
Submitted: November 25, 2021
Accepted: March 22, 2024
Published online: March 24, 2024

Annales Mathematicae et Informaticae
Accepted manuscript
DOI: 10.33039/ami.2024.03.005
URL: https://ami.uni-eszterhazy.hu

A note on the exponential Diophantine
equation (ax − 1)(by − 1) = az2

Yasutsugu Fujita, Maohua Le

Department of Mathematics, College of Industrial Technology, Nihon University,
2-11-1 Shin-ei, Narashino, Chiba, Japan

fujita.yasutsugu@nihon-u.ac.jp
Institute of Mathematics, Lingnan Normal College,

Zhanjiang, Guangdong, 524048 China
lemaohua2008@163.com

Abstract. Let a, b be fixed positive integers such that (a mod 8, b mod 8) ∈
{(0, 3), (0, 5), (2, 3), (2, 5), (4, 3), (6, 5)}. In this paper, using elementary meth-
ods with some classical results for Diophantine equations, we prove the follow-
ing three results: (i) The equation (∗) (ax − 1)(by − 1) = az2 has no positive
integer solutions (x, y, z) with 2 ∤ x and x > 1. (ii) If a = 2 and b ≡ 5 (mod 8),
then (∗) has no positive integer solutions (x, y, z) with 2 ∤ x. (iii) If a = 2 and
b ≡ 3 (mod 8), then the positive integer solutions (x, y, z) of (∗) with 2 ∤ x
are determined. These results improve the recent results of R.-Z. Tong: On
the Diophantine equation (2x − 1)(py − 1) = 2z2, Czech. Math. J. 71 (2021),
689–696. Moreover, under the assumption that a is a square, we prove that
(∗) has no positive integer solutions (x, y, z) even with 2 | x in some cases.

Keywords: polynomial-exponential Diophantine equation, Pell’s equation, gen-
eralized Ramanujan-Nagell equation
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1. Introduction

Let N be the set of all positive integers. Let a, b be fixed positive integers with
min{a, b} > 1. In 2000, L. Szalay [7] completely solved the equation

(2x − 1)(3x − 1) = z2, x, z ∈ N. (1.1)
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He proved that (1.1) has no solutions (x, z). Since then, this result has led to a
series of related studies for the equation

(ax − 1)(bx − 1) = z2, x, z ∈ N (1.2)

(see [3]). Obviously, the solution of (1.2) involves a system of generalized Ramanu-
jan-Nagell equations. Recently, R.-Z. Tong [8] discussed the equation

(2x − 1)(py − 1) = 2z2, x, y, z ∈ N, (1.3)

where p is an odd prime with p ≡ ±3 (mod 8). He proved the following two results:
(i) (1.3) has no solutions (x, y, z) with 2 ∤ x, 2 | y and y > 4. (ii) If p ̸= 2g2 + 1,
where g is an odd positive integer, then (1.3) has no solutions (x, y, z) with 2 ∤ x.
In this paper, we will discuss the generalized form of (1.3) as follows:

(ax − 1)(by − 1) = az2, x, y, z ∈ N. (1.4)

For any positive integer n, let rn, sn be the positive integers satisfying

rn + sn

√
2 =

(
3 + 2

√
2

)n

. (1.5)

For any odd positive integer m, let Rm, Sm be the positive integers satisfying

Rm + Sm

√
2 =

(
1 +

√
2
)m

. (1.6)

Using elementary methods with some classical results for Diophantine equations,
we prove the following results:

Theorem 1.1. If

(a mod 8, b mod 8) ∈ {(0, 3), (0, 5), (2, 3), (2, 5), (4, 3), (6, 5)}, (1.7)

then (1.4) has no solutions (x, y, z) with 2 ∤ x and x > 1.

Theorem 1.2. If a = 2 and b ≡ 5 (mod 8), then (1.4) has no solutions (x, y, z)
with 2 ∤ x. If a = 2 and b ≡ 3 (mod 8), then (1.4) has only the following solutions
(x, y, z) with 2 ∤ x:

(i) b = 3, (x, y, z) = (1, 1, 1), (1, 2, 2) and (1, 5, 11).

