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Abstract. Let k ≥ 2. A generalization of the well-known Pell sequence is
the k-Pell sequence. The first k terms of the sequence are 0, . . . , 0, 1 and each
term afterwards is given by the linear recurrence

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · · + P

(k)
n−k.

In this paper, we use Baker’s method to determine all the solutions of the
Diophnatine equation

P (k)
n = (2a + 1)(2b + 1),

where a and b are positive integers. Then, we deduce that there are no k-Pell
numbers expressible as products of two Fermat numbers.
Keywords: k-Pell numbers, linear form in logarithms, reduction method.

1. Introduction
The sequence of Pell numbers, denoted by (Pn)n≥0, is defined by the recursive
sequence given by

Pn = 2Pn−1 + Pn−2, n ≥ 2,
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with initials terms P0 = 0 and P1 = 1. For an integer k ≥ 2, the k-generalized
Pell sequence or, for simplicity, the k-Pell sequence (P (k)

n )n≥2−k is given by the
recurrence

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · · + P

(k)
n−k for all n ≥ 2,

with the initial conditions

P
(k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
0 = 0 and P

(k)
1 = 1.

We note that P
(k)
n is the nth k-Pell number. This sequence generalizes the usual

Pell sequence i.e., when k = 2.
Below we present the values of these numbers for the first few values of k and

n ≥ 1.

k Name First non-zero terms
2 Pell 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, . . .
3 3-Pell 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396,. . .
4 4-Pell 1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, . . .
5 5-Pell 1, 2, 5, 13, 34, 89, 232, 605, 1578, 4116, 10736, 28003, 73041, . . .
6 6-Pell 1, 2, 5, 13, 34, 89, 233, 609, 1592, 4162, 10881, 28447, 74371,. . .
7 7-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1596, 4176, 10927, 28592, 74815, . . .
8 8-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4180, 10941, 28638, 74960, . . .
9 9-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10945, 28652, 75006, . . .
10 10-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28656, 75020, . . .

Finding the k-Pell numbers of special forms attracts the attention of many re-
searchers. In [9], Kiliç gave some relations involving Fibonacci and k-Pell numbers
showing that the k-Pell numbers can be expressed as the summation of the Fi-
bonacci numbers. For instance, in 2018 Normenyo, Luca and Togbé [11] found all
repdigits expressible as sums of three Pell numbers. In 2015, Faye and Luca [2]
looked for repdigits in the usual Pell sequence and using some elementary methods
to conclude that there are no Pell numbers larger than 10 which are repdigits. All
the Padovan and Perrin numbers that are also in the sequence of Fermat numbers
are found by Rihane, Adegbindin and Togbé in [12]. Recently, in [1] we showed
that F

(4)
6 := 15 is the only k-Fibonacci number, which is product of two Fermat

numbers.
In this paper, we investigate the problem of finding the k-Pell numbers which

are of the form (2a + 1)(2b + 1), where a and b are nonnegative integers. This
means that we determine all the k-Pell which are products of two Fermat numbers.
Therefore, we will show the following result.

Theorem 1.1. The Diophantine equation

P (k)
n = (2a + 1)(2b + 1) (1.1)

has no solutions in nonnegative integers n, k, a, and b with k ≥ 2.

2



Annal. Math. et Inf. There are no k-Pell numbers expressible as products. . .

Corollary 1.2. There are no k-Pell numbers expressible as product of two Fermat
numbers.

We organize this paper as follows. In Section 2, we recall some results useful
for the proof of Theorem 1.1. The proof of Theorem 1.1 is done in the last section.

2. Preliminary results

This section is devoted to collect a few definitions, notations, proprieties, and
results, which will be used in the remaining of this work.

