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1. Introduction
Suppose k is a positive integer, and f0, f1, . . . , fk−1 are complex numbers. Define

fn = A1fn−1 + A2fn−2 + · · · + Akfn−k (n ≥ k), (1.1)

where the coefficients A1, . . . , Ak−1, and Ak ̸= 0 are fixed complex numbers. More-
over, suppose that (wn)n≥0 ∈ C∞ is an arbitrary sequence. Based on the notation
above, we construct the linear recurrence

Gn = A1Gn−1 + A2Gn−2 + · · · + AkGn−k + wn−k (n ≥ k), (1.2)

assuming that the complex initial values G0, G1, . . . , Gk−1 are also given. Note
that formulae (1.1) and (1.2) differ essentially only in the term wn.

Belbachir et al. [1] studied the connection between the sequences (Gn)n≥0,
(fn)n≥0 and (wn)n≥0, and proved the following general result.

Theorem 1.1. For n ≥ k, the terms of the sequences (fn), (wn) and (Gn) satisfy
the identity

k−1∑
j=0

fjGn+k−j =
k−1∑
j=0

k−1−j∑
i=0

fn−jAj+1+iGk−1−i

+
k−2∑
j=0

k−1−j∑
i=1

fjAiGn+k−j−i +
n∑

j=0
fn−jwj . (1.3)

The theorem is valid also for k = 1 (with an empty sum of the three on the right-
hand side), but this case is not of much interest. Hence, we may suppose k ≥ 2.
Observe that the terms Aj+1+iGk−1−i and fjAi on the right-hand side of (1.3)
can take only finitely many values. Moreover, note that Theorem 1.1 is obviously
true for arbitrary initial values of the sequence (fn). Coefficients A1, . . . , Ak in
the definition of (fn) are important in the sense that they, together with (wn)
also establish the sequence (Gn). But, generally, the initial values f0, . . . , fk−1 can
be chosen arbitrarily. Therefore, it is natural, if there is no other reason, to put
f0 = · · · = fk−1 = 0, fk−1 = 1. The next corollary simplifies Theorem 1.1 as it
describes this situation. (See [1] again.)

Corollary 1.2. Assume that f0 = · · · = fk−2 = 0, fk−1 = 1. Then (1.3) simplifies
to

Gn+1 =
k−1∑
j=0

k−1−j∑
i=0

fn−jAj+1+iGk−1−i +
n∑

j=0
fn−jwj (n ≥ k). (1.4)

If we even specify the initial values G0 = G1 = · · · = Gk−1 = 0 (and keep the
former conditions f0 = · · · = fk−2 = 0, fk−1 = 1), then we have
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Corollary 1.3. Under the condition above, (1.4) admits

Gn+1 =
n∑

j=0
fn−jwj (n ≥ k). (1.5)

This corollary was not mentioned in [1], but it is obviously a direct consequence
of Theorem 1.1. An illustration of Corollary 1.3 stands here.

Example 1.4. Recall [1] again. Let ℓ ≥ 3 be an integer. Moreover, let fn = Fn,
the nth term of the Fibonacci sequence (see The On-Line Encyclopedia of Integer
Sequences [5], sequence A000045). Put wn = F

(ℓ)
n−1 + · · · + F

(ℓ)
n−(ℓ−2). Here (F (ℓ)

n ) is
the ℓ-generalized Fibonacci sequence (Fibonacci ℓ-step numbers or shortly ℓ-nacci
sequence) defined by the initial values F

(ℓ)
0 = F

(ℓ)
1 = · · · = F

(ℓ)
ℓ−2 = 0, F

(ℓ)
ℓ−1 = 1,

and by the recurrence relation

F (ℓ)
n = F

(ℓ)
n−1 + F

(ℓ)
n−2 + · · · + F

(ℓ)
n−ℓ (n ≥ ℓ).

We may also need to extend (F (ℓ)
n ) for some terms with negative subscripts follows

from the recurrence rule above when it is applied backward. Hence, F
(ℓ)
−1 = 1,

F
(ℓ)
−2 = −1, F

(ℓ)
−3 = 0, and so on. Finally, we fix G0 = F

(ℓ)
0 = 0 and G1 =

F
(ℓ)
1 = 0. In this manner, we construct the sequence (Gn), which is obviously the

ℓ-generalized Fibonacci sequence itself. Thus, (1.5) provides the identity

F
(ℓ)
n+1 =

n∑
j=0

Fn−j

(
ℓ−2∑
i=1

F
(ℓ)
j−i

)
. (1.6)

Suppose ℓ = 3 to obtain the terms of the so-called Tribonacci sequence (Tn) =
(F (3)

n ) A000073. Then we have

Tn+1 =
n∑

j=0
Fn−jTj−1.

