume that C(rn) is the centralizer of rn in S. Then,

C(rn) = {u ∈ S | urn = rnu}.

Let u = 1 +
∑n−1

j=0
∑2

i=1(rni − 1)r3j(yi+2j + yi+2j+2ns) ∈ C(rn). Then,

urn − rnu =
n−1∑
j=0

2∑
i=1

(rni − 1)r3j+2nyi+2j+2ns −
n−1∑
j=0

2∑
i=1

(rni − 1)r3j+nyi+2j+2ns.

We get,

urn − rnu = r̂n

n−1∑
i=0

r3i(y2i+2n+1 − y2i+2n+2)s.

This results in the following condition

urn − rnu = 0 if and only if y2i+2n+1 = y2i+2n+2 for i = 0, 1, . . . , n − 1.

In conclusion,

C(rn) =
{

1 +
n−1∑
j=0

2∑
i=1

(rni − 1)r3jhi+2j + r̂n

n−1∑
i=0

r3ihi+2n+1s | hi ∈ Fq

}
.

Let us consider some subgroups of S which are given by:

Nm = {1 + a1r̂n + a2(rn + 2r2n)r3ms | ai ∈ Fq} for m = 0, 1, . . . , n − 1,

and W0 = C(rn), Wn = S,

Wm =
{

1 +
2∑

i=1
(rni − 1)

(n−1∑
j=0

r3jhi+2j +
m−1∑
j=0

r3jhi+2j+2ns

)

+ r̂n

n−1∑
i=m

r3ihi+m+2n+1s | hi ∈ Fq

}
for m = 1, . . . , n − 1.

Clearly Nm and Wm are subgroups of Wm+1 and I = Nm ∩ Wm = {1 + a1r̂n |
a1 ∈ Fq} ∼= Ck

3 , for m = 0, 1, . . . , n − 1. Furthermore, Nm is an abelian group and
therefore Nm = I × Qm for some subgroup Qm of Nm such that Qm

∼= Ck
3 , for

m = 0, 1, . . . , n − 1. We consider the following general elements

vm = 1 + a1r̂n + a2(rn + 2r2n)r3ms ∈ Nm for m = 0, . . . , n − 1,
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u0 = 1 +
n−1∑
j=0

2∑
i=1

(rni − 1)r3jhi+2j + r̂n

n−1∑
i=0

r3ihi+2n+1s ∈ W0,

um = 1 +
2∑

i=1
(rni − 1)(

n−1∑
j=0

r3jhi+2j +
m−1∑
j=0

r3jhi+2j+2ns)

+ r̂n

n−1∑
i=m

r3ihi+m+2n+1s ∈ Wm for m = 1, . . . , n − 1.

Let us define

H1 =
n−1∑
j=0

2∑
i=1

(rni − 1)r3jhi+2j ,

H2,0 = 0, H2,m =
m−1∑
j=0

2∑
i=1

(rni − 1)r3jhi+2j+2n for m = 1, . . . , n − 1,

H3,m = r̂n

n−1∑
i=m

r3ihi+m+2n+1 for m = 0, . . . , n − 1.

Then, we can write

um = 1 + H1 + H2,ms + H3,ms ∈ Wm for m = 0, . . . , n − 1.

Since Nm ⊆ S, therefore N3
m = 1. Hence, for vm ∈ Nm, we have

v−1
m = v2

m = 1 + 2(a1 + a2
2)r̂n + 2a2(rn + 2r2n)r3ms for m = 0, . . . , n − 1.

The aforementioned information combined with the following steps help to deduce
the structure of S.
Step 1: Taking u0 ∈ W0 and v0 ∈ N0, we have

uv0
0 = v−1

0 u0v0

= u0 + a2(H1 − H∗
1 )(rn + 2r2n)s ∈ W0.

In conclusion, N0 normalizes W0. It is trivial to show that W0 is abelian and
therefore, W0 ∼= C3nk

3 . Clearly, W0∩Q0 = {1}. Hence, W1 ∼= W0⋊Q0 ∼= C3nk
3 ⋊Ck

3 .
Step 2: Taking u1 ∈ W1 and v1 ∈ N1, we have

uv1
1 = v−1

1 u1v1

= u1 + a2(H1 − H∗
1 )(rn + 2r2n)r3s

+ a2(H2,1(r2n + 2rn)r−3 − H∗
2,1(rn + 2r2n)r3) ∈ W1.

