A note on the exponential Diophantine equation $\left(a^{x}-1\right)\left(b^{y}-1\right)=a z^{2}$

Yasutsugu Fujita ${ }^{a}$, Maohua Le ${ }^{b}$
${ }^{a}$ Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
fujita.yasutsugu@nihon-u.ac.jp
${ }^{\mathrm{b}}$ Institute of Mathematics, Lingnan Normal College, Zhanjiang, Guangdong, 524048 China lemaohua2008@163.com

Abstract

Let a, b be fixed positive integers such that $(a \bmod 8, b \bmod 8) \in$ $\{(0,3),(0,5),(2,3),(2,5),(4,3),(6,5)\}$. In this paper, using elementary methods with some classical results for Diophantine equations, we prove the following three results: (i) The equation $(*)\left(a^{x}-1\right)\left(b^{y}-1\right)=a z^{2}$ has no positive integer solutions (x, y, z) with $2 \nmid x$ and $x>1$. (ii) If $a=2$ and $b \equiv 5(\bmod 8)$, then $(*)$ has no positive integer solutions (x, y, z) with $2 \nmid x$. (iii) If $a=2$ and $b \equiv 3(\bmod 8)$, then the positive integer solutions (x, y, z) of $(*)$ with $2 \nmid x$ are determined. These results improve the recent results of R.-Z. Tong: On the Diophantine equation $\left(2^{x}-1\right)\left(p^{y}-1\right)=2 z^{2}$, Czech. Math. J. 71 (2021), 689-696. Moreover, under the assumption that a is a square, we prove that $(*)$ has no positive integer solutions (x, y, z) even with $2 \mid x$ in some cases.

Keywords: polynomial-exponential Diophantine equation, Pell's equation, generalized Ramanujan-Nagell equation

AMS Subject Classification: 11D61

1. Introduction

Let \mathbb{N} be the set of all positive integers. Let a, b be fixed positive integers with $\min \{a, b\}>1$. In 2000, L. Szalay [7] completely solved the equation

$$
\begin{equation*}
\left(2^{x}-1\right)\left(3^{x}-1\right)=z^{2}, \quad x, z \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

[^0]He proved that (1.1) has no solutions (x, z). Since then, this result has led to a series of related studies for the equation

$$
\begin{equation*}
\left(a^{x}-1\right)\left(b^{x}-1\right)=z^{2}, \quad x, z \in \mathbb{N} \tag{1.2}
\end{equation*}
$$

(see [3]). Obviously, the solution of (1.2) involves a system of generalized Ramanu-jan-Nagell equations. Recently, R.-Z. Tong [8] discussed the equation

$$
\begin{equation*}
\left(2^{x}-1\right)\left(p^{y}-1\right)=2 z^{2}, \quad x, y, z \in \mathbb{N}, \tag{1.3}
\end{equation*}
$$

where p is an odd prime with $p \equiv \pm 3(\bmod 8)$. He proved the following two results: (i) (1.3) has no solutions (x, y, z) with $2 \nmid x, 2 \mid y$ and $y>4$. (ii) If $p \neq 2 g^{2}+1$, where g is an odd positive integer, then (1.3) has no solutions (x, y, z) with $2 \nmid x$. In this paper, we will discuss the generalized form of (1.3) as follows:

$$
\begin{equation*}
\left(a^{x}-1\right)\left(b^{y}-1\right)=a z^{2}, \quad x, y, z \in \mathbb{N} . \tag{1.4}
\end{equation*}
$$

For any positive integer n, let r_{n}, s_{n} be the positive integers satisfying

$$
\begin{equation*}
r_{n}+s_{n} \sqrt{2}=(3+2 \sqrt{2})^{n} \tag{1.5}
\end{equation*}
$$

For any odd positive integer m, let R_{m}, S_{m} be the positive integers satisfying

$$
\begin{equation*}
R_{m}+S_{m} \sqrt{2}=(1+\sqrt{2})^{m} \tag{1.6}
\end{equation*}
$$

