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Abstract. Let a,b be fixed positive integers such that (¢ mod 8,b mod 8) €
{(0,3),(0,5),(2,3),(2,5),(4,3),(6,5)}. In this paper, using elementary meth-
ods with some classical results for Diophantine equations, we prove the follow-
ing three results: (i) The equation (x) (a® — 1)(b¥ — 1) = az® has no positive
integer solutions (z,y, z) with2{z and > 1. (ii) Ifa = 2and b = 5 (mod 8),
then (x) has no positive integer solutions (x,y, z) with 21 z. (iii) If a = 2 and
b = 3 (mod 8), then the positive integer solutions (z,y,z) of (*) with 2t z
are determined. These results improve the recent results of R.-Z. Tong: On
the Diophantine equation (2% — 1)(p¥ — 1) = 22%, Czech. Math. J. 71 (2021),
689-696. Moreover, under the assumption that a is a square, we prove that
(*) has no positive integer solutions (x,y, z) even with 2 | x in some cases.

Keywords: polynomial-exponential Diophantine equation, Pell’s equation, gen-
eralized Ramanujan-Nagell equation

AMS Subject Classification: 11D61

1. Introduction

Let N be the set of all positive integers. Let a,b be fixed positive integers with
min{a, b} > 1. In 2000, L. Szalay [7] completely solved the equation

(2" —1)(3* - 1) =2%, z,z€N. (1.1)

Submitted: November 25, 2021
Accepted: March 22, 2024
Published online: March 24, 2024


https://doi.org/10.33039/ami.2024.03.005
https://ami.uni-eszterhazy.hu
mailto:fujita.yasutsugu@nihon-u.ac.jp
mailto:lemaohua2008@163.com

Annal. Math. et Inf. Y. Fujita, M. Le

He proved that (1.1) has no solutions (x, z). Since then, this result has led to a
series of related studies for the equation

(a® = 1)(b* —1) =2 =x,2€N (1.2)

(see [3]). Obviously, the solution of (1.2) involves a system of generalized Ramanu-
jan-Nagell equations. Recently, R.-Z. Tong [8] discussed the equation

(2" —1)(p¥ — 1) =222, z,y,2z €N, (1.3)

where p is an odd prime with p = £3 (mod 8). He proved the following two results:
(i) (1.3) has no solutions (z,y,z) with 24z, 2 | y and y > 4. (ii) If p # 29 + 1,
where g is an odd positive integer, then (1.3) has no solutions (z,y, z) with 2 { .
In this paper, we will discuss the generalized form of (1.3) as follows:

(a® —1)(bY — 1) = az?, x,y,z€N. (1.4)
For any positive integer n, let r,, s, be the positive integers satisfying
n1+snv§::(3+-z¢§)". (1.5)
For any odd positive integer m, let R,,,S;, be the positive integers satisfying
Rm—kva5=:O:+v5)

Using elementary methods with some classical results for Diophantine equations,
we prove the following results:

Theorem 1.1. If
(a mod 8,b mod 8) € {(0,3), (0,5),(2,3), (2,5), (4,3), (6,5)}, (1.7

m

(1.6)

then (1.4) has no solutions (x,y, z) with 24 x and x > 1.

Theorem 1.2. Ifa =2 and b =5 (mod 8), then (1.4) has no solutions (x,y, z)
with 2t z. If a =2 and b =3 (mod 8), then (1.4) has only the following solutions
(z,y,z) with 21 x:

(i) b=3, (z,y,2) = (1,1,1), (1,2,2) and (1,5,11).

(i) b=2¢g%+1, (x,9,2) = (1,1, 9), where g is an odd positive integer with g > 1.
(iii) b =1rm, (z,y,2) = (1,2, 81m), where m is an odd positive integer with m > 1.
Theorem 1.3. Let N(a,b) denote the number of solutions (x,y,z) of (1.4) with
2tz. Ifa=2 and b =3 (mod 8), then
if b=3,
if b=2¢>+1 and g = R,, with m > 1,
if b=2¢>+1 and g # R,
otherwise.

N(2,b) =

O)—‘“[\.’JOO
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Obviously, the above theorems improve the result of [8].
The following results concern the solvability of (1.4) including even the case
where 2 | .

Theorem 1.4. If (a mod 8,b mod 8) € {(0,3),(0,5),(4,3)} and a is a square,
then (1.4) has no solutions (x,y, z) with © > 1.