2.1. Linear forms in logarithms
For any non-zero algebraic number η of degree d over Q, whose minimal polynomial
over Z is a

∏d
j=1
(
X − η(j)), we denote by

h(η) = 1
d

(
log |a| +

d∑
j=1

log max
(

1, |η(j)|
))

the usual absolute logarithmic height of η. In particular, if η = p/q is a rational
number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following
properties of the logarithmic height function h(), which will be used in the next
section without special reference, are known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (2.1)
h(ηγ±1) ≤ h(η) + h(γ), (2.2)

h(ηs) = |s|h(η) (s ∈ Z). (2.3)

Matveev [10] proved the following theorem. But, the version that we will use is
due to Bugeaud, Mignotte and Siksek. See Theorem 9.4 in [15].

Theorem 2.1. Let dK be a number field of degree dK over Q, η1, . . . , ηs be positive
real numbers of dK, and b1, . . . , bs integers

Λ := γb1
1 . . . γbs

s − 1 and B ≥ max{|b1|, . . . , |bs|}.

Let
Aj ≥ max{dKh(γj), | log γj |, 0.16}, for j = 1, . . . , s.

be real numbers, for i = 1, . . . , s. Assume that Λ ̸= 0, we have

|Λ| ≥ exp(−1.4 · 30s+3s4.5d2
K(1 + log dK)(1 + log B)A1 · · · As).
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2.2. On k-generalized Pell sequence
In this subsection, we recall some facts and properties of the k-Pell sequence which
will be used later. The characteristic polynomial of this sequence is

Ψk(x) = xk − 2xk−1 − · · · − x − 1.

In [8], Bravo et al. showed that Ψk(x) is irreducible over Q[x] and has just one root
α(k) outside the unit circle. It is real and positive so it satisfies α(k) > 2. The
other roots are strictly inside the unit circle. Furthermore, in the same paper, they
showed that

φ2(1 − φ−k) < α(k) < φ2, for all k ≥ 2,

where φ = 1+
√

5
2 . To simplify the notation, in general, we omit the dependence on

k of α(k) and use α. For s ≥ 2, let

gk(x) := x − 1
(k + 1)x2 − 3kx + k − 4) = x − 1

k(x2 − 3x + 1) + x2 − 1 . (2.4)

In [5], Bravo and Luca proved the following inequalities

0.276 < gk(α) < 0.5 and
∣∣∣gk(α(i))

∣∣∣ < 1, 2 ≤ i ≤ k,

where α := α(1), . . . , α(k) are all the zeros of Ψk(x). So, the number gk(α) is not an
algebraic integer. In addition, in 2021, Bravo, Herrera, and Luca [7] proved that
the logarithmic height of gk(α) satisfies

h(gk(α)) < 4 log(φ) + log(k + 1), for all k ≥ 2. (2.5)

With the above notation, Bravo and Herrera showed in [8] that

P (k)
n =

k∑
i=1

gk(α(i))α(i)n−1
and

∣∣∣P (k)
n − gk(α)αn−1

∣∣∣ <
1
2 , (2.6)

for all n ≥ 1 and k ≥ 2. Furthermore, for n ≥ 1 and k ≥ 2, it was shown in [8] that

αn−2 ≤ P (k)
n ≤ αn−1. (2.7)

We will finish this subsection by recalling the following lemmas.

Lemma 2.2 ([4, Lemma 2.2]). Let k ≥ 2 and suppose that 2n − 1 ≥ k/2. If
n < φk/2, then

P (k)
n = φ2n−1

√
5

(1 + ζ), where |ζ| <
32

φk/2 .

Lemma 2.3 ([5, Lemma 2]). Let α = α(k) be the dominant root of the charac-
teristic polynomial Ψk(x) of the k-Pell sequence and consider the function gk(x)
defined in (2.4). If k ≥ 30 and n > 1 are integers satisfying n < φk/2, then

gk(α)αn = φ2n

φ + 2(1 + ζ), where |ζ| <
4

φk/2 .

4
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Lemma 2.4 ([13, Lemma 7]). If m ≥ 1, T > (4m2)m and T > y/(log y)m. Then,

y < 2mT (log T )m.

Lemma 2.5 ([14, Lemma 2.2]). Let d, x ∈ R and 0 < d < 1. If |x| < d, then

|log(1 + x)| <
− log(1 − d)

d
|x|.