Using elementary methods with some classical results for Diophantine equations, we prove the following results:

Theorem 1.1. If

$$
\begin{equation*}
(a \bmod 8, b \bmod 8) \in\{(0,3),(0,5),(2,3),(2,5),(4,3),(6,5)\}, \tag{1.7}
\end{equation*}
$$

then (1.4) has no solutions (x, y, z) with $2 \nmid x$ and $x>1$.
Theorem 1.2. If $a=2$ and $b \equiv 5(\bmod 8)$, then (1.4) has no solutions (x, y, z) with $2 \nmid x$. If $a=2$ and $b \equiv 3(\bmod 8)$, then (1.4) has only the following solutions (x, y, z) with $2 \nmid x$:
(i) $b=3,(x, y, z)=(1,1,1),(1,2,2)$ and $(1,5,11)$.
(ii) $b=2 g^{2}+1,(x, y, z)=(1,1, g)$, where g is an odd positive integer with $g>1$.
(iii) $b=r_{m},(x, y, z)=\left(1,2, s_{m}\right)$, where m is an odd positive integer with $m>1$.

Theorem 1.3. Let $N(a, b)$ denote the number of solutions (x, y, z) of (1.4) with $2 \nmid x$. If $a=2$ and $b \equiv 3(\bmod 8)$, then

$$
N(2, b)= \begin{cases}3, & \text { if } b=3, \\ 2, & \text { if } b=2 g^{2}+1 \text { and } g=R_{m} \text { with } m>1, \\ 1, & \text { if } b=2 g^{2}+1 \text { and } g \neq R_{m} \\ 0, & \text { otherwise }\end{cases}
$$

Obviously, the above theorems improve the result of [8].
The following results concern the solvability of (1.4) including even the case where $2 \mid x$.

Theorem 1.4. If $(a \bmod 8, b \bmod 8) \in\{(0,3),(0,5),(4,3)\}$ and a is a square, then (1.4) has no solutions (x, y, z) with $x>1$.

Theorem 1.5. Assume that one of the following conditions holds:
(i) $a=4$ and either $b=3$ or b has a prime divisor p with $p \equiv 11(\bmod 24)$.
(ii) $a=16$ and either $b \in\{3,5\}$ or b has a prime divisor p with

$$
p \equiv 11,13,29,37,43,59,67 \text { or } 101 \quad(\bmod 120) .
$$

Then, (1.4) has no solutions.

2. Preliminaries

Let D be a nonsquare positive integer, and let D_{1}, D_{2} be positive integers such that $D_{1}>1, D_{1} D_{2}=D$ and $\operatorname{gcd}\left(D_{1}, D_{2}\right)=1$. By the basic properties of Pell's equation (see [5, 10] and [4, Lemma 1]), we obtain the following two lemmas immediately.

Lemma 2.1. The equation

$$
\begin{equation*}
u^{2}-D v^{2}=1, \quad u, v \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

has solutions (u, v), and it has a unique solution $\left(u_{1}, v_{1}\right)$ such that $u_{1}+v_{1} \sqrt{D} \leq$ $u+v \sqrt{D}$, where (u, v) runs through all solutions of (2.1). The solution $\left(u_{1}, v_{1}\right)$ is called the least solution of (2.1). For any positive integer n, let $u_{n}+v_{n} \sqrt{D}=$ $\left(u_{1}+v_{1} \sqrt{D}\right)^{n}$. Then we have
(i) $(u, v)=\left(u_{n}, v_{n}\right)(n=1,2, \ldots)$ are all solutions of (2.1).
(ii) If $2 \mid n$, then each prime divisor p of u_{n} satisfies $p \equiv \pm 1(\bmod 8)$.
(iii) If $2 \nmid n$, then $u_{1} \mid u_{n}$.