Theorem 1.5. Assume that one of the following conditions holds:
(i) a =4 and either b =3 or b has a prime divisor p with p = 11 (mod 24).
(ii) a = 16 and either b € {3,5} or b has a prime divisor p with

p=11,13,29,37,43,59,67 or 101 (mod 120).

Then, (1.4) has no solutions.

2. Preliminaries

Let D be a nonsquare positive integer, and let D1, Dy be positive integers such that
Dy > 1, D1 Dy = D and ged (D1, D2) = 1. By the basic properties of Pell’s equation
(see [5, 10] and [4, Lemma 1]), we obtain the following two lemmas immediately.

Lemma 2.1. The equation
u?—Dv* =1, u,veN (2.1)

has solutions (u,v), and it has a unique solution (ui,v1) such that uy + nuvD <
u 4 vv/D, where (u,v) runs through all solutions of (2.1). The solution (uy,v:)
is called the least solution of (2.1). For any positive integer n, let w, + VD =

(ul + vl\/5>n. Then we have
(1) (u,v) = (up,vn) (n=1,2,...) are all solutions of (2.1).
(ii) If 2 | n, then each prime divisor p of u,, satisfies p=+1 (mod 8).
(i) If 24 n, then uy | uy.
Lemma 2.2. If the equation
DU?-D,V?=1, UV eN (2.2)

has solutions (U,V), then it has a unique solution (U, Vi) such that Uin/D;i +
Viv/Dy <UDy 4+ V /Do, where (U, V) runs through all solutions of (2.2). The
solution (Uy, V1) is called the least solution of (2.2). For any odd positive integer

m, let Up/D1 + Vip/Da = (le/Dl + Viv Do )m. Then we have
(1) (U, V)= (U, Vi) (m=1,3,...) are all solutions of (2.2).
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(i) u; + viVD = (Ul\/Dl +‘/1\/D2)2, where (uy,v1) is the least solution of
(2.1).
For any positive integer [, let ords (1) denote the order of 2 in the factorization

of I.

Lemma 2.3. If (2.2) has solutions (U,V), then every solution (U, V) of (2.2)
satisfies ordo(D1U?) = orda(D1U2), where (Uy, V1) is the least solution of (2.2).

Proof. By (i) of Lemma 2.2, there exists an odd positive integer m which makes

UvDy+V+Dy = (le/Dl + Viv Do )m, whence we get

(m-1)/2

v=ut, Y ( by )(DlUf)(m_l)/2_i(D21/12)i. (2.3)

i=0

Since D1U? — DoV = 1 implies that D;U# and D,V;? have opposite parity, we

have
(m—1)/2

24 Z ( ) (Dy2) "V D2y (2.4)
Hence, by (2.3) and (2.4), we get orda(U) = ordg(Uy). It implies that ords(D,U?) =
ordy(D1U?). The lemma is proved. O

Lemma 2.4. Let ry,, sy, be defined as in (1.5). Then (u,v) = (rn, $p) (n=1,2,...)
are all solutions of the equation

u? —20% =1, wu,veEN, (2.5)

and

- {1 (mod 8), if 2|n, 26)

3 (mod8), if 2tn.

Proof. Since (u1,v1) = (3,2) is the least solution of (2.5), by (i) of Lemma 2.1,
we see from (1.5) that (u,v) = (7, 8,) (n=1,2,...) are all solutions of (2.5). By
(1.5) we have

[n/2] m
_ n—2 qi
Tn = E ( 9 )3 - 8%,

=0

where [n/2] is the integer part of n/2. It follows that
rn, =3" (mod 8),
whence we obtain (2.6). The lemma is proved. O

Lemma 2.5. For any odd positive integer m, we have r, = 2R2 +1, where rp,, Ry,
are defined as in (1.5) and (1.6) respectively.
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Proof. Since 3+2v2 = (1+2)” and 3—2v2 = (1 - v2)’, by (1.5) and (1.6),
we have

- %((3+2\/§)m + (3—2\@)7”) - ;((1 + x/i)2 +(1- ﬂ)2)
- ;(((1+\/§)m+ (1- \@)m)Q —2(1+v2)" (1- \@)m)
- %((23,”)2 +2) =2R2 +1,
The lemma is proved. O

Lemma 2.6 ([9]). The equation

2X24+1=Y? X, YeN
has no solutions (X,Y).
Lemma 2.7 ([6]). The equation

2X24+1=Y9, X, YeN, q isan odd prime with q >3

has only the solution (X,Y,q) = (11,3,5).
Lemma 2.8 ([1, 2]). The equation

X*-DY?=1, X, YeN
has solutions (X,Y) if and only if either X2 = uy or X? = 2u? — 1.
Lemma 2.9. The equation

2X24+1=Y! X, Y,teN, t>2 (2.7)

has only the solution (X,Y,t) = (11,3,5).