2.3. The reduction algorithm due to Dujella and Pethő
In this subsection, we recall the following lemma, which is a slight variation of a
result due to Dujella and Pethő [6] and itself is a generalization of a result of Baker
and Davenport [3].

Lemma 2.6. Let M be a positive integer, p/q be a convergent of the continued
fraction of the irrational γ such that q > 6M , and let A, B, µ be some real numbers
with A > 0 and B > 1. Let

ε = ∥µq∥ − M∥γq∥,

where ∥·∥ denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

0 < mγ − n + µ < AB−k

in positive integers m, n and k with

m ≤ M and k ≥ log(Aq/ε)
log B

.

3. Proof of Theorem 1.1
In this section, we will show Theorem 1.1 in four steps corresponding to the four
subsections of the section.

3.1. Setup

Clearly, we have P
(k)
1 = 1 = (21−1)(21−1), for all k ≥ 2. Moreover, if 1 ≤ n ≤ k+1,

we have P
(k)

n = F2n−1. Then, equation (1.1) becomes

F2n−1 = (2a + 1)(2b + 1).

From the main result of [1], we deduce that there is no solution in this case. Thus,
we can assume that n ≥ k + 2, we easily see that n ≥ 4.

Next, we give a relation between n and a + b. By inequalities (2.7) and (1.1),
we have

2a+b < (2a + 1)(2b + 1) = P (k)
n ≤ αn−1

5
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and
αn−2 ≤ P (k)

n = (2a + 1)(2b + 1) ≤ 2a+b+2.

Hence, we obtain

(a + b) log 2
log α

+ 1 ≤ n ≤ (a + b + 2) log 2
log α

+ 2.

Furthermore, using the fact that φ2(1 − φ−k) < α < φ2, for k ≥ 2, where φ =
1
2 (1 +

√
5), we deduce that

0.71(a + b) + 1 ≤ n < 1.45(a + b) + 4.9. (3.1)

3.2. An inequality for n versus k

In this subsection corresponding to the second step of the proof of Theorem 1.1,
we will show the following lemma, that allows us to have an upper bound of n in
relation to k.

Lemma 3.1. If (a, b, k, n) is a solution in integers of equation (1.1) with k ≥ 2
and n ≥ k + 2, then we have the following inequality

n < 1.47 · 1029k8 log5 k. (3.2)

Proof. We rewrite equation (1.1) into the form

2a+b = P (k)
n − 2a − 2b − 1.

Thus, from estimate (2.6), we obtain

∣∣gk(α)αn − 2a+b
∣∣ =

∣∣∣gk(α)αn − P (k)
n + 2a + 2b + 1

∣∣∣ ≤ 1
2 + 2a + 2b + 1.

Dividing both sides by 2a+b, we get

|Λ1| ≤ 1
2a+b+1 + 1

2b
+ 1

2a
+ 1

2a+b
<

1.5
2a

, (3.3)

where
Λ1 := gk(α)αn2−(a+b) − 1. (3.4)

If Λ1 = 0, then we obtain
gk(α) = α−n2a+b.

Thus, gk(α) is an algebraic integer, which is not possible. Therefore, Λ1 ̸= 0. We
can apply Theorem 2.1 to Λ1 given by (3.4). To do this, we consider

(γ1, b1) := (2, −(a + b)), (γ2, b2) := (α, n), (γ3, b3) := (gk(α), 1).

6
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The algebraic numbers γ1, γ2, γ3 are elements of the field K := Q(α) and dK = k.
Since h(γ1) = log 2, h(γ2) = (log(α))/k < (2 log(φ))/k, then we can take

A1 := k log 2, A2 := 2 log φ.

The facts h(γ3) = h(gk(α)) ≤ 4 log(φ) + log(k + 1) < 4.4 log k, for all k ≥ 2. So we
can take

A3 := 4.4k log k.

