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driven community detection based on the label propagation algorithm. First,
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1. Introduction

Network analysis is implemented and used in various disciplines to represent their
complex interactions, such as social sciences, computer sciences, biology, and ma-
terials science. Networks consisting of nodes with edges connecting them encode
information through their structural characteristics; one of the most popular re-
search areas is the study of community structures. While it has no formal defini-
tion, a community can be considered a densely connected subgraph of a network,
which means that nodes within the community have strong relationships but are
sparsely connected to the rest of the network. Generally, there are two types of
communities: non-overlapping or disjoint communities and overlapping commu-
nities. The non-overlapping community detection separated the nodes based on
their membership, where each node only belongs to exactly one community. Mean-
while, the overlapping communities consider the nodes that belong to one or more
communities.

Community detection is considered an important task because it can uncover
the hidden structure of a complex network. Most community detection algorithms
have been developed to solve the non-overlapping community detection problem,
but some algorithms work well to solve both non-overlapping and overlapping com-
munity detection problems [4]. Many approaches have been proposed to solve
the community detection problems, such as clique percolation approach [23], label
propagation [25], non-negative matrix factorization (NMF) [28], fuzzy set theory
[8], evolutionary algorithms [24], and even the statistical models [9]. The Newman-
Girvan modularity measurements have become one of the most popular methods
to measure the density of communities within the network [21], since they provide
an objective way to evaluate the communities’ quality. This measurement indi-
cates that nodes are more closely connected to their community compared to other
nodes in the network. A modularity score near zero indicates that there is no real
community structure, while a score near one means the communities are dense and
well-structured. The label propagation algorithm (LPA) approach has received a
lot of interest because of its simplicity and scalability [7]. As an extension of its
original non-overlapping version [25], it consists of simple steps for the overlapping
community detection [8], such as 1) label every node with its unique label; 2) label
the current node based on its neighbours’ labels; 3) propagate for all the nodes in
the network; 4) compare the label of each node in the current iteration with the
previous iteration; and finally 5) labels indicate the communities for each node (a
node may have multiple labels). The weighting system is usually applied in stage
3. The iteration is terminated at stage 4 if convergence occurs; otherwise, another
iteration is executed.

There are several notable overlapping community algorithms based on label
propagation. In 2010, Gregory [8] designed a specific algorithm called COPRA
(Community Overlap Propagation Algorithm) to allow nodes to hold multiple la-
bels simultaneously using the belonging coefficient as a degree of membership.
Later, the dynamic process where each node acts as a speaker and a listener was
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introduced as SLPA [29], which identified both the number and the strength of
each node’s community affiliation. Another approach, which combined with LPA
is a local spectral method called LEMON [15]: a sparse vector is obtained by min-
imising the 1 norm over a local spectral subspace with seed constraints, which
ensures the seed nodes to be included and highlights additional nodes to include
in the community.

In 2021, Attal et. al. [1] introduced a method to find overlapping community
detection using pre-computed disjoint communities. This algorithm, leveraging
density and clustering coefficient as belonging function, compares to closeness and
betweenness centrality as average node measures, defining a node’s memberships.
These results show that communities with high density and clustering coefficient
performed better than closeness and betweenness centrality measures. In the same
year, Li and Sun [14] introduced a combination of local expansion and label prop-
agation (LELP), which uses local expansion to generate some immature communi-
ties, prunes the network, and uses LPA to obtain a stable network.

In 2022, density based-label propagation algorithm (D-LPA) [31] was developed,
combining the density peak clustering with traditional LPA to improve the stability
and accuracy of community assignments. The vector-label propagation algorithm
(vVLPA) was also introduced in this year [3], where gradient descent was utilised to
improve the modularity. This approach retains weak structural information, but
obtains better performance when the community structure is weak. The influence-
based COPRA approach introduced as INF-COPRA [30], is an algorithm that
ranks the influence of nodes and labels, thereby improving the extended modularity
(EQ) and normalised mutual information. One of the latest expansions of LPA was
the degree and betweenness-based label propagation (DBLPA) [22], which combines
the degree and betweenness centrality to provide the core nodes in layer-by-layer
LPA [34].