It is concluded that N1 normalizes W1. Clearly, W1 ∩ Q1 = {1}. Hence, W2 ∼=
W1 ⋊ Q1 ∼= (C3nk

3 ⋊ Ck
3 ) ⋊ Ck

3 . Consequently, it can be shown that

uvm
m = um + a2(H1 − H∗

1 )(rn + 2r2n)r3ms
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+ a2(H2,m(r2n + 2rn)r−3m − H∗
2,m(rn + 2r2n)r3m) ∈ Wm

for m = 0, . . . , n − 1.
The succeeding steps can be concluded by following a similar process to obtain

that Nm normalizes Wm and therefore Wm+1 ∼= Wm ⋊ Qm for m = 2, . . . , n − 1.
Finally, we get Wn

∼= Wn−1 ⋊ Qn−1, that is

S ∼= ((· · · (C3nk
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ · · · ⋊ Ck

3︸ ︷︷ ︸
n times

).

Moreover, since K ∼= D2n, we get

U(FqD6n) ∼= ((· · · (C3nk
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ · · · ⋊ Ck

3︸ ︷︷ ︸
n times

) ⋊ U(FqD2n).

With the help of the above theorem, the characterization problem of unit groups
of group algebras of dihedral groups is reduced to the unit groups of the group
algebras of smaller dihedral groups.

4. The structure of U(FqD42)

This section deals with the characterization of U(FqD42). The characterization is
complete except in characteristic 7, for which we have partial results.

Theorem 4.1. Let Fq be a finite field of order q = pk with characteristic p.

1. If Char Fq = 2, then U(FqD42) is isomorphic to
(i) Ck

2 × Cq−1 × GL(2,Fq)10 if k ≡ 0 mod 6.
(ii) Ck

2 × Cq−1 × GL(2,Fq) × GL(2,Fq3) × GL(2,Fq6) if k ≡ ±1 mod 6.
(iii) Ck

2 × Cq−1 × GL(2,Fq) × GL(2,Fq3)3 if k ≡ ±2 mod 6.
(iv) Ck

2 × Cq−1 × GL(2,Fq)4 × GL(2,Fq2)3 if k ≡ 3 mod 6.

2. If Char Fq = 3, then U(FqD42) is isomorphic to
(i) S ⋊ (C2

q−1 × GL(2,Fq)3) if q ≡ ±1 mod 7,
(ii) S ⋊ (C2

q−1 × GL(2,Fq3)) if q ≡ ±2 mod 7 or q ≡ ±3 mod 7

where S ∼= (((((((C21k
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ).

3. If Char Fq = 7, then

U(FqD42) ∼= S ⋊ (F∗
q × F∗

q × GL(2,Fq))

where S is a non-abelian group such that |S| = 736k and S7 = 1.

6
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4. If Char Fq ̸= 2, 3, 7, then U(FqD42) is isomorphic to
(i) C2

q−1 × GL(2,Fq)10 if q ≡ 1, 41 mod 42.
(ii) C2

q−1 × GL(2,Fq) × GL(2,Fq3)3 if q ≡ 5, 17, 25, 37 mod 42.
(iii) C2

q−1 × GL(2,Fq) × GL(2,Fq3) × GL(2,Fq6) if q ≡ 11, 19, 23, 31 mod 42.
(iv) C2

q−1 × GL(2,Fq)4 × GL(2,Fq2)3 if q ≡ 13, 29 mod 42.

Proof. The structure of the unit group U(FqD42) differs based on the values of
the characterstic p.

1. Char Fq = 2: The structure of U(FqD2n) for q = 2k and an odd integer n has
been given by the formula in Lemma 2.1, which depends on the value of q as well.
In this article, the structure of U(FqD42) is being categorized into four cases based
on the values of k upto mod 6. The divisors of 21, which are greater than 1, are
3, 7 and 21. By using Lemma 2.1 for different values of k upto mod 6, we get the
following results.
(a) If k ≡ 0 mod 6, then c3 = c7 = c21 = 1 and hence, U(FqD42) is isomorphic to

Ck
2 × Cq−1 × GL(2,Fq)10.