Finally, inequality (3.1) implies that we can take B := 1.5n. Therefore, inequality
(3.3) and Theorem 2.1 tell us that

|Λ1| > exp
(
−2.21 · 1012k4 log2 k log n

)
, (3.5)

where we used the facts 1 + log k < 2.5 log k and 1 + log(1.5n) < 2 log n, which are
true for all k ≥ 2 and n ≥ 4 respectively. Combining (3.3) and (3.5), we obtain

a log 2 < 2.22 · 1012k4 log2 k log n. (3.6)

We go back to equation (1.1) and we rewrite it as

P
(k)
n

2a + 1 − 1 = 2b (3.7)

and consequently we have∣∣∣∣gk(α)αn

2a + 1 − 2b

∣∣∣∣ =

∣∣∣∣∣gk(α)αn − P
(k)
n

2a + 1 + 1

∣∣∣∣∣ ≤ 1
2(2a + 1) + 1 < 1.2.

Dividing through 2b, we obtain

|Λ2| <
1.2
2b

, (3.8)

where
Λ2 := gk(α)

2a + 1αn2−b − 1.

If Λ2 = 0, then we get
gk(α) = α−n2b(2a + 1),

which is not possible since the right-hand side is an algebraic integer while the
left-hand side is not. So Λ2 ̸= 0. Now, we will apply Theorem 2.1 to Λ2 by taking

(γ1, b1) := (gk(α)/(2a + 1), 1), (γ2, b2) := (α, n), (γ3, b3) := (2, −b).

Clearly, K := Q(α) contains γ1, γ2, γ3 and has the degree dK = k. As calculated
before we take

A2 := 2 log φ, A3 := k log 2, and B := 1.5n.

7
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We need to compute A1. The estimates (2.5) and (3.6) together with the proprieties
(2.1)–(2.3) imply that the inequalities

h(γ1) ≤ h(gk(α)) + h(2a) + h(1) + log 2
< 4 log(φ) + log(k + 1) + (a + 1) log 2
< 2.23 · 1012k4 log2 k log n

hold for all k ≥ 2. Since

γ1 := gk(α)
2a + 1 <

1
6 and γ−1

1 = 2a + 1
gk(α) < 2a+3,

then by (3.6) we have

|log γ1| < (a + 3) log 2 < 2.23 · 1012k4 log2 k log n.

Thus, we conclude that

max{kh(γ1), |log γ1|, 0.16} < 2.23 · 1012k5 log2 k log n := A1.

Applying Theorem 2.1 and comparing the resulting inequality with (3.8), we get

b < 1.62 · 1024k8 log3 k log2 n,

where we have used the facts 1 + log k < 2.5 log k and 1 + log n < 2.1 log n, which
hold for k ≥ 2 and n ≥ 4. By inequality (3.1), we get

n < 1.45(a + b) + 4.9 < 2.9b + 4.9 < 4.7 · 1024k8 log3 k log2 n.

We deduce that
n

log2 n
< 4.7 · 1024k8 log3 k. (3.9)

Taking m = 2 and A := 4.7 · 1024k8 log3 k in Lemma 2.4 and as

56.81 + 8 log k + 3 log log k < 88.4 log k,

for all k ≥ 2, we get

n < 22(4.7 · 1024k8 log3 k)(log(4.7 · 1024k8 log3 k))2

< 1.88 · 1025k8 log3 k(56.81 + 8 log k + 3 log log k)2

< 1.47 · 1029k8 log5 k.

This establishes (3.2) and finishes the proof of Lemma 3.1.

8
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3.3. The case 2 ≤ k ≤ 600
This subsection is the third step of the proof of Theorem 1.1, that consists in
studying the the main equation when k ∈ [2, 600] by using Lemma 2.6. Consider

Γ1 := log(Λ1 + 1) = n log α − (a + b) log 2 + log(gk(α)). (3.10)

Since a ≥ 1, then by (3.3), we have |Λ1| < 0.75. Hence, applying Lemma 2.5 with
d = 0.75, we get

|Γ1| <
− log(1 − 0.75)

0.75 |Λ1| < 2.8 · 2−a. (3.11)

Replacing (3.10) into (3.11) and dividing through by log 2, we obtain∣∣∣∣n( log α

log 2

)
− (a + b) + log(gk(α))

log 2

∣∣∣∣ < 4.1 · 2−a. (3.12)

To apply Lemma 2.6 to (3.12), we take

γ := log α

log 2 , µ := log(gk(α))
log 2 , A := 4.1, and B := 2.