(ii) b = 2g2 + 1, (x, y, z) = (1, 1, g), where g is an odd positive integer with g > 1.

(iii) b = rm, (x, y, z) = (1, 2, sm), where m is an odd positive integer with m > 1.

Theorem 1.3. Let N(a, b) denote the number of solutions (x, y, z) of (1.4) with
2 ∤ x. If a = 2 and b ≡ 3 (mod 8), then

N(2, b) =


3, if b = 3,

2, if b = 2g2 + 1 and g = Rm with m > 1,

1, if b = 2g2 + 1 and g ̸= Rm,

0, otherwise.
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Obviously, the above theorems improve the result of [8].
The following results concern the solvability of (1.4) including even the case

where 2 | x.

Theorem 1.4. If (a mod 8, b mod 8) ∈ {(0, 3), (0, 5), (4, 3)} and a is a square,
then (1.4) has no solutions (x, y, z) with x > 1.

Theorem 1.5. Assume that one of the following conditions holds:

(i) a = 4 and either b = 3 or b has a prime divisor p with p ≡ 11 (mod 24).

(ii) a = 16 and either b ∈ {3, 5} or b has a prime divisor p with

p ≡ 11, 13, 29, 37, 43, 59, 67 or 101 (mod 120).

Then, (1.4) has no solutions.

2. Preliminaries
Let D be a nonsquare positive integer, and let D1, D2 be positive integers such that
D1 > 1, D1D2 = D and gcd(D1, D2) = 1. By the basic properties of Pell’s equation
(see [5, 10] and [4, Lemma 1]), we obtain the following two lemmas immediately.

Lemma 2.1. The equation

u2 − Dv2 = 1, u, v ∈ N (2.1)

has solutions (u, v), and it has a unique solution (u1, v1) such that u1 + v1
√

D ≤
u + v

√
D, where (u, v) runs through all solutions of (2.1). The solution (u1, v1)

is called the least solution of (2.1). For any positive integer n, let un + vn

√
D =(

u1 + v1
√

D
)n

. Then we have

(i) (u, v) = (un, vn) (n = 1, 2, . . . ) are all solutions of (2.1).

(ii) If 2 | n, then each prime divisor p of un satisfies p ≡ ±1 (mod 8).

(iii) If 2 ∤ n, then u1 | un.

Lemma 2.2. If the equation

D1U2 − D2V 2 = 1, U, V ∈ N (2.2)

has solutions (U, V ), then it has a unique solution (U1, V1) such that U1
√

D1 +
V1

√
D2 ≤ U

√
D1 + V

√
D2, where (U, V ) runs through all solutions of (2.2). The

solution (U1, V1) is called the least solution of (2.2). For any odd positive integer
m, let Um

√
D1 + Vm

√
D2 =

(
U1

√
D1 + V1

√
D2

)m. Then we have

(i) (U, V ) = (Um, Vm) (m = 1, 3, . . . ) are all solutions of (2.2).
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(ii) u1 + v1
√

D =
(
U1

√
D1 + V1

√
D2

)2, where (u1, v1) is the least solution of
(2.1).

For any positive integer l, let ord2(l) denote the order of 2 in the factorization
of l.

Lemma 2.3. If (2.2) has solutions (U, V ), then every solution (U, V ) of (2.2)
satisfies ord2(D1U2) = ord2(D1U2

1 ), where (U1, V1) is the least solution of (2.2).

Proof. By (i) of Lemma 2.2, there exists an odd positive integer m which makes
U

√
D1 + V

√
D2 =

(
U1

√
D1 + V1

√
D2

)m, whence we get

U = U1

(m−1)/2∑
i=0

(
m
2i

)(
D1U2

1
)(m−1)/2−i(

D2V 2
1

)i
. (2.3)

Since D1U2
1 − D2V 2

1 = 1 implies that D1U2
1 and D2V 2

1 have opposite parity, we
have

2 ∤
(m−1)/2∑

i=0

(
m
2i

)(
D1U2

1
)(m−1)/2−i(

D2V 2
1

)i
. (2.4)

Hence, by (2.3) and (2.4), we get ord2(U) = ord2(U1). It implies that ord2(D1U2) =
ord2(D1U2

1 ). The lemma is proved.