(b) If k ≡ ±1 mod 6, then c3 = 1, c7 = 3, c21 = 6 which gives that U(FqD42) is
isomorphic to

Ck
2 × Cq−1 × GL(2,Fq) × GL(2,Fq3) × GL(2,Fq6).

(c) If k ≡ ±2 mod 6, then c3 = 1, c7 = c21 = 3 and hence, U(FqD42) is isomorphic
to

Ck
2 × Cq−1 × GL(2,Fq) × GL(2,Fq3)3.

(d) If k ≡ 3 mod 6, then c3 = c7 = 1, c21 = 2 and it can be concluded that
U(FqD42) is isomorphic to

Ck
2 × Cq−1 × GL(2,Fq)4 × GL(2,Fq2)3.

2. Char Fq = 3: In particular, using Theorem 3.1 for n = 7, we obtain

U(FqD42) ∼= S ⋊ U(FqD14)

where

S ∼= (((((((C21k
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ).

Moreover, on the lines of [14, Theorem 4.1], we get

U(FqD14) ∼=

{
C2

q−1 × GL(2,Fq)3, if q ≡ ±1 mod 7;
C2

q−1 × GL(2,Fq3), if q ≡ ±2 mod 7 or q ≡ ±3 mod 7.
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Hence,

U(FqD42) ∼=

{
S ⋊ (C2

q−1 × GL(2,Fq)3), if q ≡ ±1 mod 7;
S ⋊ (C2

q−1 × GL(2,Fq3)), if q ≡ ±2 mod 7 or q ≡ ±3 mod 7

where S ∼= (((((((C21k
3 ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ) ⋊ Ck
3 ) ⋊ Ck

3 ).

3. Char Fq = 7: Let G = D42 and N = ⟨r3⟩. Then, N ◁ G and G/N ∼= ⟨r7, s⟩ ∼=
D6. Let K = ⟨r7, s⟩ and ϕ : FqG → FqK be the ring epimorphism defined by

ϕ

( 2∑
j=0

6∑
i=0

r3i+7j(xi+7j + xi+7j+21s)
)

=
2∑

j=0

6∑
i=0

r7j(xi+7j + xi+7j+21s).

By restricting the map ϕ, we find a group epimorphism ϕ′ : U(FqG) → U(FqK).
The inclusion map from FqK → FqG is a ring monomorphism. A group monomor-
phism θ : U(FqK) → U(FqG) is obtained by restricting this inclusion map which is
defined by

θ

( 2∑
i=0

r7i(zi + zi+3s)
)

=
2∑

i=0
r7i(zi + zi+3s).

Observe that ϕ′ ◦ θ = 1U(FqK) and hence, U(FqG) ∼= S ⋊ U(FqK) ∼= S ⋊ U(FqD6)
where S = Ker(ϕ′).

Let u =
∑2

j=0
∑6

i=0 r3i+7j(xi+7j + xi+7j+21s) ∈ S. Then, ϕ′(u) = 1. This
results in the following equations:

x0 + x1 + x2 + x3 + x4 + x5 + x6 = 1,

x7m + x7m+1 + x7m+2 + x7m+3 + x7m+4 + x7m+5 + x7m+6 = 0
for m = 1, . . . , 5.

Hence, S = {1 +
∑2

j=0
∑6

i=1(r3i − 1)r7j(yi+6j + yi+6j+18s) | yi ∈ Fq}. It is clear
that S is a non-abelian group and that S7 = 1. Since q = 7k, therefore |S| = 736k.
From [16, Theorem 2.3] we get that U(FqD6) ∼= F∗

q × F∗
q × GL(2,Fq) for p > 3.

Hence,
U(FqG) ∼= S ⋊ (F∗

q × F∗
q × GL(2,Fq)).

4. Char Fq ̸= 2, 3, 7: Pertaining to this case, FqD42 is a semi-simple group
algebra by Maschke’s theorem and hence J(FqD42) = (0). Then,

FqD42 ∼= Fq(D42/D′
42)
⊕

∆(D42, D′
42).