We have γ ̸∈ Q since if we assume the contrary, then there exist coprime integers
a and b such that γ = a/b, then we get that αb = 2a. Let σ ∈ Gal(K/Q) such that
σ(α) = αi, for some i ∈ {2, . . . , k}. Applying this to the above relation and taking
absolute values we get 1 < 2a = |αi| < 1, which is a contradiction.

For each k ∈ [2, 600], we find a good approximation of γ and a convergent
pℓ/qℓ of the continued fraction of γ such that qℓ > 6Mk and ε = ε(k) = ∥µq∥ −
Mk∥γq∥ > 0, where Mk := ⌊1.47 · 1029k8 log5 k⌋, which is is an upper bound of
n from Lemma 3.1. After doing this, we use Lemma 2.6 on inequality (3.12). A
computer program with Mathematica revealed that the maximum value of log(Aq/ε)

log B

over all k ∈ [2, 600] is 196.318 . . ., which is an upper bound of a by Lemma 2.6.
Now, we consider 1 ≤ a ≤ 196 and

Γ2 := log(Λ2 + 1) = n log α − b log 2 + log(gk(α)/(2a + 1)). (3.13)

Since b ≥ 1, then by (3.8), we have |Λ2| < 0.6. Thus, by Lemma 2.5 with d = 0.6
we deduce that

|Γ2| <
− log(1 − 0.6)

0.6 |Λ2| < 1.9 · 2−b. (3.14)

Replacing (3.13) into (3.14) and dividing through by log 2, we obtain∣∣∣∣n( log α

log 2

)
− b + log(gk(α)/(2a + 1))

log 2

∣∣∣∣ < 2.8 · 2−b. (3.15)

To apply Lemma 2.6 to (3.15), this time for 1 ≤ a ≤ 196 we take

γ := log α

log 2 , µa := log(gk(α)/(2a + 1))
log 2 , (1 ≤ a ≤ 196), A := 2.8, B := 2.

9
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As seen before γ ̸∈ Q. Again, for each (k, a) ∈ [2, 600] × [1, 196], we find a good
approximation of γ and a convergent pℓ/qℓ of the continued fraction of γ such that
qℓ > 6Mk and ε = ε(k) = ∥µq∥ − Mk∥γq∥ > 0, where Mk := ⌊1.47 · 1029k8 log5 k⌋,
which is is an upper bound of n − 1 from Lemma 3.1. After doing this, we use
Lemma 2.6 on inequality (3.15). A computer search with Mathematica revealed
that the maximum value of log(Aq/ε)

log B over all (k, a) ∈ [1, 600]× [1, 196] is 211.196 . . .,
which according to Lemma 2.6, is an upper bound of b.

Hence, we deduce that the possible solutions (a, b, k, n) of equation (1.1) for
which k ∈ [2, 600] satisfy 1 ≤ a ≤ b ≤ 212. Therefore, we use inequalities (3.1) to
obtain n ≤ 616.

Finally, we use Mathematica to compare P
(k)
n and (2a + 1)(2b + 1), for 4 ≤ n ≤

616 and 1 ≤ a ≤ b ≤ 212, with n < 1.45(a + b) + 4.9 and checked that equation
(1.1) has no solutions.

3.4. The case k > 600
For the last step of the proof of Theorem 1.1, we will show that equation (1.1) has
no solutions when k > 600.

3.4.1. An absolute upper bound on k > 600

Lemma 3.2. If (n, k, a, b) is a solution of the Diophantine equation (1.1) with
k > 600 and n ≥ k + 2, then k and n are bounded as

k < 1.4 · 1031 and n < 4.2 · 10287.