Lemma 2.4. Let rn, sn be defined as in (1.5). Then (u, v) = (rn, sn) (n = 1, 2, . . . )
are all solutions of the equation

u2 − 2v2 = 1, u, v ∈ N, (2.5)

and

rn ≡

{
1 (mod 8), if 2 | n,

3 (mod 8), if 2 ∤ n.
(2.6)

Proof. Since (u1, v1) = (3, 2) is the least solution of (2.5), by (i) of Lemma 2.1,
we see from (1.5) that (u, v) = (rn, sn) (n = 1, 2, . . . ) are all solutions of (2.5). By
(1.5) we have

rn =
[n/2]∑
i=0

(
m
2i

)
3n−2i · 8i,

where [n/2] is the integer part of n/2. It follows that

rn ≡ 3n (mod 8),

whence we obtain (2.6). The lemma is proved.

Lemma 2.5. For any odd positive integer m, we have rm = 2R2
m+1, where rm, Rm

are defined as in (1.5) and (1.6) respectively.
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Proof. Since 3 + 2
√

2 =
(
1 +

√
2

)2 and 3 − 2
√

2 =
(
1 −

√
2

)2, by (1.5) and (1.6),
we have

rm = 1
2

((
3 + 2

√
2

)m

+
(

3 − 2
√

2
)m)

= 1
2

((
1 +

√
2

)2m

+
(

1 −
√

2
)2m

)
= 1

2

(((
1 +

√
2

)m

+
(

1 −
√

2
)m)2

− 2
(

1 +
√

2
)m(

1 −
√

2
)m

)
= 1

2

(
(2Rm)2 + 2

)
= 2R2

m + 1.

The lemma is proved.

Lemma 2.6 ([9]). The equation

2X2 + 1 = Y 3, X, Y ∈ N

has no solutions (X, Y ).

Lemma 2.7 ([6]). The equation

2X2 + 1 = Y q, X, Y ∈ N, q is an odd prime with q > 3

has only the solution (X, Y, q) = (11, 3, 5).

Lemma 2.8 ([1, 2]). The equation

X4 − DY 2 = 1, X, Y ∈ N

has solutions (X, Y ) if and only if either X2 = u1 or X2 = 2u2
1 − 1.

Lemma 2.9. The equation

2X2 + 1 = Y t, X, Y, t ∈ N, t > 2 (2.7)

has only the solution (X, Y, t) = (11, 3, 5).

Proof. Let (X, Y, t) be a solution of (2.7), and let q be the largest prime divisor
of t. By Lemmas 2.6 and 2.7, (2.7) has only the solution (X, Y, t) = (11, 3, 5) with
q ≥ 3. Since t > 2, if q = 2, then 4 | t and the equation

(X ′)4 − 2(Y ′)2 = 1, X ′, Y ′ ∈ N (2.8)

has a solution (X ′, Y ′) = (Y t/4, X). However, since the least solution of (2.5) is
(u1, v1) = (3, 2), neither u1 = 3 nor 2u2

1 − 1 = 17 is a square. By Lemma 2.8, (2.8)
has no solutions (X ′, Y ′). Therefore, (2.7) has no solutions (X, Y, t) with q = 2.
The lemma is proved.
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3. Proof of Theorem 1.1
In this section, we assume that (1.7) holds and that (x, y, z) is a solution of (1.4)
with 2 ∤ x and x > 1. Then we have

x ≥ 3. (3.1)

Since gcd(a, ax − 1) = 1, by (1.4), we get

ax − 1 = df2, by − 1 = adg2, z = dfg, d, f, g ∈ N. (3.2)

By the first equality of (3.2), we have

gcd(a, d) = 1. (3.3)

Since 2 | a, by (3.1) and the first equality of (3.2), we get 2 ∤ f and

d ≡ df2 ≡ ax − 1 ≡ 0 − 1 ≡ 7 (mod 8). (3.4)

Hence, we see from (3.4) that

d is not a square. (3.5)

On the other hand, substituting (3.4) into the second equality of (3.2), we have

by ≡ 1 + 7ag2 ≡


1 (mod 8), if a ≡ 0 (mod 8) or 2 | g,

7 (mod 8), if a ≡ 2 (mod 8) and 2 ∤ g,

5 (mod 8), if a ≡ 4 (mod 8) and 2 ∤ g,

3 (mod 8), if a ≡ 6 (mod 8) and 2 ∤ g.