As D42/D′
42

∼= C2, then Fq(D42/D′
42) ∼= FqC2 ∼= Fq

⊕
Fq. Therefore, the Wedder-

burn decomposition is

FqD42 ∼= Fq

⊕
Fq

m⊕
j=1

M(nj , Rj)

8
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where nj ≥ 2 and Rj ’s are division algebras over the finite field Fq for j ∈
{1, . . . , m}.

The conjugacy classes of D42 are: {1}, {r±1}, . . . , {r±10}, {s, rs, . . . , r20s}.
Since the class sums form a basis for Z(FqD42), therefore dim(Z(FqD42)) = num-
ber of conjugacy classes of D42 = 12. Hence, m ≤ 10. Clearly, for the given
characterstic p, we obtain e = l.c.m. of the orders of all the p′-elements in D42 = 42.
(a) If q ≡ 1, 41 mod 42, then B = {1} mod 42 or B = {1, 41} mod 42. From this,
we get |S(βg)| = 1 for all g ∈ G. Then, by Lemma 2.2 and Lemma 2.3, we deduce
that

FqD42 ∼= Fq

⊕
Fq

10⊕
j=1

M(nj ,Fq).

After computing the dimension of both sides, we get the equation
∑10

j=1 n2
j = 40,

which is only possible when nj = 2 for all j ∈ {1, . . . , 10}. Hence,

FqD42 ∼= Fq

⊕
Fq

⊕
M(2,Fq)10.

(b) If q ≡ 5, 17, 25, 37 mod 42, then B = {1, 5, 17, 25, 37, 41} mod 42 or B =
{1, 25, 37} mod 42. This gives |S(βg)| = 1 for g = 1, r7, s, and |S(βg)| = 3 for
g = r, r2, r3. Then, by Lemma 2.2 and Lemma 2.3, we can conclude that

FqD42 ∼= Fq

⊕
Fq

⊕
M(n1,Fq)

4⊕
j=2

M(nj ,Fq3),

with the constraint n2
1 + 3n2

2 + 3n2
3 + 3n2

4 = 40. The only such possibility is nj = 2
for all j ∈ {1, . . . , 4}. Hence,

FqD42 ∼= Fq

⊕
Fq

⊕
M(2,Fq)

⊕
M(2,Fq3)3.

(c) If q ≡ 11, 19, 23, 31 mod 42, then B = {1, 11, 23, 25, 29, 37} mod 42 or B =
{1, 13, 19, 25, 31, 37} mod 42. Thus, |S(βg)| = 1 for g = 1, r7, s, |S(βg)| = 3 for
g = r3, and |S(βg)| = 6 for g = r. Then, following Lemma 2.2 and Lemma 2.3, the
Wedderburn decomposition is

FqD42 ∼= Fq

⊕
Fq

⊕
M(n1,Fq)

⊕
M(n2,Fq3)

⊕
M(n3,Fq6),

subject to the constraint n2
1 + 3n2

2 + 6n2
3 = 40. The equation is satisfied only when

nj = 2 for all j ∈ {1, 2, 3}. Hence,

FqD42 ∼= Fq

⊕
Fq

⊕
M(2,Fq)

⊕
M(2,Fq3)

⊕
M(2,Fq6).

(d) If q ≡ 13, 29 mod 42, then B = {1, 13} mod 42 or B = {1, 29} mod 42. This
gives |S(βg)| = 1 for g = 1, r3, r6, r7, r9, s, and |S(βg)| = 2 for g = r, r2, r4. Then
Lemma 2.2 and Lemma 2.3 guarantees that

FqD42 ∼= Fq

⊕
Fq

4⊕
j=1

M(nj ,Fq)
7⊕

j=5
M(nj ,Fq2),

9
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with the constraint
∑4

j=1 n2
j +

∑7
j=5 2n2

j = 40. The only such possibility is nj = 2
for all j ∈ {1, . . . , 7}. Hence,

FqD42 ∼= Fq

⊕
Fq

⊕
M(2,Fq)4

⊕
M(2,Fq2)3.

For every case (a)–(d) discussed above, the structure of U(FqD42) is a direct im-
plication of the obtained Wedderburn decomposition of FqD42.
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