Lemma 2.2. If the equation

$$
\begin{equation*}
D_{1} U^{2}-D_{2} V^{2}=1, \quad U, V \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

has solutions (U, V), then it has a unique solution $\left(U_{1}, V_{1}\right)$ such that $U_{1} \sqrt{D_{1}}+$ $V_{1} \sqrt{D_{2}} \leq U \sqrt{D_{1}}+V \sqrt{D_{2}}$, where (U, V) runs through all solutions of (2.2). The solution $\left(U_{1}, V_{1}\right)$ is called the least solution of (2.2). For any odd positive integer m, let $U_{m} \sqrt{D_{1}}+V_{m} \sqrt{D_{2}}=\left(U_{1} \sqrt{D_{1}}+V_{1} \sqrt{D_{2}}\right)^{m}$. Then we have
(i) $(U, V)=\left(U_{m}, V_{m}\right)(m=1,3, \ldots)$ are all solutions of (2.2).
(ii) $u_{1}+v_{1} \sqrt{D}=\left(U_{1} \sqrt{D_{1}}+V_{1} \sqrt{D_{2}}\right)^{2}$, where $\left(u_{1}, v_{1}\right)$ is the least solution of (2.1).

For any positive integer l, let $\operatorname{ord}_{2}(l)$ denote the order of 2 in the factorization of l.

Lemma 2.3. If (2.2) has solutions (U, V), then every solution (U, V) of (2.2) satisfies $\operatorname{ord}_{2}\left(D_{1} U^{2}\right)=\operatorname{ord}_{2}\left(D_{1} U_{1}^{2}\right)$, where $\left(U_{1}, V_{1}\right)$ is the least solution of (2.2).

Proof. By (i) of Lemma 2.2, there exists an odd positive integer m which makes $U \sqrt{D_{1}}+V \sqrt{D_{2}}=\left(U_{1} \sqrt{D_{1}}+V_{1} \sqrt{D_{2}}\right)^{m}$, whence we get

$$
\begin{equation*}
U=U_{1} \sum_{i=0}^{(m-1) / 2}\binom{m}{2 i}\left(D_{1} U_{1}^{2}\right)^{(m-1) / 2-i}\left(D_{2} V_{1}^{2}\right)^{i} \tag{2.3}
\end{equation*}
$$

Since $D_{1} U_{1}^{2}-D_{2} V_{1}^{2}=1$ implies that $D_{1} U_{1}^{2}$ and $D_{2} V_{1}^{2}$ have opposite parity, we have

$$
\begin{equation*}
2 \nmid \sum_{i=0}^{(m-1) / 2}\binom{m}{2 i}\left(D_{1} U_{1}^{2}\right)^{(m-1) / 2-i}\left(D_{2} V_{1}^{2}\right)^{i} . \tag{2.4}
\end{equation*}
$$

Hence, by (2.3) and (2.4), we get $\operatorname{ord}_{2}(U)=\operatorname{ord}_{2}\left(U_{1}\right)$. It implies that $\operatorname{ord}_{2}\left(D_{1} U^{2}\right)=$ $\operatorname{ord}_{2}\left(D_{1} U_{1}^{2}\right)$. The lemma is proved.

Lemma 2.4. Let r_{n}, s_{n} be defined as in (1.5). Then $(u, v)=\left(r_{n}, s_{n}\right)(n=1,2, \ldots)$ are all solutions of the equation

$$
\begin{equation*}
u^{2}-2 v^{2}=1, \quad u, v \in \mathbb{N} \tag{2.5}
\end{equation*}
$$

and

$$
r_{n} \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } 2 \mid n, \tag{2.6}\\
3 & (\bmod 8), & \text { if } 2 \nmid n .
\end{array}\right.
$$

Proof. Since $\left(u_{1}, v_{1}\right)=(3,2)$ is the least solution of (2.5), by (i) of Lemma 2.1, we see from (1.5) that $(u, v)=\left(r_{n}, s_{n}\right)(n=1,2, \ldots)$ are all solutions of (2.5). By (1.5) we have

$$
r_{n}=\sum_{i=0}^{[n / 2]}\binom{m}{2 i} 3^{n-2 i} \cdot 8^{i}
$$

where $[n / 2]$ is the integer part of $n / 2$. It follows that

$$
r_{n} \equiv 3^{n} \quad(\bmod 8)
$$

whence we obtain (2.6). The lemma is proved.
Lemma 2.5. For any odd positive integer m, we have $r_{m}=2 R_{m}^{2}+1$, where r_{m}, R_{m} are defined as in (1.5) and (1.6) respectively.

