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Abstract. The history of the isoptic curves goes back to the 19th century,
but nowadays the topic is experiencing a renaissance, providing numerous
new results and new applications. First, we define the notion of isoptic curve
and outline some of the well-known results for strictly convex, closed curves.
Overviewing the types of centered trochoids, we will be able to give the
parametric equation of the isoptic curves of hypocycloids and epicycloids.
Furthermore, we will determine the corresponding class of curves. Simulta-
neously, we show that a generalized support function can be given to these
types of curves in order to apply and extend the results for strictly convex,
closed curves. The calculation methods used during the procedure provide
an excellent example of the application of univariate calculus, parametric
curves, and vector calculus in geometry and can therefore be processed by
either advanced high school students or university students.
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1. Introduction
In this manuscript we work in the Euclidean plane E2. Let us introduce the fol-
lowing definition:

Definition 1.1 ([30]). The locus of the intersection of tangents to a curve (or
curves) meeting at a constant angle α (0 < α < π) is the α-isoptic of the given
curve (or curves). The isoptic curve with right angle called orthoptic curve.

Although the name “isoptic curve” was suggested by Taylor in 1884 ([26]),
reference to former results can be found in [30]. In the obscure history of isoptic
curves, we can find the names of la Hire (cycloids 1704) and Chasles (conics and
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epitrochoids 1837) among the contributors of the subject, however, the details of the
research results are not available in English. A very interesting table of isoptic and
orthoptic curves is introduced in [30], unfortunately without any exact reference
of its source. Our goal in this paper is to independently reconstruct some of the
missing computations for the isoptic curves of hypocycloids and epicycloids and to
extend the results presented in [2] and [11].

However, recent works are available on the topic, which shows its timeliness. In
[2] the Euclidean isoptic curves of closed strictly convex curves are studied using
their support function. Papers [15, 28, 29] deal with Euclidean curves having a
circle or an ellipse for an isoptic curve. Further curves appearing as isoptic curves
are well studied in Euclidean plane geometry E2, see e.g. [17, 23]. Isoptic curves
of conic sections have been studied in [12] and [24]. There are results for Bezier
curves by Kunkli et al. as well, see [14]. Many papers focus on the properties of
isoptics, e.g. [18–20], and the references therein. There are some generalizations of
the isoptics as well e.g. equioptic curves in [22] by Odehnal or secantopics in [21,
25] by Skrzypiec.

An algorithm for convex polyhedrons has been given by the authors in [8] in
order to generalize the notion of isoptic curve into the space and it has been devel-
oped by Kunkli et al. for non convex cases in [13]. The spatial case encompasses
many applications in both physical and architectural aspects, see [9].

There are some results in non-Euclidean geometries as well. The isoptic curves
of the hyperbolic line segment and proper conic sections are determined in [4, 6, 7].
For generalized conic sections, and for their isoptics, see [5]. The isoptics of conic
sections in elliptic geometry E2 are determined in [4].

There are some results in three dimensional Thurson geometries as well. The
isoptic surface of segments has been determined in [10] in Nil geometry and in [3]
for S2×R and H2×R geometries.

2. Preliminary results
In order to conduct further investigations on isoptics we need to summarize some
preliminary results on the support function. We remind the dear reader that the
complex number plane and R2 are isomorphic to each other, in such a way that
real and imaginary parts give the first and second coordinates respectively. Fur-
thermore, we will use the well-known Euler formula: eit = cos(t) + i sin(t) ⇔
(cos(t), sin(t)).

Definition 2.1. Let C be a closed, strictly convex curve which surrounds the
origin. Let p(t) where t ∈ [0, 2π[ be the distance from 0 to the support line of C
being perpendicular to the vector eit. The function p is called a support function
of C.

It is well-known [1] that the support function of a planar, closed, strictly convex
curve C is differentiable. For now we would like to express the isoptic of C using
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the support function. We claim the following lemma omitting the proof which can
be found for example in [27].

Lemma 2.2 ([27]). If f(x, y, t) = 0 is a family of straight lines, then the equation
of the envelope of these lines can be obtained by eliminating the variable t from the
two equations f(x, y, t) = 0 and d

dt f(x, y, t) = 0.

This is used in [27] to prove the following theorem.

Theorem 2.3 ([27]). Given a planar, closed, strictly convex curve C in polar
coordinates with the radius z a function of angle t, where t ∈ [0, 2π). Then the
following equation holds

z(t) = p(t)eit + ṗ(t)ieit.

The corollary of this theorem is that we may use this parametrization to deter-
mine the isoptic curve of C. The angle of p(t) and p(t + π − α) is α, since the p(t),
p(t + π − α) and their support lines determine a cyclic quadrilateral (see Figure 1).
Our goal is to determine the intersection of these tangent lines which is the fourth
vertex opposite the origin. A proof can be found in [2].