Label propagation algorithms have a fast runtime but have strong randomness
and weak robustness causing difficulties in obtaining effective community detection
results. The expansion of the label propagation algorithms conducted with several
approaches, such as the multistep greedy, to increase modularity, but sacrifices the
fast-running time [17]. There is also a kernel label approach proposed to reduce
the complexity, but at the same time improve the randomness of the algorithm
[16]. Meanwhile, others proposed the accelerated modularity gain by analysing
Newman’s modularity function [33].

Overlapping community detection is important because real-world networks
rarely consist of cleanly separated groups. Detecting overlapping communities can
lead to the nature of multiple roles of nodes, provide more accurate prediction of
network behaviour, capture phenomena such as redundancy and robustness in com-
plex systems, and define the characteristics that strengthen the interpretability and
predictive utility of community detection methods. Modularity is one of the most
widely accepted quality functions in community detection because it measures how
well a given community separates dense intra-community connections from sparse
inter-community connections. However, overlapping communities often underes-
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timates the quality of the community structure because nodes can contribute to
multiple groups simultaneously. If the overlapping assignments are not refined,
the modularity may remain low, indicating communities are not cohesive or not
well-defined. Improving modularity in overlapping community detection ensures
the structural density and avoids the risk of generating fragmented communities.

Betweenness centrality quantifies the shortest paths between others, showing a
strong indicator of a boundary in the networks. In overlapping community detec-
tion, betweenness nodes are precisely where community memberships are likely to
overlap since they act as the bridge across different groups of nodes in the network.
This betweenness-driven approach leverages the inverse betweenness, causing these
nodes to retain multiple memberships in the overlap assignment phase. This ap-
proach utilises the balance between degree centrality capturing the local influences
and betweenness centrality, which highlights global structure.

This paper proposes a novel overlapping community detection algorithm utilis-
ing the fast propagation through the network of LPA combined with the nature of
the betweenness centrality score of a node. This algorithm is split into two phases:
multi-assignment label propagation and modularity refinement. In the first phase,
the algorithm will quickly build an overlapping community structure using LPA
with betweenness as its voting mechanism to decide the memberships of each node.
This allows strong local leaders to influence community growth while boundary
nodes exert more measured influence. In the second phase, modularity refinement
is executed using Newman’s modularity [21] with temporal projections to refine the
modularity of the communities within the network. Finally, overlapping communi-
ties are defined by assigning the nodes to all communities where their membership
strength exceeds the threshold. In this proposed algorithm, several adaptation
parameters are used to maximise the modularity, such as top-k filtering to make
sure that the nodes can hold £ maximum labels as their possible communities, and
minimum gain as a threshold when maximising the modularity.

The main contributions of this paper are as follows:

1. Balancing high-speed and high-quality communities, addressing the weak-
nesses of the classic label propagation algorithm.

2. Flexible filtering strategies (such as Top-K filtering, minimum gain threshold,
and stability pruning) which lead to an increase in the quality of communities
produced.

3. Utilising the nature of betweenness nodes to define the overlapping nodes.

The remainder of the paper is organised as follows. Section 2 explains the method-
ology, data, and evaluation techniques used in this study. Section 3 presents the
main results, with tables highlighting the main findings. Section 4 concludes the
contribution, takeaways, and future research.
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2. Methodology

The Betweenness-Driven Label Propagation Algorithm (BD-LPA) is an overlapping
community detection method that combines local label propagation with a global
modularity-based refinement. The high-betweenness nodes often sit at community
boundaries and influence how strongly a node is pulled by its neighbours’ labels.
By seeding each node with a unique label and weighting those labels according to
both how often they appear in the neighbourhood and how central their owners
are, BD-LPA builds a soft membership vector for every node. This vector encodes
the node’s membership towards multiple communities, allowing for overlapping
structures. The algorithm proceeds in two main phases—first, a fast, distributed
voting scheme that spreads labels with influence proportional to neighbour degree
and inverse to neighbour betweenness, and then a slower, global refinement that
uses modularity gains to reinforce coherent groupings. This proposed method is
split into two phases, namely the multi-assignment label propagation phase and
the global modularity refinement phase.