This property is also given in [4], see (2.5) therein; moreover, see Benjamin and
Quinn’s book [2, p. 47, Exercise 4(a)].

The main purpose of this paper is to extend (1.6), and to give a combinatorial
interpretation if the coefficients are positive integers.

2. Results

2.1. New corollaries of Theorem 1.1
Let k ≥ 2 and ℓ > k be positive integers. Assume that the sequence (fn) is given
by the initial values

f0 = · · · = fk−2 = 0, fk−1 = 1, (2.1)
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and by the recursive scheme (1.1). The coefficients A1, . . . , Ak are fixed in (1.1).
Define the recurrence (Gn) such that

Gn = A1Gn−1 + · · · + AkGn−k + Ak+1Gn−k−1 + · · · + AℓGn−ℓ. (2.2)

Fix Gi for i ∈ {k − ℓ, . . . , 0, . . . , k − 1}, and put

wn = Ak+1Gn−1 + · · · + AℓGn+k−ℓ for n ≥ 0.

Clearly,
Gn = A1Gn−1 + · · · + AkGn−k + wn−k for n ≥ k,

and the situation fits the construction described in the Introduction. According to
Corollary 1.2 we obtain

Theorem 2.1. Using the notation above the identity

Gn+1 =
k−1∑
j=0

k−1−j∑
i=0

fn−jAj+1+iGk−1−i +
n∑

j=0
fn−j

(
ℓ−k∑
i=1

Ak+iGj−i

)

follows.

In particular, we specify Corollary 1.3 in Theorem 2.2.

Theorem 2.2. The condition G0 = · · · = Gk−1 = 0 leads to

Gn+1 =
n∑

j=0
fn−j

(
ℓ−k∑
i=1

Ak+iGj−i

)
. (2.3)

2.2. Combinatorial explanation of Theorem 2.2
Consider the domino tilings of a 1 × h chessboard with 1 × 1, 1 × 2, . . . , 1 × ℓ
dominoes having A1, A2, . . . , Aℓ different colors, respectively. Let Ch denote the
total number of tilings, and Kh the number of tilings if the maximal length of the
dominoes we can use is k, where k < ℓ.

Since the length of the last domino in the tiling is one of 1, 2, . . . , ℓ, the total
number of ways to tile is

Ch = A1Ch−1 + · · · + AℓCh−ℓ.

The comparison of the initial values of sequences (Cn) and (Gn) provides the
equality Ch = Gh+l−1. Indeed, we extend the initial conditions G0 = · · · = Gk−1 =
0 with Gk = · · · = Gℓ−2 = 0, Gℓ−1 = 1 in the recurrence (2.2). So C0 = Gℓ−1 = 1,
C1 = Gℓ = A1, C2 = Gℓ+1 = A2

1 + A2, and so on.
Now we examine another approach to calculate the number of tilings. In order

to do that, first, we notify that Kj = fj+k−1 gives the number of tilings of a 1 × j

4



Annal. Math. et Inf. An identity for two sequences and its combinatorial interpretation

chessboard with 1×1, 1×2, . . . , 1×k dominoes using the given colors. (It similarly
follows from (1.1) and (2.1).)

Assume that the first j positions of the chessboard are tiled under the restriction
of maximal length k, and then the next domino has size either 1×(k+1) or 1×(k+2)
or, and so on, or 1 × ℓ. For the remaining part of the chessboard, we can use any
dominoes with maximum length ℓ (for illustration, see Figure 1). Thus,

Ch =
h∑

j=0
Kj

(
ℓ∑

i=k+1
AiCh−j−i

)
.

j

j

h-j-ii

i h-j-i

K

K

C

C     =0

A

A

0

0

1

1

2 . . .

. . . . . . . . .

. . . . . .

2

j

j

j+i

j+i

j+i < h

j+i > h

h

h

Figure 1. Chessboard and tilings.

Now we return to the sequences (Gn) and (fn). Clearly,

Gh+ℓ−1 =
h∑

j=0
fj+k−1

(
ℓ∑

i=k+1
AiGh+ℓ−1−j−i

)
.

If h = n − ℓ + 2, then we have

Gn+1 =
n−ℓ+2∑

j=0
fj+k−1

(
ℓ∑

i=k+1
AiGn+1−j−i

)

=
n−ℓ+2∑

j=0
fn−(ℓ−k−1)−j

(
ℓ∑

i=k+1
AiGj+(ℓ−1)−i

)

=
n−ℓ+2∑

j=0
fn−(ℓ−k−1)−j

(
ℓ−k∑
i=1

Ai+kGj+(ℓ−k−1)−i

)

=
n−k+1∑

j=ℓ−k−1
fn−j

(
ℓ−k∑
i=1

Ai+kGj−i

)
.