Proof. Let (X,Y,t) be a solution of (2.7), and let ¢ be the largest prime divisor
of t. By Lemmas 2.6 and 2.7, (2.7) has only the solution (X,Y,t) = (11, 3,5) with
q > 3. Since t > 2, if ¢ = 2, then 4 | t and the equation

(XN —-2(v)? =1, XY eN (2.8)

has a solution (X’,Y’) = (Y*4, X). However, since the least solution of (2.5) is
(u1,v1) = (3,2), neither u; = 3 nor 2u? — 1 = 17 is a square. By Lemma 2.8, (2.8)
has no solutions (X’,Y”). Therefore, (2.7) has no solutions (X,Y,t) with ¢ = 2.
The lemma is proved. O
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3. Proof of Theorem 1.1

In this section, we assume that (1.7) holds and that (z,y, z) is a solution of (1.4)
with 22 and « > 1. Then we have

x> 3. (3.1)
Since ged(a,a® — 1) =1, by (1.4), we get
a® —1=df? v —1=uadg®, z=dfg, d,f gecN. (3.2)
By the first equality of (3.2), we have
ged(a,d) = 1. (3.3)
Since 2 | a, by (3.1) and the first equality of (3.2), we get 21 f and
d=df*=a"-1=0-1=7 (mod 8). (3.4)
Hence, we see from (3.4) that
d is not a square. (3.5)

On the other hand, substituting (3.4) into the second equality of (3.2), we have

1 (mod8), if a=0 (mod8) or 2]y,
W= 1+ Tag? = 7 (mod 8), %f a=2 (mod8) and 21g, (3.6)
5 (mod8), if a=4 (mod8) and 21y,
3 (mod8), if a=6 (mod3R8) and 21g.
Further, since b = £3 (mod 8), we get
1 ds8 if 2
b = (mod 8), 1 |y, (3.7)
+3 (mod 8), if 2¢ty.
Therefore, in view of (1.7), comparing (3.6) and (3.7), we obtain
21 y. (3.8)
We see from (3.8) and the second equality of (3.2) that the equation
u? —adv* =1, wu,veEN (3.9)
has a solution
(u,0) = (b2, ). (3.10)

By (3.3) and (3.5), ad is a nonsquare positive integer. Hence, applying (i) of
Lemma 2.1 to (3.10), there exists a positive integer n’ which makes

n/
w2 4 gvVad = <u1 + le/ad) , (3.11)
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where (u1,v1) is the least solution of (3.9).
For any positive integer n, let

Up + vpVad = (u1 Jrvl\/@)n. (3.12)

If 2 | n/, then from (3.11) and (3.12) we get b¥/? = w,,» and, by (ii) of Lemma 2.1,
b= +1 (mod 8), which contradicts the assumption. So we get

240 (3.13)
Since 2 { x, we see from the first equality of (3.2) that the equation
aU? —dv? =1, UV eN (3.14)

has a solution
(U, V) = (a(’”_l)/Q,f). (3.15)

Let (Uy, V1) be the least solution of (3.14). For any odd positive integer m, let
m
U@ + VipVd = (U1ﬁ+v1\/&) . (3.16)

Applying (i) of Lemma 2.2 to (3.15), by (3.16), there exists an odd positive integer
m’ which makes

(a(r_l)/Q,f) = (Upnr, Vo). (3.17)
Hence, by Lemma 2.3, we get from (3.1) and (3.17) that
ordy(aU?) = ordy(alUZ2,) = ordy(a®) > = > 3. (3.18)

By (ii) of Lemma 2.2, we find from (3.11), (3.13) and (3.16) that

b/ + gVad = (Urva+ VM&)M - ((U1ﬁ+ VM&)”')Q

(3.19)
2
= (Un«\/&—i— Vn/\/(j) .
Since aU?, — dV% =1, by (3.19), we have
/% = aU? + dV% = 2aU2, — 1. (3.20)

Further, by Lemma 2.3, we have ords(aU?2,) = ords(aU?). Hence, by (3.18), we get
ordy(alU2,) > 3 and aU2 = 0 (mod 8). Therefore, by (3.20), we obtain b¥/2 = 7
(mod 8). But, since b = £3 (mod 8), it is impossible. Thus, the theorem is proved.
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4. Proof of Theorem 1.2

In this section, we assume that a = 2, b = £3 (mod 8) and (z,y, z) is a solution
of (1.4) with 24 2. By Theorem 1.1, we have

z=1. (4.1)
Since a = 2, substituting (4.1) into (3.2), we get
d=f=1 (4.2)
and
W—-1=2¢% 2=9g, geN. (4.3)

If b = 5 (mod 8), then from the first equality of (4.3) we get 1 = (—2/b) =
(2/b) = —1, a contradiction, where (x/b) is the Jacobi symbol. Therefore, if a = 2
and b =5 (mod 8), then (1.4) has no solutions (x,y, z) with 2 { z.