2.1. Degree and betweenness centrality

Degree centrality measures the number of edges connected to a node [5]. This
centrality shows the position of a node in the networks based on its connections
and can be measured as follows. For a simple undirected graph G = (V| E), the
degree centrality Cy of node v is

Cp(v) = deg(v),

where deg(v) is the degree of node v.

While degree centrality measures the node’s centrality using the direct connec-
tion to the node, betweenness centrality measures the node’s centrality based on
how often the node lies on the shortest path between other nodes [6]. Betweenness
centrality Cj of a node v can be measured as follows. Let o, be the number of
shortest path between nodes x and y, and oy, (v) the number of paths that pass
through node v, with v # x # y. The betweenness centrality of v is

Cp(v) = Z Ly(v)-

g
vtzty Y

The nature of a node with a high betweenness value is becoming a hub for the
network, meaning that they are node with a high possibility of having multiple
community memberships. On the contrary, nodes with low betweenness are more
likely to have single community membership but not necessarily rely only on their
betweenness centrality value. Thus, in this study, we propose to combine the
use of degree and betweenness centrality as the community membership voting
mechanism.
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2.2. Multi-assignment label propagation

In Phase 1, each node maintains a weight vector over candidate community labels.
In each iteration, nodes are visited in random order and vote for labels: each
neighbour contributes to the vote for its own dominant label in proportion to
its degree divided by one plus its betweenness centrality. The candidate labels
with the highest votes are then added to the node’s weight vector with a fixed
gain factor, and the vector is renormalised as probabilities, retaining only the
top L labels. Over multiple fast iterations, this process diffuses label influence
through the graph, enabling nodes at the fringes of communities to accumulate
membership probabilities in several nearby groups. Since the voting weight uses
degree and penalises high-betweenness nodes, labels spread more readily within
densely connected regions while respecting bottlenecks. The node membership
voting mechanism can be computed as follows.

deg(u)
te[l;] += —————
votellu] += T htw(a)”
where £ is the dominant label of neighbor u, deg(u) is the degree of node u,
btw(u) is the betweenness centrality of node u, and vote[(}] is the cumulative vote
weight for label received by node u from its neighbors. The algorithm for phase 1
is presented in Algorithm 1.

2.3. Modularity refinement

In Phase 2, modularity refinement measurement utilises Newmann’s modularity
with temporary projection or hard mapping[26, 27]. This shifts the measurement
from local diffusion to global optimisation by temporarily hard-assigning each node
to its highest-weight label and computing the resulting modularity. It then at-
tempts to improve modularity by considering, for each node in random order, re-
assigning it to one of its neighbours’ labels if it results in a modularity gain above
a small threshold. Whenever a better community label is found, the node’s weight
vector is reset to that single label before moving on. Iterations continue until no
single-node swap can further increase modularity. Crucially, these hard-assignment
trials only guide the search; at the end of refinement, the algorithm reverts to the
soft weight vectors and applies thresholds to produce overlapping communities,
preserving multi-membership while ensuring that each switch meaningfully boosts
global cohesion. The algorithm for phase 2 is presented in Algorithm 2, and the
modularity measurement is conducted as follows.

1. After phase-1, each node v has membership weight w, (¢)
2. Temporay projection (hard mapping) performed as ¢ = arg max, w;(¢)

3. Compute the modularity using Newman’s modularity [21] for the temporary
hard mapping as follows.

QProi — 1 Z[Aij L10(c;, ), (2.1)

2m 2m
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Algorithm 1 Phase 1: Multi-Assignment Label Propagation

Require: G = (V, E) > undirected graph
Require: T > fast propagation iterations
Require: k > top-k votes per node
Require: Lpyax > max labels per node
Require: 7 > vote gain factor
Ensure: {w,} > soft label weights

1: // Initialisation
2: for each v € V do

3: assign unique label ¢,

4: wy  {€, — 1.0}

5: end for

6: // Propagation

7: for t =1 to Ty do

8: SHUFFLE(V)

9: for each v € V do
10: vote < {}
11: for each u € N(v) do
12: £y arg maxy wy[¢]

. deg(u)

13: vote[eu] += m
14: end for
15: T <+ top-k labels by vote
16: for each ¢ € T do
17: wy [€] += n vote[(]
18: end for
19: w, < TruncatedSoftmax(wy, Lmax)
20: end for
21: end for

where A;; is actual adjacency between node ¢ and j; k;, k; are the degrees
of node i and j; m is the total number of edges; and 6(c, cx;) shows the
position of node i and j on their temporary mapping, 1 means both nodes
are in the same community, and 0 otherwise.