Proof. Since $3+2 \sqrt{2}=(1+\sqrt{2})^{2}$ and $3-2 \sqrt{2}=(1-\sqrt{2})^{2}$, by (1.5) and (1.6), we have

$$
\begin{aligned}
r_{m} & =\frac{1}{2}\left((3+2 \sqrt{2})^{m}+(3-2 \sqrt{2})^{m}\right)=\frac{1}{2}\left((1+\sqrt{2})^{2 m}+(1-\sqrt{2})^{2 m}\right) \\
& =\frac{1}{2}\left(\left((1+\sqrt{2})^{m}+(1-\sqrt{2})^{m}\right)^{2}-2(1+\sqrt{2})^{m}(1-\sqrt{2})^{m}\right) \\
& =\frac{1}{2}\left(\left(2 R_{m}\right)^{2}+2\right)=2 R_{m}^{2}+1 .
\end{aligned}
$$

The lemma is proved.
Lemma 2.6 ([9]). The equation

$$
2 X^{2}+1=Y^{3}, \quad X, Y \in \mathbb{N}
$$

has no solutions (X, Y).
Lemma 2.7 ([6]). The equation

$$
2 X^{2}+1=Y^{q}, \quad X, Y \in \mathbb{N}, q \text { is an odd prime with } q>3
$$

has only the solution $(X, Y, q)=(11,3,5)$.
Lemma 2.8 ([1, 2]). The equation

$$
X^{4}-D Y^{2}=1, \quad X, Y \in \mathbb{N}
$$

has solutions (X, Y) if and only if either $X^{2}=u_{1}$ or $X^{2}=2 u_{1}^{2}-1$.
Lemma 2.9. The equation

$$
\begin{equation*}
2 X^{2}+1=Y^{t}, \quad X, Y, t \in \mathbb{N}, t>2 \tag{2.7}
\end{equation*}
$$

has only the solution $(X, Y, t)=(11,3,5)$.
Proof. Let (X, Y, t) be a solution of (2.7), and let q be the largest prime divisor of t. By Lemmas 2.6 and 2.7, (2.7) has only the solution $(X, Y, t)=(11,3,5)$ with $q \geq 3$. Since $t>2$, if $q=2$, then $4 \mid t$ and the equation

$$
\begin{equation*}
\left(X^{\prime}\right)^{4}-2\left(Y^{\prime}\right)^{2}=1, \quad X^{\prime}, Y^{\prime} \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

has a solution $\left(X^{\prime}, Y^{\prime}\right)=\left(Y^{t / 4}, X\right)$. However, since the least solution of (2.5) is $\left(u_{1}, v_{1}\right)=(3,2)$, neither $u_{1}=3$ nor $2 u_{1}^{2}-1=17$ is a square. By Lemma 2.8, (2.8) has no solutions $\left(X^{\prime}, Y^{\prime}\right)$. Therefore, (2.7) has no solutions (X, Y, t) with $q=2$. The lemma is proved.