Proof. For k > 600, we have

n < 1.47 · 1029k8 log5 k < φk/2.

Since n < φk/2, Lemma 2.3 and inequality (3.3) imply∣∣∣∣ φ2n

φ + 2 − 2a+b

∣∣∣∣ ≤
∣∣gk(α)αn − 2a+b

∣∣+
∣∣∣∣gk(α)αn − φ2n

φ + 2

∣∣∣∣
≤ 3

2 + 2a + 2b + φ2n

φ + 2 |ζ|

≤ 3
2 + φ2n−2

2a
+ 4φ2n

(φ + 2)φk/2 ,

where we have used that 2a+b < αn−1 < φ2n−2. Dividing both sides by φ2n/φ + 2
and using the fact that n ≥ k + 2 we obtain∣∣(φ + 2)2a+bφ−2n − 1

∣∣ <
3(φ + 2)
2φ2k+4 + φ + 2

φ22a
+ 4

φk/2 <
7

φλ
, (3.16)

where λ := min{k/2, a}. Let

Λ3 := (φ + 2)2a+bφ−2n − 1. (3.17)

10
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If Λ3 = 0, then we obtain
(φ + 2)2a+b = φ2n.

Thus, (φ + 2)2a+b is an unit in Q(
√

5), which is not possible. Therefore, Λ3 ̸= 0.
We can apply Theorem 2.1 to Λ3 given by (3.17). To do this, we consider

(γ1, b1) := (φ + 2, 1), (γ2, b2) := (2, a + b), (γ3, b3) := (φ, −2n).

The algebraic numbers γ1, γ2, γ3 are elements of the field K := Q(
√

5) and dK = 2.
We take B := 2n. Since h(γ1) ≤ h(φ) + h(2) + log 2 = log φ

2 + 2 log 2, h(γ2) = log 2,
and h(γ3) = log φ

2 then we can consider

A1 := log φ + 4 log 2, A2 := 2 log 2, A3 := log φ.

By the application of Theorem 2.1, we get

|Λ3| > exp
(
−2.86 · 1012 log n

)
,

where we use the fact that 1 + log(2n) < 2.3 log n which hold for all n ≥ 4. By
comparing the resulting inequality with (3.16), we obtain

λ < 5.95 · 1012 log n. (3.18)

Now, we distinguish two cases according to λ.

Case 1: λ = k/2. By Lemma 3.1 and inequality (3.18), it follows that

k < 1.19 · 1013 log
(
1.47 · 1029k8 log5 k

)
.

Solving the above inequality and inserting the result in the inequality of Lemma 3.1,
one gets

k < 4.5 · 1015 and n < 1.6 · 10162.

Case 2: λ = a. In this case, it comes from (3.18) that

a < 5.95 · 1012 log n. (3.19)

We go back to equation (3.7) and we use Lemma 2.3 to obtain∣∣∣∣2b − φ2n

(φ + 2)(2a + 1)

∣∣∣∣ ≤ 1
2a + 1

∣∣∣∣ φ2n

φ + 2 − gk(α)αn

∣∣∣∣+
∣∣∣∣gk(α)αn

2a + 1 − 2b

∣∣∣∣
≤ |ζ| φ2n

(φ + 2)(2a + 1) + 1
2(2a + 1) .

If we divide the above inequality by φ2n

(φ+2)(2a+1) and we use the fact that n ≥ k +2,
we get ∣∣(φ + 2)(2a + 1)φ−2n2b − 1

∣∣ ≤ 4
φk/2 + φ + 2

2φ2k+4 <
4.3

φk/2 . (3.20)

11
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We apply Theorem 2.1 with the data

t := 3, (η1, b1) := ((φ + 2)(2a + 1), 1), (η2, b2) := (φ, −2n), (η3, b3) := (2, b),

and
Γ4 := (φ + 2)(2a + 1)φ−2n2b − 1.