Here is an example of the approach.
1. Graph: G with V = {A, B,C, D}, a 4-cycle, m =4
2. Communities: C; = {A, B,C},Cy = {A,C, D}
3. Assumed that memberships after phase-1:

¢« A:(C1:0.7,C5:0.3
e B:(C1:06,05,:04
e C:(C1:02,05:0.8
e D:(C71:0.1,C5:0.9
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4. Temporal projection:

e A (]
e B— (4
e U= (s
e D— (Cy
o Projected community C; = {A, B,C},C5 = {D}

5. Using equation (2.1) QP"7 = 0.08

2.4. Evaluation

This proposed algorithm was evaluated using several standard metrics that are
widely adopted, such as modularity, overlapping normalized mutual information
(ONMI), omega index, generalized F1l-score, and extended variation of informa-
tion (extended VI) as the proper evaluation for overlapping community detection
[7, 11]. Modularity introduced by Newman and Girvan [21] to quantify the inter-
nal structure of the community, while ONMI measures the similarity between the
results and the ground truth [18] as follows:

I(X:Y)
max(H(X), H(Y))’

NMI e =

where I(X :Y) = 3[H(X)— H(X|Y)+H(Y)— H(X|Y)]is the mutual information
and H(X|Y) = > ,c; [, is the total information.

To evaluate the accuracy, imbalance community, and discrepancy in shared
information, the omega index was used [20] as follows.

0, (C1, C2) — 0.(Cy,C)
1-— 06(01, CQ) ’

Q(Cy,Cy) =

where 0, (C1, Cs) is the fraction of pairs that occur in the same number of commu-
nities in both communities, and o.(C1, Cs) is the expected fraction under random
assignment.

The generalized Fl-score [32] is also used to measure the best-matching com-
munity produced by the algorithm compared with the ground truth, which can be
measured as follows.

1 1 N
N B Z Fl(Ci,Cg(i))Jr
2 |C ‘ c,eC*

> F1(Cya,. G |,

1
1€l éze

where the best matching g and ¢’ is defined as g(i) = arg max; Fl(Ci,C’j) and

¢'(i) = argmax; F1(C;,C;).
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Algorithm 2 Phase 2: Modularity Refinement

Require: G = (V, E) > undirected graph
Require: {wy}vev > weight vectors from Phase 1
Require: T, > refinement iterations
Require: ¢ > modularity-gain threshold
Ensure: {wy}vev > refined weight vectors

1: function HARDMAP(v)

2 return arg maxe ws [¢]

3: end function

4: function BUILDCOMMUNITIES

5: C+{} > map label—node list
6 for each v € V do

7 ¢ < HARDMAP(v)

8 append v to C[{]

9: end for

10: return list of communities in C

11: end function

12: Q + modularity (G, BUILDCOMMUNITIES)
13: fort+ 1 to T, do

14: changed < false; SHUFFLE(V)

15: for each v € V do

16: co < HARDMAP(v)

17: Cand < {HARDMAP(u) | u € N(v)} \ {co}
18: best, Apest < co, 0

19: for each ¢ € Cand do

20: save wo' < w,

21: wy  {€— 1.0}

22: Q' + modularity (G, BUILDCOMMUNITIES)
23: A+~Q —-Q

24: if A >¢ecand A > Apest then

25: best, Apest + £, A

26: end if

27: restore wy, <— wﬁld

28: end for

29: if best # c¢o then

30: wy  {best — 1.0}

31: Q + Q + Apest

32: changed < true

33: end if

34: end for
35: if not changed then

36: break
37: end if
38: end for

Another evaluation measurement used was the extended VI [19] as follows.

VI(X,Y)=H(X|Y)+ H(Y|X),
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where H(X|Y) is the conditional entropy of community X given community Y and
vice versa. Conditional entropy measures the certainty of a community assignment
given knowledge of the other communities. It captures the average amount of extra
information to describe the communities. A lower conditional entropy implies that
knowing one community almost fully explains the other (strong agreement), while
a higher value means the communities disagree more, reflecting greater divergence
in how overlaps are assigned.