3. Proof of Theorem 1.1

In this section, we assume that (1.7) holds and that (x, y, z) is a solution of (1.4) with $2 \nmid x$ and $x>1$. Then we have

$$
\begin{equation*}
x \geq 3 \tag{3.1}
\end{equation*}
$$

Since $\operatorname{gcd}\left(a, a^{x}-1\right)=1$, by (1.4), we get

$$
\begin{equation*}
a^{x}-1=d f^{2}, \quad b^{y}-1=a d g^{2}, \quad z=d f g, \quad d, f, g \in \mathbb{N} . \tag{3.2}
\end{equation*}
$$

By the first equality of (3.2), we have

$$
\begin{equation*}
\operatorname{gcd}(a, d)=1 \tag{3.3}
\end{equation*}
$$

Since $2 \mid a$, by (3.1) and the first equality of (3.2), we get $2 \nmid f$ and

$$
\begin{equation*}
d \equiv d f^{2} \equiv a^{x}-1 \equiv 0-1 \equiv 7 \quad(\bmod 8) \tag{3.4}
\end{equation*}
$$

Hence, we see from (3.4) that

$$
\begin{equation*}
d \text { is not a square. } \tag{3.5}
\end{equation*}
$$

On the other hand, substituting (3.4) into the second equality of (3.2), we have

$$
b^{y} \equiv 1+7 a g^{2} \equiv\left\{\begin{array}{llll}
1 & (\bmod 8), & \text { if } a \equiv 0 \quad(\bmod 8) \text { or } 2 \mid g \tag{3.6}\\
7 & (\bmod 8), & \text { if } a \equiv 2 \quad(\bmod 8) \text { and } 2 \nmid g \\
5 & (\bmod 8), & \text { if } a \equiv 4 & (\bmod 8) \text { and } 2 \nmid g \\
3 & (\bmod 8), & \text { if } a \equiv 6 & (\bmod 8) \text { and } 2 \nmid g
\end{array}\right.
$$

Further, since $b \equiv \pm 3(\bmod 8)$, we get

$$
b^{y} \equiv \begin{cases}1 \quad(\bmod 8), & \text { if } 2 \mid y \tag{3.7}\\ \pm 3 \quad(\bmod 8), & \text { if } 2 \nmid y\end{cases}
$$

Therefore, in view of (1.7), comparing (3.6) and (3.7), we obtain

$$
\begin{equation*}
2 \mid y \tag{3.8}
\end{equation*}
$$

We see from (3.8) and the second equality of (3.2) that the equation

$$
\begin{equation*}
u^{2}-a d v^{2}=1, \quad u, v \in \mathbb{N} \tag{3.9}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
(u, v)=\left(b^{y / 2}, g\right) \tag{3.10}
\end{equation*}
$$

By (3.3) and (3.5), ad is a nonsquare positive integer. Hence, applying (i) of Lemma 2.1 to (3.10), there exists a positive integer n^{\prime} which makes

$$
\begin{equation*}
b^{y / 2}+g \sqrt{a d}=\left(u_{1}+v_{1} \sqrt{a d}\right)^{n^{\prime}} \tag{3.11}
\end{equation*}
$$

where $\left(u_{1}, v_{1}\right)$ is the least solution of (3.9).
For any positive integer n, let

$$
\begin{equation*}
u_{n}+v_{n} \sqrt{a d}=\left(u_{1}+v_{1} \sqrt{a d}\right)^{n} \tag{3.12}
\end{equation*}
$$

If $2 \mid n^{\prime}$, then from (3.11) and (3.12) we get $b^{y / 2}=u_{n^{\prime}}$ and, by (ii) of Lemma 2.1, $b \equiv \pm 1(\bmod 8)$, which contradicts the assumption. So we get

$$
\begin{equation*}
2 \nmid n^{\prime} . \tag{3.13}
\end{equation*}
$$

Since $2 \nmid x$, we see from the first equality of (3.2) that the equation

$$
\begin{equation*}
a U^{2}-d V^{2}=1, \quad U, V \in \mathbb{N} \tag{3.14}
\end{equation*}
$$

has a solution

$$
\begin{equation*}
(U, V)=\left(a^{(x-1) / 2}, f\right) \tag{3.15}
\end{equation*}
$$

Let $\left(U_{1}, V_{1}\right)$ be the least solution of (3.14). For any odd positive integer m, let

$$
\begin{equation*}
U_{m} \sqrt{a}+V_{m} \sqrt{d}=\left(U_{1} \sqrt{a}+V_{1} \sqrt{d}\right)^{m} \tag{3.16}
\end{equation*}
$$