Theorem 2.4 ([2]). Let C be a plane, closed, strictly convex curve and suppose
that the origin is in the interior of C. Let p(t), t ∈ [0, 2π] be the support function
of C. Then the α-isoptic curve of C has the form

zα(t) = p(t)eit +
(

−p(t) cot(π − α) + 1
sin(π − α)p(t + π − α)

)
ieit. (2.1)

Figure 1

Definition 2.5 ([30]). A hypocycloid is generated by a point on a circle rolling
internally upon a fixed circle. An epicycloid is generated by a point on a circle
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rolling externally upon a fixed circle. A hypotrochoid is generated by a point
rigidly attached to a circle rolling internally upon a fixed circle. An epitrochoid
is generated by a point rigidly attached to a circle rolling externally upon a fixed
circle.

We will use the following parametric equations of the hypo- and epicycloids,
where we assumed that the radius of the fixed circle is 1, and the radius of the
rolling circle is rational 1

a := p
q < 1 in its lowest terms, otherwise the curve never

closes, and fills the space between the circles. Then we have exactly p cusps and it
is closed if and only if the length of parametric domain of t is greater than equal
to 2qπ. In the case of hypocycloid, we also assume, that 2p ̸= q, which results in a
segment. Since the parametrization of the hypo- and epicycloids are very similar,
we consider them together. Hereinafter, in the notation ± or ∓, the upper sign
refers to the hypocycloid, the lower one to the epicycloid.{

(a ∓ 1) cos(t) ± cos((a ∓ 1)t)
a

,
(a ∓ 1) sin(t) − sin((a ∓ 1)t)

a

}
Finally, we need the parametric equations of the hypo- and epitrochoids using

the above sign convention:{
(A ± B) cos(t) ± H cos

(
A ∓ B

B
t

)
, (A ∓ B) sin(t) − H sin

(
A ∓ B

B
t

)}
(2.2)

where the radius of the fixed and the rolling circles are A and B respectively, and
H is the distance of the rigid point to the center of the rolling circle (see [16]).

3. Isoptic curves
Since the calculations of the isoptic curves of hypo- and epicycloids are also very
similar, we consider them together. Our first step, to determine the isoptic curves,
is always the tangent calculation. We need the derivative of the parametrization:

vH/E(t) =

∓
2(a ∓ 1) sin

(
at
2

)
cos

(
(a∓2)t

2

)
a

,
2(a ∓ 1) sin

(
at
2

)
sin

(
(a∓2)t

2

)
a


=

2(a ∓ 1) sin
(

at
2

)
a

{
∓ cos

(
(a ∓ 2)t

2

)
, sin

(
(a ∓ 2)t

2

)}
=

2(a ∓ 1) sin
(

at
2

)
a

vH/E(t) (3.1)

where we applied trigonometric product-to-sum and sum-to-product identities.

Remark 3.1. The tangent vector can be a null vector for discrete parameter values
if sin

(
at
2

)
= 0, but its direction may be determined in limit so that continuity

remains.
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Now, it is easy to see, that the angle of two tangents is equal to the the angle
of the corresponding tangent vectors. Considering the t + ϕ and t − ϕ parametric
values: 〈

vH/E(t − ϕ), vH/E(t + ϕ
〉∥∥vH/E(t − ϕ)

∥∥∥∥vH/E(t + ϕ)
∥∥

=
〈
vH/E(t − ϕ), vH/E(t + ϕ)

〉
= cos

(
(a ∓ 2)(t − ϕ)

2

)
cos

(
(a ∓ 2)(t + ϕ)

2

)
+ sin

(
(a ∓ 2)(t − ϕ)

2

)
sin

(
(a ∓ 2)(t + ϕ)

2

)
= cos

(
(a ∓ 2)(t + ϕ)

2 − (a ∓ 2)(t − ϕ)
2

)
= cos((a ∓ 2)ϕ) (3.2)

that is independent form the parameter value of t. This is not necessarily true for
other classes of curves. This uniformity gives us the possibility to determine the
isoptic curve. Let ϕ := α

a∓2 be true, if we are interested in the α-isoptic curve.
Then the angle of the oriented tangents that are drawn to points corresponding to
the parameter values t − ϕ and t + ϕ is α.

Remark 3.2. In the case of the astroid (a = 4), the value of ϕ is α
2 so that the

difference of considered two points in the parameter domain is exactly α.