The datasets used in this evaluation are Zachary’s Karate Club Network [5],
Football [5], Polbooks [10], and synthetic datasets generated using the LFR frame-
work [12].

3. Experimental results and analysis

The proposed algorithms were benchmarked using four standard metrics, such as
modularity, ONMI, Omega Index, Generalized F1-score and Extended VI, over the
four datasets mentioned before. The results were compared to three overlapping
community detection algorithms such as COPRA [8], SLPA [29], and Motif-LPA
[13], to evaluate their performance to the LPA-based algorithm.

« COPRA: Expansion of traditional LPA using membership coefficients to
allow nodes to belong to multiple communities.

¢ SLPA: Dynamic model of LPA where nodes act as speakers and listeners,
allowing nodes to remember the community label and become its member.

o Motif-LPA: Introducing a motif-based approach (recurring structural pat-
terns) and capturing high-order connectivity to allow nodes to become mem-
bers of more than one community

3.1. Datasets

Three real-world datasets are commonly used in community detection benchmark-
ing, utilised in this research. The Zachary’s Karate Club network describes rela-
tionships between club members, which are divided into two communities. The
Football dataset was created from the American College Football League, where
nodes represent the football team and edges represent the game played between
them. The Polbooks network was created based on the interaction between readers
of American politics books. Alongside the real-world datasets, we generated 12 syn-
thetic datasets using the LFR model [12] with different settings. The LFR model
is widely adopted in community detection research because it produces networks
with realistic structural features (heterogeneous degree distributions and commu-
nity sizes) while allowing precise control over the embedded community structure.

Unlike real-world networks, where communities are inferred from contextual
meaning, in LFR networks, communities are explicitly defined by the generation
process, making them suitable for controlled benchmarking. Each synthetic dataset
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in Table 1 is characterised by: n (Nodes) and Edges: the size and connectivity
of the generated network; ¢ (Communities): the number of planted communities
generated by the model; k (Average degree): the average number of edges per
node; p (Mixing parameter): the proportion of edges that connect a node to nodes
outside its community. A low p (close to 0) indicates well-separated communities,
while a higher p implies stronger inter-community mixing and weaker community
structure; on (Overlapping nodes): the number of nodes that belong to more than
one community; om (Overlapping memberships): the number of communities each
overlapping node belongs to. For example, om = 2 indicates that overlapping nodes
belong to exactly two communities, while om = 3 allows nodes to be shared across
three communities.

The parameterisation across the LFR datasets was chosen to cover different
scenarios of network size from 1000 to 10000 nodes, degree distributions, mixing
levels, and varying degrees of community overlap. This diversity ensures the algo-
rithm’s robustness under a wide range of structural complexities and community
structures. Table 1 provides the summary of the datasets, where c is the number of
communities, k is the average degree, p is the mixing parameter, on is overlapping
nodes, and om is overlapping memberships.

Table 1. Comparative metadata of benchmark datasets.

Dataset Nodes Edges ¢ k n on om
Karate 34 78 2 - - - -
Football 115 613 3 - - - -
Polbooks 105 441 12 - - - -
LFR1 1000 10455 44 20.91 0.10 100 0
LFR2 1000 12555 35 25.11 0.30 100 2
LFR3 1000 6003 27 12.01 0.15 100 3
LFR4 2000 24555 40 24.55 0.20 200 0
LFR5 2000 31461 39 3146 0.30 200 2
LFR6 2000 15495 32 1549 0.15 200 3
LFR7 5000 70518 57 28.21 0.10 500 0
LFRS8 5000 84899 61 33.96 0.25 500 2
LFR9 5000 93743 56 37.50 0.30 500 3
LFR10 10000 113290 61 22.66 0.10 1000 O
LFR11 10000 120047 75 24.01 0.20 1000 2
LFR12 10000 190440 84 38.09 0.25 1000 3

3.2. Parameter settings

The proposed algorithm is an adaptive algorithm by nature, meaning that the
parameters can be tuned to achieve good community detection results. The config-
ured parameters are the number of fast iterations in the first phase, the number of
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refinement iterations, top-k labels, max labels, overlapping threshold, gain thresh-
old, and gain factor. The fast iteration converged well within 8 iterations, while
the modularity can be stabilised in 6 iterations. The top-3 neighbour labels is
a good balance between noise and diversity, and limiting 3 labels per node helps
avoid fragmentation. The low number of 7, £, and 7 is to control the overlapping
sets, prevent overfitting, and ensure effective propagation speed. The best average
setting for the dataset used in this experiment is presented in Table 2.