(3.6)

Further, since b ≡ ±3 (mod 8), we get

by ≡

{
1 (mod 8), if 2 | y,

±3 (mod 8), if 2 ∤ y.
(3.7)

Therefore, in view of (1.7), comparing (3.6) and (3.7), we obtain

2 | y. (3.8)

We see from (3.8) and the second equality of (3.2) that the equation

u2 − adv2 = 1, u, v ∈ N (3.9)

has a solution
(u, v) = (by/2, g). (3.10)

By (3.3) and (3.5), ad is a nonsquare positive integer. Hence, applying (i) of
Lemma 2.1 to (3.10), there exists a positive integer n′ which makes

by/2 + g
√

ad =
(

u1 + v1
√

ad
)n′

, (3.11)

6
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where (u1, v1) is the least solution of (3.9).
For any positive integer n, let

un + vn

√
ad =

(
u1 + v1

√
ad

)n

. (3.12)

If 2 | n′, then from (3.11) and (3.12) we get by/2 = un′ and, by (ii) of Lemma 2.1,
b ≡ ±1 (mod 8), which contradicts the assumption. So we get

2 ∤ n′. (3.13)

Since 2 ∤ x, we see from the first equality of (3.2) that the equation

aU2 − dV 2 = 1, U, V ∈ N (3.14)

has a solution
(U, V ) =

(
a(x−1)/2, f

)
. (3.15)

Let (U1, V1) be the least solution of (3.14). For any odd positive integer m, let

Um

√
a + Vm

√
d =

(
U1

√
a + V1

√
d

)m

. (3.16)

Applying (i) of Lemma 2.2 to (3.15), by (3.16), there exists an odd positive integer
m′ which makes (

a(x−1)/2, f
)

= (Um′ , Vm′). (3.17)

Hence, by Lemma 2.3, we get from (3.1) and (3.17) that

ord2(aU2
1 ) = ord2(aU2

m′) = ord2(ax) ≥ x ≥ 3. (3.18)

By (ii) of Lemma 2.2, we find from (3.11), (3.13) and (3.16) that

by/2 + g
√

ad =
(

U1
√

a + V1
√

d
)2n′

=
((

U1
√

a + V1
√

d
)n′)2

=
(

Un′
√

a + Vn′
√

d
)2

.

(3.19)

Since aU2
n′ − dV 2

n′ = 1, by (3.19), we have

by/2 = aU2
n′ + dV 2

n′ = 2aU2
n′ − 1. (3.20)

Further, by Lemma 2.3, we have ord2(aU2
n′) = ord2(aU2

1 ). Hence, by (3.18), we get
ord2(aU2

n′) ≥ 3 and aU2
n′ ≡ 0 (mod 8). Therefore, by (3.20), we obtain by/2 ≡ 7

(mod 8). But, since b ≡ ±3 (mod 8), it is impossible. Thus, the theorem is proved.

7
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4. Proof of Theorem 1.2
In this section, we assume that a = 2, b ≡ ±3 (mod 8) and (x, y, z) is a solution
of (1.4) with 2 ∤ x. By Theorem 1.1, we have

x = 1. (4.1)

Since a = 2, substituting (4.1) into (3.2), we get

d = f = 1 (4.2)

and
by − 1 = 2g2, z = g, g ∈ N. (4.3)

If b ≡ 5 (mod 8), then from the first equality of (4.3) we get 1 = (−2/b) =
(2/b) = −1, a contradiction, where (∗/b) is the Jacobi symbol. Therefore, if a = 2
and b ≡ 5 (mod 8), then (1.4) has no solutions (x, y, z) with 2 ∤ x.