In the above equalities, first we used the swap j ↔ h − j, and then certain re-
indexing.
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Observe that the range of the first sum can be extended from n − k + 1 to n.
Indeed, the new coefficients fk−2, . . . , f0 are all zero. Similarly, we can modify the
sum by reducing the lower value from ℓ − k − 1 to 0 because for such j, the sum

ℓ−k∑
i=1

Ai+kGj−i

vanishes. Finally, we have obtained

Gn+1 =
n∑

j=0
fn−j

(
ℓ−k∑
i=1

Ai+kGj−i

)
,

which is identical to formula (2.3) given in Theorem 2.2.

2.3. Formula for ℓ-generalized Fibonacci sequences
Let all the coefficients Ai be equal to 1. Writing the usual notation of k- and
ℓ-generalized Fibonacci sequences (as in Example 1.4) formula (2.3) yields

F
(ℓ)
n+1 =

n∑
j=0

F
(k)
n−j

ℓ−k∑
i=1

F
(ℓ)
j−i, (2 ≤ k < ℓ).

This identity extends (1.6) of Example 1.4.

2.4. Formula for ℓ-generalized Pell sequences

Let (P (ℓ)
n ) denote the ℓ-generalized Pell sequence (or shortly ℓ-Pell sequence), where

the initial values are P
(ℓ)
0 = P

(ℓ)
1 = · · · = P

(ℓ)
ℓ−2 = 0, P

(ℓ)
ℓ−1 = 1, and the recurrence

is given by
P (ℓ)

n = 2P
(ℓ)
n−1 + P

(ℓ)
n−2 + · · · + P

(ℓ)
n−ℓ. (2.4)

If ℓ = 2, then it gives the Pell sequence (Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1,
A000129 in OEIS [5]). When we apply the recurrence backward rule (2.4) we obtain
the terms of the ℓ-Pell sequence with negative subscripts.

Recently, Bravo, Herrera, and Ramírez [3] presented some properties and com-
binatorial interpretations of the ℓ-generalized Pell sequences.

Lastly we provide a new identity involving the terms of k- and ℓ-generalized Pell
sequences as a corollary of formula (2.3) given in Theorem 2.2. For this reason,
we put A1 = 2 and A2 = A3 = · · · = Aℓ−1 = 1, and refer (fn) = (P (k)

n ) and
(Gn) = (P (ℓ)

n ). Thus, (2.3) admits

P
(ℓ)
n+1 =

n∑
j=0

P
(k)
n−j

ℓ−k∑
i=1

P
(ℓ)
j−i, (2 ≤ k < ℓ).

Conflict of interest. The authors declare that they have no conflict of interest.

6



Annal. Math. et Inf. An identity for two sequences and its combinatorial interpretation

References
[1] H. Belbachir, F. Rami, L. Szalay: A generalization of hyperbolic Pascal triangles, J. Com-

bin. Theory Ser. A. 188 (2022), p. 105574, issn: 0097-3165, doi: 10.1016/j.jcta.2021.105574.
[2] A. Benjamin, J. Quinn, W. Watkins: Proofs That Really Count: The Art of Combinatorial

Proof, Mathematical Association of America, 2003, isbn: 9781614442080, doi: 10.5948/9781
614442080.

[3] J. J. Bravo, J. L. Herrera, J. L. Ramírez: Combinatorial Interpretation of Generalized
Pell Numbers, J. Integer Seq. 23.2 (2020), Article 20.2.1, url: https://cs.uwaterloo.ca/jo
urnals/JIS/VOL23/Bravo/bravo4.html.

[4] R. Frontczak: Relations for generalized Fibonacci and Tribonacci sequences, Notes Number
Theor. Disc. Math. 25.1 (2019), pp. 178–192, doi: 10.7546/nntdm.2019.25.1.178-192.

[5] OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences, Published electron-
ically at https://oeis.org, 2024, url: http://oeis.org.

7

https://doi.org/10.1016/j.jcta.2021.105574
https://doi.org/10.5948/9781614442080
https://doi.org/10.5948/9781614442080
https://cs.uwaterloo.ca/journals/JIS/VOL23/Bravo/bravo4.html
https://cs.uwaterloo.ca/journals/JIS/VOL23/Bravo/bravo4.html
https://doi.org/10.7546/nntdm.2019.25.1.178-192
http://oeis.org