Table 2. Parameter settings.

Name Symbol Value Function/Role

Fast iterations Ty 8 Number of label-voting passes

Refinement itera- 7T, 6 Number of modularity-refinement

tions

Top-k labels k 3 Number of neighbor can be considered

Max labels Las 3 Number of labels a node can hold

Overlapping T 0.25 Weight threshold to allow a label into

threshold overlapping set

Gain threshold € le-4 Minimum modularity gain to allow a
node to change label

Gain factor i 0.6 Scaling factor for the neighboring votes

Random seed - 75 Ensure the reproducibility

3.3. Modularity evaluation

The modularity measurement is a common and widely used method to evaluate
community detection algorithms to show the density or sparsity of the results. The
larger value indicates a densely connected structure within the results, but it does
not indicate the accuracy of the community detection. The results presented in
Table 3 show that compared to other algorithms, BD-LPA performed well and
almost achieved the highest score for most datasets, with a peak score of 0.853
in LFR12. Motif-LPA performs competitively in synthetic datasets but struggles
in real datasets, while SLPA and COPRA show moderate results. The average
modularity across all datasets shows the superiority of BD-LPA with an average
score of 0.647. This indicates BD-LPA is not only consistent but also adaptable to
different network structures.

3.4. ONMI evaluation

The ONMI evaluation assesses the results of overlapping community detection al-
gorithm against the ground truth of the datasets. The ONMI results of BD-LPA
achieve the highest score on real-world datasets such as Karate, Football, and Pol-
books. The results presented in Table 4 show that BD-LPA performs well for most
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Table 3. Modularity score obtained from the datasets.

Dataset SLPA COPRA Motif-LPA BD-LPA

Karate 0.419 0.420 0.226 0.419
Football 0.520 0.530 0.557 0.571
Polbooks 0.370 0.380 0.415 0.457
LFR1.gml 0.803 0.802 0.802 0.897
LFR2.gml 0.000 0.000 0.494 0.580
LFR3.gml 0.000 0.000 0.713 0.718
LFR4.gml 0.501 0.000 0.509 0.519
LFR5.gml 0.665 0.667 0.668 0.662
LFR6.gml 0.000 0.000 0.736 0.749
LFR7.gml 0.529 0.000 0.532 0.536
LFR8.gml 0.610 0.595 0.610 0.624
LFR9.gml 0.827 0.811 0.829 0.812
LFR10.gml  0.000 0.000 0.613 0.621
LFR11l.gml  0.000 0.000 0.689 0.689
LFR12.gml  0.000 0.000 0.840 0.853
Average 0.349 0.280 0.616 0.647

datasets, competing with Motif-LPA which performs strongly on synthetic datasets
but shows poorly in real-world datasets. Considering its average performance, BD-
LPA is superior to other algorithms with an average of 0.922 ONMI scores. This
indicates that BD-LPA not only finds community with high modularity (as seen
in Table 3) but also closely aligns its detected structure with ground truth across
datasets.

3.5. Omega index

The omega index is specifically designed to handle overlapping community de-
tection as the extension of the adjusted rand index (ARI) [2, 20]. This metric
measures the similarity between the node memberships in predicted communities
and the ground-truth communities. The range is from —1 to 1, where 1 indicates
perfect similarity, 0 means random communities, and —1 means that pairwise co-
membership assignments are as discordant as possible relative to chance. Table 5
presents the omega index score from the datasets. BD-LPA performed well for the
real-world datasets and almost all the synthetic datasets. BD-LPA consistently
achieves high scores across datasets, notably reaching the highest scores for LFR6,
LFR7, LFRS, LFRY, and LFR11. Motif-LPA performs competitively and reaches
high scores in the synthetic dataset; however, it performed poorly on real-world
datasets. Averaging across datasets, BD-LPA attains the highest mean omega index
of 0.930, indicating its ability in overlap-sensitive agreement metrics and showing
its reliability across scenarios.
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Table 4. ONMI score.