We just need to consider the case b ≡ 3 (mod 8). Applying Lemma 2.9 to the
first equality of (4.3), by (4.1) and (4.3), equation (1.4) has only the solution

b = 3, (x, y, z) = (1, 5, 11) (4.4)

with y > 2.
When y = 2, by the first equality of (4.3), (u, v) = (b, g) is a solution of (2.5)

Since (u1, v1) = (3, 2) is the least solution of (2.5), by (i) of Lemma 2.1, we get
from (1.5) that

(b, g) = (rn′ , sn′), n′ ∈ N. (4.5)

Further, since b ≡ 3 (mod 8), by Lemma 2.4, we see from (4.5) that 2 ∤ n′. Hence,
by (4.1), (4.2), (4.3) and (4.5), we obtain

b = rm, (x, y, z) = (1, 2, sm), m ∈ N, 2 ∤ m. (4.6)

When y = 1, by (4.1), (4.2) and (4.3), we have

b = 2g2 + 1, (x, y, z) = (1, 1, g), g ∈ N, 2 ∤ g. (4.7)

Thus, since r1 = 2 · 12 + 1 = 3, the combination of (4.4), (4.6) and (4.7) yields the
solutions (i), (ii) and (iii). The theorem is proved.

5. Proof of Theorem 1.3

By Theorem 1.2, we get N(2, 3) = 3 immediately. By Lemma 2.5, if b = 2g2 + 1
and g = Rm with m > 1, then b = rm > 3. Hence, by Theorem 1.2, we have
N(2, b) = 2. In addition, if b = 2g2 + 1 with g ̸= Rm or b ̸= 2g2 + 1, then
N(2, b) = 1 or 0. The theorem is proved.
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6. Proof of Theorems 1.4 and 1.5
Proof of Theorem 1.4. By Theorem 1.1, we may assume that x = 2x0 for some
x0 ∈ N. In addition, since a is a square, we may write a = a2

0 for some a0 ∈ N.
Then, by the first equality of (3.2), we get

(ax0
0 )4 − df2 = 1. (6.1)

It is clear from (6.1) that
d is not a square. (6.2)

Applying Lemma 2.8 to (6.1), we see that either ax0 = u′
1 or ax0 = 2(u′

1)2 − 1,
where (u′

1, v′
1) is the least solution of (2.1) with D = d. Since 2 | a, we must have

ax0 = u′
1. (6.3)

On the other hand, we know by 4 | a and 2 | x that (3.4) holds, which together
with (3.6) and (3.7) yields 2 | y. Since a = a2

0, we see from the second equality of
(3.2) that (2.1) with D = d has a solution (u, v) = (by/2, a0g). By (i) of Lemma 2.1
and (6.2), we have

(u′
n, v′

n) =
(

by/2, a0g
)

, n ∈ N, (6.4)

where u′
n + v′

n

√
d =

(
u′

1 + v′
1
√

d
)n

. If 2 | n, then, by (ii) of Lemma 2.1, b ≡ ±1
(mod 8), which contradicts the assumption. If 2 ∤ n, then, by (iii) of Lemma 2.1,
u′

1 | u′
n. However, by (6.3) and (6.4), we have a | by/2, which contradicts 2 | a and

b ≡ ±3 (mod 8). The theorem is proved.

Proof of Theorem 1.5. By Theorem 1.4, we have

x = 1. (6.5)

(i) Substituting a = 4 and (6.5) into (3.2), we get

d = 3, f = 1

and
by − 1 = 12g2, z = 3g, g ∈ N. (6.6)

Obviously, we have b ̸= 3. If b has a prime divisor p with p ≡ 11 (mod 24), then
by (6.6) we have

−1 =
(

−1
p

)
=

(
12g2

p

)
=

(
3
p

)
= 1,

a contradiction. Thus, (i) is proved.
(ii) Substituting a = 16 and (6.5) into (3.2), we get

d = 15, f = 1

9
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and
by − 1 = 15 · 16g2, z = 15g, g ∈ N. (6.7)

Obviously, we have b ̸∈ {3, 5}. If b has a prime divisor p with p ≡ 11, 43, 59 or 67
(mod 120), then, by (6.7),

−1 =
(

−1
p

)
=

(
15
p

)
= 1,

a contradiction. If b has a prime divisor p with p ≡ 13, 29, 37 or 101 (mod 120),
then, by (6.7),

1 =
(

−1
p

)
=

(
15
p

)
= −1,

a contradiction. Thus, the theorem is proved.
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