Applying (i) of Lemma 2.2 to (3.15), by (3.16), there exists an odd positive integer m^{\prime} which makes

$$
\begin{equation*}
\left(a^{(x-1) / 2}, f\right)=\left(U_{m^{\prime}}, V_{m^{\prime}}\right) \tag{3.17}
\end{equation*}
$$

Hence, by Lemma 2.3, we get from (3.1) and (3.17) that

$$
\begin{equation*}
\operatorname{ord}_{2}\left(a U_{1}^{2}\right)=\operatorname{ord}_{2}\left(a U_{m^{\prime}}^{2}\right)=\operatorname{ord}_{2}\left(a^{x}\right) \geq x \geq 3 \tag{3.18}
\end{equation*}
$$

By (ii) of Lemma 2.2, we find from (3.11), (3.13) and (3.16) that

$$
\begin{align*}
b^{y / 2}+g \sqrt{a d} & =\left(U_{1} \sqrt{a}+V_{1} \sqrt{d}\right)^{2 n^{\prime}}=\left(\left(U_{1} \sqrt{a}+V_{1} \sqrt{d}\right)^{n^{\prime}}\right)^{2} \tag{3.19}\\
& =\left(U_{n^{\prime}} \sqrt{a}+V_{n^{\prime}} \sqrt{d}\right)^{2}
\end{align*}
$$

Since $a U_{n^{\prime}}^{2}-d V_{n^{\prime}}^{2}=1$, by (3.19), we have

$$
\begin{equation*}
b^{y / 2}=a U_{n^{\prime}}^{2}+d V_{n^{\prime}}^{2}=2 a U_{n^{\prime}}^{2}-1 \tag{3.20}
\end{equation*}
$$

Further, by Lemma 2.3, we have $\operatorname{ord}_{2}\left(a U_{n^{\prime}}^{2}\right)=\operatorname{ord}_{2}\left(a U_{1}^{2}\right)$. Hence, by (3.18), we get $\operatorname{ord}_{2}\left(a U_{n^{\prime}}^{2}\right) \geq 3$ and $a U_{n^{\prime}}^{2} \equiv 0(\bmod 8)$. Therefore, by (3.20), we obtain $b^{y / 2} \equiv 7$ $(\bmod 8)$. But, since $b \equiv \pm 3(\bmod 8)$, it is impossible. Thus, the theorem is proved.

4. Proof of Theorem 1.2

In this section, we assume that $a=2, b \equiv \pm 3(\bmod 8)$ and (x, y, z) is a solution of (1.4) with $2 \nmid x$. By Theorem 1.1, we have

$$
\begin{equation*}
x=1 \text {. } \tag{4.1}
\end{equation*}
$$

Since $a=2$, substituting (4.1) into (3.2), we get

$$
\begin{equation*}
d=f=1 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{y}-1=2 g^{2}, z=g, \quad g \in \mathbb{N} \tag{4.3}
\end{equation*}
$$

If $b \equiv 5(\bmod 8)$, then from the first equality of (4.3) we get $1=(-2 / b)=$ $(2 / b)=-1$, a contradiction, where $(* / b)$ is the Jacobi symbol. Therefore, if $a=2$ and $b \equiv 5(\bmod 8)$, then (1.4) has no solutions (x, y, z) with $2 \nmid x$.