Dataset SLPA COPRA Motif-LPA BD-LPA
Karate 0.334 0.048 0.178 0.837
Football 0.283 0.283 0.339 0.771
Polbooks 0.296 0.429 0.444 0.569
LFR1.gml 0.892 0.946 1.000 0.947
LFR2.gml 0.649 0.838 0.980 0.986
LFR3.gml 0.725 0.624 0.990 0.981
LFR4.gml 0.743 0.876 0.998 0.929
LFR5.gml 0.799 0.860 1.000 0.939
LFR6.gml 0.750 0.672 0.980 0.999
LFR7.gml 0.780 0.865 0.998 0.987
LFR8.gml 0.805 0.859 0.999 0.983
LFR9.gml 0.857 0.826 1.000 0.950
LFR10.gml  0.806 0.892 1.000 0.981
LFR11l.gml 0.777 0.681 0.990 1.000
LFR12.gml 0.814 0.748 1.000 0.965
Average 0.687 0.696 0.860 0.922
Table 5. Omega index score.
Dataset SLPA COPRA Motif-LPA BD-LPA
Karate 0.210 0.048 0.247 0.882
Football 0.671 0.080 0.536 0.778
Polbooks 0.546 0.700 0.568 0.637
LFR1.gml 0.954 0.425 1.000 0.977
LFR2.gml 0.612 -0.033 0.989 0.973
LFR3.gml 0.790 0.155 0.997 0.991
LFR4.gml 0.760 -0.024 0.998 0.936
LFR5.gml 0.905 0.244 1.000 0.964
LFR6.gml 0.855 0.166 0.985 1.000
LFR7.gml 0.905 -0.022 0.998 1.000
LFR8.gml 0.940 -0.003 1.000 1.000
LFR9.gml 0.972 0.287 1.000 1.000
LFR10.gml  0.957 0.002 1.000 0.900
LFR11.gml 0.946 0.184 0.991 1.000
LFR12.gml  0.972 0.281 1.000 0.957
Average 0.800 0.166 0.887 0.930
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3.6. Generalized F1l-score

The generalized F1-score compares the similarity between the predicted community
with the ground-truth community. This metric focuses on quality rather than the
structure of the compared communities. Table 6 presents the results of generalized
Fl-score across the datasets and shows that BD-LPA consistently deliver high
scores across the datasets and reaches perfect alignment in LFR6. Its performance
in real-world datasets is mixed, with an exceptional score of 0.971 in the Karate
dataset but lower in other datasets; however, it performed exceptionally well in
structured synthetic datasets. Motif-LPA also performed well in most datasets
and reached perfect alignment in several cases. In terms of averages, BD-LPA
leads with a mean score of 0.899, followed by Motif-LPA (0.837), COPRA (0.803),
and SLPA (0.599). This indicates BD-LPA as the most accurate and balanced
method across datasets, maintaining its strong precision-recall trade-offs.

Table 6. Generalized F1l-score.

Dataset SLPA Copra Motif-LPA BD-LPA

Karate 0.609 0.600 0.278 0.971
Football 0.616  0.215 0.277 0.489
Polbooks 0.456  0.726 0.047 0.596
LFR1.gml 0.688 0.976 1.000 0.772
LFR2.gml 0.541 0.924 0.993 0.923
LFR3.gml 0.570 0.765 0.983 0.984
LFR4.gml 0.554 0.934 0.999 0.942
LFR5.gml 0.572 0.935 1.000 0.982
LFR6.gml 0.543 0.809 0.985 1.000
LFR7.gml 0.536 0.948 0.999 0.985
LFRS8.gml 0.548 0.952 0.999 0.985
LFR9.gml 0.563 0.906 1.000 0.983
LFR10.gml  0.531 0.951 1.000 0.900
LFR1l.gml 0.524 0.766 0.994 0.994
LFR12.gml  0.532 0.636 1.000 0.985
Average 0.559 0.803 0.837 0.899