We just need to consider the case b =3 (mod 8). Applying Lemma 2.9 to the
first equality of (4.3), by (4.1) and (4.3), equation (1.4) has only the solution

b=3, (z,y,2)=(1,5,11) (4.4)

with y > 2.

When y = 2, by the first equality of (4.3), (u,v) = (b, g) is a solution of (2.5)
Since (u1,v1) = (3,2) is the least solution of (2.5), by (i) of Lemma 2.1, we get
from (1.5) that

(b,9) = (T, snr), n' €N. (4.5)
Further, since b = 3 (mod 8), by Lemma 2.4, we see from (4.5) that 2 n’. Hence,
by (4.1), (4.2), (4.3) and (4.5), we obtain

b=rm, (,y,2) =(1,2,8,), meN, 2tm. (4.6)
When y = 1, by (4.1), (4.2) and (4.3), we have

b=2¢>+1, (z,y,2) = (1,1,9), g€N, 24g. (4.7)
Thus, since r; = 2-12 4+ 1 = 3, the combination of (4.4), (4.6) and (4.7) yields the

solutions (i), (ii) and (iii). The theorem is proved.

5. Proof of Theorem 1.3

By Theorem 1.2, we get N(2,3) = 3 immediately. By Lemma 2.5, if b = 2¢% + 1
and g = R,, with m > 1, then b = r,, > 3. Hence, by Theorem 1.2, we have
N(2,b) = 2. In addition, if b = 2¢® + 1 with g # R,, or b # 2¢% + 1, then
N(2,b) =1 or 0. The theorem is proved.
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6. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1./. By Theorem 1.1, we may assume that x = 2x( for some
ro € N. In addition, since a is a square, we may write a = a3 for some ag € N.
Then, by the first equality of (3.2), we get

(ag®)" —df* = 1. (6.1)

It is clear from (6.1) that

d is not a square. (6.2)
Applying Lemma 2.8 to (6.1), we see that either a® = v} or a® = 2(u})? — 1,
where (u},v]) is the least solution of (2.1) with D = d. Since 2 | a, we must have

=uj. (6.3)

On the other hand, we know by 4 | a and 2 |  that (3.4) holds, which together
with (3.6) and (3.7) yields 2 | y. Since a = a2, we see from the second equality of
(3.2) that (2.1) with D = d has a solution (u,v) = (b¥/2, agg). By (i) of Lemma 2.1
and (6.2), we have

(U;L, U'Ia) = (by/27 a’OQ)v ne N, (64)

where u/, + v/, \/d = (u’l —l—vi\/a) . If 2 | n, then, by (ii) of Lemma 2.1, b = +1
(mod 8), which contradicts the assumption. If 2 { n, then, by (iii) of Lemma 2.1,

u) | u!,. However, by (6.3) and (6.4), we have a | b¥/2, which contradicts 2 | a and
b= +£3 (mod 8). The theorem is proved. O

Proof of Theorem 1.5. By Theorem 1.4, we have
x =1 (6.5)
(i) Substituting a = 4 and (6.5) into (3.2), we get
d=3, f=1

and
W—1=12¢% z=3g, geN. (6.6)

Obviously, we have b # 3. If b has a prime divisor p with p = 11 (mod 24), then

by (6.6) we have .
+-(3)-(2)- ()

a contradiction. Thus, (i) is proved.
(i) Substituting a = 16 and (6.5) into (3.2), we get

d=15, f=1
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and
bW —1=15-16¢% z =159, g€ N. (6.7)

Obviously, we have b & {3,5}. If b has a prime divisor p with p = 11,43,59 or 67

(mod 120), then, by (6.7),
-()-()
p p

a contradiction. If b has a prime divisor p with p = 13,29,37 or 101 (mod 120),

then, by (6.7),
1= (_1) = <15) — _17
p p

a contradiction. Thus, the theorem is proved. O
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