We just need to consider the case $b \equiv 3(\bmod 8)$. Applying Lemma 2.9 to the first equality of (4.3), by (4.1) and (4.3), equation (1.4) has only the solution

$$
\begin{equation*}
b=3, \quad(x, y, z)=(1,5,11) \tag{4.4}
\end{equation*}
$$

with $y>2$.
When $y=2$, by the first equality of (4.3), $(u, v)=(b, g)$ is a solution of (2.5) Since $\left(u_{1}, v_{1}\right)=(3,2)$ is the least solution of (2.5), by (i) of Lemma 2.1, we get from (1.5) that

$$
\begin{equation*}
(b, g)=\left(r_{n^{\prime}}, s_{n^{\prime}}\right), \quad n^{\prime} \in \mathbb{N} . \tag{4.5}
\end{equation*}
$$

Further, since $b \equiv 3(\bmod 8)$, by Lemma 2.4, we see from (4.5) that $2 \nmid n^{\prime}$. Hence, by (4.1), (4.2), (4.3) and (4.5), we obtain

$$
\begin{equation*}
b=r_{m},(x, y, z)=\left(1,2, s_{m}\right), \quad m \in \mathbb{N}, 2 \nmid m . \tag{4.6}
\end{equation*}
$$

When $y=1$, by (4.1), (4.2) and (4.3), we have

$$
\begin{equation*}
b=2 g^{2}+1, \quad(x, y, z)=(1,1, g), \quad g \in \mathbb{N}, 2 \nmid g . \tag{4.7}
\end{equation*}
$$

Thus, since $r_{1}=2 \cdot 1^{2}+1=3$, the combination of (4.4), (4.6) and (4.7) yields the solutions (i), (ii) and (iii). The theorem is proved.

5. Proof of Theorem 1.3

By Theorem 1.2, we get $N(2,3)=3$ immediately. By Lemma 2.5, if $b=2 g^{2}+1$ and $g=R_{m}$ with $m>1$, then $b=r_{m}>3$. Hence, by Theorem 1.2 , we have $N(2, b)=2$. In addition, if $b=2 g^{2}+1$ with $g \neq R_{m}$ or $b \neq 2 g^{2}+1$, then $N(2, b)=1$ or 0 . The theorem is proved.

6. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. By Theorem 1.1, we may assume that $x=2 x_{0}$ for some $x_{0} \in \mathbb{N}$. In addition, since a is a square, we may write $a=a_{0}^{2}$ for some $a_{0} \in \mathbb{N}$. Then, by the first equality of (3.2), we get

$$
\begin{equation*}
\left(a_{0}^{x_{0}}\right)^{4}-d f^{2}=1 \tag{6.1}
\end{equation*}
$$

It is clear from (6.1) that

$$
\begin{equation*}
d \text { is not a square. } \tag{6.2}
\end{equation*}
$$

Applying Lemma 2.8 to (6.1), we see that either $a^{x_{0}}=u_{1}^{\prime}$ or $a^{x_{0}}=2\left(u_{1}^{\prime}\right)^{2}-1$, where $\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$ is the least solution of (2.1) with $D=d$. Since $2 \mid a$, we must have

$$
\begin{equation*}
a^{x_{0}}=u_{1}^{\prime} . \tag{6.3}
\end{equation*}
$$

On the other hand, we know by $4 \mid a$ and $2 \mid x$ that (3.4) holds, which together with (3.6) and (3.7) yields $2 \mid y$. Since $a=a_{0}^{2}$, we see from the second equality of (3.2) that (2.1) with $D=d$ has a solution $(u, v)=\left(b^{y / 2}, a_{0} g\right)$. By (i) of Lemma 2.1 and (6.2), we have

$$
\begin{equation*}
\left(u_{n}^{\prime}, v_{n}^{\prime}\right)=\left(b^{y / 2}, a_{0} g\right), \quad n \in \mathbb{N} \tag{6.4}
\end{equation*}
$$

where $u_{n}^{\prime}+v_{n}^{\prime} \sqrt{d}=\left(u_{1}^{\prime}+v_{1}^{\prime} \sqrt{d}\right)^{n}$. If $2 \mid n$, then, by (ii) of Lemma $2.1, b \equiv \pm 1$ $(\bmod 8)$, which contradicts the assumption. If $2 \nmid n$, then, by (iii) of Lemma 2.1, $u_{1}^{\prime} \mid u_{n}^{\prime}$. However, by (6.3) and (6.4), we have $a \mid b^{y / 2}$, which contradicts $2 \mid a$ and $b \equiv \pm 3(\bmod 8)$. The theorem is proved.