We show that Γ4 ̸= 0 using the same method used to show that Γ3 ̸= 0. As
calculated before, we take

K := Q(
√

5), dK := 2, A2 := log φ, A3 := 2 log 2 and B := 2n.

Moreover, using (3.19), we obtain

h(η1) ≤ h(φ) + h(2) + ah(2) + h(1) + 2 log 2
≤ log φ/2 + 3 log 2 + 5.95 · 1012 log n log 2
≤ 4.13 · 1012 log n.

Thus, we take A1 := 8.26 · 1012 log n. According to Theorem 2.1 and inequality
(3.20), we get

exp(−7.26 · 1024(log n)2) <
4.3

φk/2 .

Consequently, one has
k < 3.02 · 1025(log n)2.

From this and Lemma 3.1, it follows that

k < 1.4 · 1031 and n < 4.2 · 10287. (3.21)

So, in all cases inequalities (3.21) hold. Therefore, the lemma is proved.

3.4.2. Reducing the bound on k

Now, we try to reduce the obtained bounds. We put

Γ3 := log(Λ3 + 1) = (a + b) log 2 − 2n log φ + log(φ + 2). (3.22)

Since a ≥ 5, then by (3.3), we have |Λ3| < 0.64. Hence, applying Lemma 2.5 with
d = 0.64, we get

|Γ3| <
− log 0.36

0.64 |Λ3| < 11.2φ−λ. (3.23)

Replacing (3.22) into (3.23) and dividing through by log φ, we obtain∣∣∣∣(a + b)
(

log 2
log φ

)
− 2n + log(φ + 2)

log φ

∣∣∣∣ < 23.3φ−λ. (3.24)

To apply Lemma 2.6 to (3.24), we take

γ := log 2
log φ

, µ := log(φ + 2)
log φ

, A := 23.3 and B := φ.

12
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We know that γ ̸∈ Q. We put now M := 8.4 ·10287, which is an upper bound on
(a+ b) and we use Lemma 2.6 on (3.24) in order to obtain an upper bound on λ. A
computer search with Maple shows that q579 satisfies the conditions of Lemma 2.6
and that λ ≤ 1427.

Case 1: λ = k/2. In this case one obtains k ≤ 2854.

Case 2: λ = a. In this case, one gets that a ≤ 1427. Now, we define

Λ4 := b log 2 − 2n log φ + log((φ + 2)(2a + 1)) = log(Γ4 + 1).

Since k > 600, then from (3.20) we have |Γ4| < 0.01. Hence by 2.5, we deduce that

|Γ4| < − log(0.99)
0.01 |Λ4| < 4.4φ−k/2

and so ∣∣∣∣b( log 2
log φ

)
− 2n + log(φ + 2)(2a + 1)

log φ

∣∣∣∣ < 9.2φ−k/2.

For 1 ≤ a ≤ 1427, we apply Lemma 2.6 with the parameters

γ := log 2
log φ

, µ := log(φ + 2)(2a + 1)
log φ

, A := 9.2, and B := φ.

Furthermore, Lemma 3.2 implies that we can take M := 8.4 · 10287. Using Maple,
we find that q579 satisfies the hypotheses of Lemma 2.6. Furthermore, according
to Lemma 2.6 we obtain k ≤ 2866. So In all cases we obtain k ≤ 2866.

This upper bound on of k with Lemma 3.1 gives that n < 2.2·1061. So, we apply
again Lemma 2.6 with the same above data but this time we take M := 4.4 · 1061.
With the help of Maple we obtain that q126 satisfies the conditions of Lemma 2.6
and that k < 648.

With this new bound, we get n < 5.2 · 1055. So, we apply again Lemma 2.6
with the same above data but this time we take M := 1.04 · 1056. With the help
of Maple, we see that q114 satisfies the conditions of Lemma 2.6 and that k < 598,
which contradicts our assumption that k > 600. Therefore, we have no solutions
(n, k, a, b) to equation (1.1) with k > 600. This completes the proof of Theorem 1.1.
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