3.7. Extended variation of information

This metric quantifies the amount of information lost and gained when the nodes
move from one community to another. The extended VI score ranges from 0
upwards, where 0 means identical communities, while the larger value indicates
the dissimilarity between predicted communities and the ground-truth. Table 7
presents the extended VI across the benchmark datasets. BD-LPA has the best
extended VI score, indicating there is no discrepancy between its detected com-
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munities and ground truth. The average score shows that BD-LPA is far superior
to other algorithms, indicating its precision and consistency in producing ground-
truth communities across diverse datasets.

Table 7. Extended VI score.

Dataset SLPA COPRA Motif-LPA BD-LPA

Karate 1.000 1.252 1.000 0.306
Football 1.000 3.276 1.000 0

Polbooks 1.000 0.954 1.000 0.364
LFR1.gml 0.008 0.012 0.000 0.000
LFR2.gml  0.0413 0.0431 0.004 0.000
LFR3.gml 0.028 0.125 0.003 0.000
LFR4.gml 0.018 0.029 0.000 0.000
LFR5.gml 0.012 0.037 0.000 0.000
LFR6.gml 0.016 0.111 0.005 0.000
LFR7.gml 0.007 0.024 0.000 0.000
LFRS8.gml 0.005 0.024 0.000 0.000
LFR9.gml 0.004 0.033 0.000 0.000
LFR10.gml 0.003 0.014 0.000 0.000
LFR1l.gml 0.004 0.048 0.001 0.000
LFR12.gml  0.003 0.026 0.000 0.000
Average 0.210 0.401 0.200 0.045

4. Conclusion and future research

In this paper, we propose an overlapping community detection method based on a
label propagation algorithm (LPA) and betweenness centrality. In the presence of
numerous communities, nodes that exhibit high betweenness are prospective over-
lapping nodes, which may lead to a reduced membership score within a community.
Multilabel assignment are quickly applied to nodes using label propagation, and
using the inverse betweenness as the weight for community assignment. The mod-
ularity refinement phase uses the detected communities as the base community to
be evaluated with the modularity measurement. If the modularity of the node
exceeds the threshold, the designation will be altered.

The utilisation of betweenness centrality as the voting mechanism provides a
simple computation yet better structure for the proposed communities. The use of
betweenness suppresses label flow across communities, resulting in higher modular-
ity. This avoids false overlapping memberships since nodes with low betweenness
are most likely to become a single community member node, thereby affecting the
label purity, and improving ONMI scores. The limitation of a high betweenness
score also contributes to pairwise consistency in co-membership across all pairs of
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nodes. Betweenness also minimises label diffusion, which leads to reducing the
label entropy for better performance.

Across evaluation metrics such as Modularity, ONMI, Omega Index, General-
ized Fl-score, and Extended VI, BD-LPA consistently performs well. It produces
highly accurate and robust community structures compared to the ground truth,
optimally balancing precision and recall. This enables effective and accurate iden-
tification of overlapping communities without sacrificing detection sensitivity while
minimising information loss between detected and actual community structures.

This study used parameter settings that were adjusted for all datasets and pro-
duced good results across all evaluations. For specific implementation tasks, such
as biological networks, social networks, or communication systems, addition pa-
rameter settings may need to be adjusted to optimise community detection tasks
achieve better results. Overall, these results suggest that this approach is particu-
larly powerful in enhancing community detection quality for structured networks,
although further refinements could improve accuracy on datasets with ambiguous
or noisy metadata.

Future work on this algorithm could focus on three key areas. First, real-world
network adaptation should be conducted, as performance on irregular graphs
suggests potential sensitivity to noisy or incomplete structures. Second, the scal-
ability and efficiency need to be explored for handling massive networks with
millions of nodes potentially through parallelised or distributed implementation.
Third, dynamic and temporal network extension offers a promising direction
for the algorithm to track evolving overlapping communities over time, which is
potentially useful for applications in social media, biological networks, and commu-
nication systems. Additionally, integration with a graph neural network pipeline
could allow the algorithm to serve as a high-quality label generator or preprocessor
for deep learning-based community detection.
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