Proof of Theorem 1.5. By Theorem 1.4, we have

$$
\begin{equation*}
x=1 \text {. } \tag{6.5}
\end{equation*}
$$

(i) Substituting $a=4$ and (6.5) into (3.2), we get

$$
d=3, f=1
$$

and

$$
\begin{equation*}
b^{y}-1=12 g^{2}, z=3 g, \quad g \in \mathbb{N} . \tag{6.6}
\end{equation*}
$$

Obviously, we have $b \neq 3$. If b has a prime divisor p with $p \equiv 11(\bmod 24)$, then by (6.6) we have

$$
-1=\left(\frac{-1}{p}\right)=\left(\frac{12 g^{2}}{p}\right)=\left(\frac{3}{p}\right)=1,
$$

a contradiction. Thus, (i) is proved.
(ii) Substituting $a=16$ and (6.5) into (3.2), we get

$$
d=15, f=1
$$

and

$$
\begin{equation*}
b^{y}-1=15 \cdot 16 g^{2}, z=15 g, \quad g \in \mathbb{N} . \tag{6.7}
\end{equation*}
$$

Obviously, we have $b \notin\{3,5\}$. If b has a prime divisor p with $p \equiv 11,43,59$ or 67 $(\bmod 120)$, then, by (6.7),

$$
-1=\left(\frac{-1}{p}\right)=\left(\frac{15}{p}\right)=1
$$

a contradiction. If b has a prime divisor p with $p \equiv 13,29,37$ or $101(\bmod 120)$, then, by (6.7),

$$
1=\left(\frac{-1}{p}\right)=\left(\frac{15}{p}\right)=-1
$$

a contradiction. Thus, the theorem is proved.

Acknowledgements. The authors thank the referee for careful reading and helpful comments.

References

[1] J. H. E. Cohn: The Diophantine equation $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$, Period. Math. Hung. 44 (2002), pp. 169-175, DOI: 10.1023/A:1019688312555.
[2] M.-H. LE: A necessary and sufficient condition for the equation $x^{4}-D y^{2}=1$ to have positive integer solutions, Chinese Sci. Bull. 30 (1984), p. 1698.
[3] M.-H. Le, G. Soydan: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), pp. 473-523.
[4] L. Li, L. Szalay: On the exponential Diophantine equation $\left(a^{n}-1\right)\left(b^{n}-1\right)=x^{2}$, Publ. Math. Debrecen 77 (2010), pp. 465-470, DoI: 10.5486/PMD.2010.4697.
[5] L. J. Mordell: Diophantine equations, London: Academic Press, 1969.
[6] T. Nagell: Sur l'impossibilité de quelques equations á deux indéterminées, Norsk Mat. Forenings Skr. 13 (1923), pp. 65-82.
[7] L. Szalay: On the Diophantine equation $\left(2^{n}-1\right)\left(3^{n}-1\right)=x^{2}$, Publ. Math. Debrecen 57 (2000), pp. 1-9, DOI: 10.5486/PMD. 2000.2069.
[8] R.-Z. Tong: On the Diophantine equation $\left(2^{x}-1\right)\left(p^{y}-1\right)=2 z^{2}$, Czech. Math. J. 71 (2021), pp. 689-696, DOI: 10.21136/CMJ.2021.0057-20.
[9] R. W. van der Waall: On the Diophantine equations $x^{2}+x+1=3 y^{2}, x^{3}-1=2 y^{2}$, $x^{3}+1=2 y^{2}$, Simon Stevin 46 (1972/1973), pp. 39-51.
[10] D. T. Walker: On the Diophantine equation $m x^{2}-n y^{2}= \pm 1$, Amer. Math. Monthly 74 (1967), pp. 504-513, DOI: 10.1080/00029890.1967.11999992.

[^0]: Submitted: November 25, 2021
 Accepted: March 22, 2024
 Published online: March 24, 2024