From formula (3.1), we can derive the equation of the tangent respected to the
parameter t:

x sin
(

(a ∓ 2)t
2

)
± y cos

(
(a ∓ 2)t

2

)
=

(a ∓ 2) sin
(

at
2

)
a

(3.3)

By replacing t with t − ϕ and t + ϕ, we get an equation system. We are looking for
the common point of the above tangents that will be a point of the isoptic curve
related to the parameters t and α. When solving the system of equations, it is worth
using Cramer’s rule, since only 2 × 2 determinants need to be calculated. Due to
the length of the solution process, we do not report it here, but after trigonometric
simplification this is the result, which will be the parametrization of the isoptic
curve, as well:

x(t) =
(a ∓ 2)

(
sin

(
(a∓1)α

a∓2

)
cos(t) ± sin

(
α

a∓2

)
cos((a ∓ 1)t)

)
a sin(α)

y(t) =
(a ∓ 2)

(
sin

(
(a∓1)α

a∓2

)
sin(t) − sin

(
α

a∓2

)
sin((a ∓ 1)t)

)
a sin(α)

We can propose the following theorem realizing the similarities to (2.2):

5



Annal. Math. et Inf. G. Csima

Theorem 3.3. Let us be given a hypo- or epicycloid with its parametrization{
(a ∓ 1) cos(t) ± cos((a ∓ 1)t)

a
,

(a ∓ 1) sin(t) − sin((a ∓ 1)t)
a

}
where a = q

p and t ∈ [0, 2qπ] such that p, q ∈ Z+ ∧ p < q ∧ 2p ̸= q. Then the
α-isoptic curve of it is a hypo- or epitrochoid given by the parametrization{

(A ∓ B) cos(t) ± H cos
(

A ∓ B

B
t

)
, (A ∓ B) sin(t) − H sin

(
A ∓ B

B
t

)}
,

where

A =
(a ∓ 2) sin

(
(a∓1)α

a∓2

)
(a ∓ 1) sin(α) , B =

(a ∓ 2) sin
(

(a∓1)α
a∓2

)
a(a ∓ 1) sin(α) , H =

(a ∓ 2) sin
(

α
a∓2

)
a sin(α) .

Remark 3.4. It is easy to see, that for the case of hypocycloid, if α = a−2
a−1 π,

then A = B = 0 in Theorem 3.3, so that the resulted parametric curve is a circle,
centered at the origin with radius

(a − 2) sin
(

π
a−1

)
a sin

(
a−2
a−1

) .

For the epicycloid, in Theorem 3.3 A = B = 0 if α = a+2
a+1 π but that angle is greater

than π, therefore it is not a real isoptic curve.

Figure 2. Isoptic curve for hypocycloid with a = 4, α = π
3 (left)

and a = 6, α = 2π
3 (right).
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Figure 3. Isoptic curve for epicycloid with a = 3, α = π
3 (left) and

a = 6, α = π
6 (right).

Figure 4. Isoptic curve as a circle for hypocycloid with a = 5,
α = 3π

4 .

4. Isoptic curves by support functions

One can realize that the tangents in formula (3.3) is in Hesse form, therefore it is
easy to calculate the distance of the line to the origin. Despite hypocycloids and
epicycloids are non-convex curves, we can define their support function nonetheless
in order to give another approach of the isoptic curve by Theorem 2.4. We only
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have to apply a substitution: t = 2
a∓2

(
π
2 − u

)
in (3.1) to obtain:

x cos(u) + y sin(u) = (a ∓ 2)
a

sin
(

a

a ∓ 2

(π

2 − u
))

.

It is easy to see, that the transverse vector of the tangent is eiu = {cos(u), sin(u)}
and its distance to the origin is (a∓2)

a sin
(

a
a∓2

(
π
2 − u

))
. Then we can define the

quasi-support functions:

pH/E(u) = (a ∓ 2)
a

sin
(

a

a ∓ 2

(π

2 − u
))

. (4.1)

From this point on, the procedure is fairly straightforward, especially with the
help of some mathematical software. First, we apply (2.1) from Theorem 2.4 to
(4.1), then we return to the original t variable. Finally, the resulting parametriza-
tion can be simplified with the help of the trigonometric product-to-sum and sum-
to-product identities already used before, until we arrive at a form of the formulas
that leads to the parametrization of the hypo- and epitrochoid by shifting the
parameter range or, in the case of the epicycloid, by changing the direction as well.

Theorem 4.1. Let us be given a C hypo- or epicycloid with its parametrization

C :
{

(a ∓ 1) cos(t) ± cos((a ∓ 1)t)
a

,
(a ∓ 1) sin(t) − sin((a ∓ 1)t)

a

}
where a = q

p and t ∈ [0, 2qπ] such that p, q ∈ Z+ ∧ p < q ∧ 2p ̸= q. Then the
α-isoptic curve of C has the form

zα(t) = p(t)eit +
(

−p(t) cot(π − α) + 1
sin(π − α)p(t + π − α)

)
ieit,

where p(t) = (a∓2)
a sin

(
a

a∓2
(

π
2 − t

))
, t ∈ [0, 2π] is the support function of C.
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