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Abstract. In this paper, a hybrid deep learning framework for video anomaly
detection that combines autoencoder-based reconstruction with an advanced
anomaly scoring mechanism is proposed. Unlike conventional methods that
rely solely on reconstruction loss, our approach integrates motion-based scor-
ing and masked autoencoders to enhance detection accuracy and interpretabil-
ity. The autoencoder learns to reconstruct normal patterns, while an anomaly
scoring function evaluates deviations based on reconstruction errors and mo-
tion gradients. This directs attention to dynamic regions and foreground
objects, thereby reducing false positives from background variations. To im-
prove robustness, we apply preprocessing techniques, including min-max nor-
malization and data augmentation (random cropping, horizontal flipping, and
rotation), ensuring consistency across datasets. The framework is evaluated
on widely used benchmark datasets, ShanghaiTech Campus and UCSD Ped2,
using precision, recall, ROC-AUC, and confusion matrices as performance
metrics. It outperforms traditional reconstruction-based autoencoders and
GAN-based models. Furthermore, the hybrid scoring mechanism reduces
false positives by 15% compared to standard autoencoder approaches, im-
proving detection reliability. Despite the high accuracy, the method incurs
additional computational overhead due to motion gradient calculations and
masked reconstructions. However, the trade-off is justified by significant im-
provements in anomaly detection performance. The results demonstrate that
our framework enhances both accuracy and interpretability, making it a viable
solution for real-world applications such as surveillance, traffic monitoring,
and industrial security.
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1. Introduction

Video anomaly detection is a critical problem in computer vision with applications
in surveillance and safety systems [16]. VAD refers to the automated detection of
unusual or unexpected events in video footage, such as security or safety violations.
Despite its importance, VAD faces challenges due to the rarity of anomalous events
and the limited availability of large-scale labeled datasets [22].

Recent studies have shown that when only normal data is available for training,
unsupervised learning is essential for VAD. Two primary unsupervised VAD ap-
proaches include reconstruction-based methods, which minimize reconstruction er-
rors for normal patterns [27], and prediction-based methods, which identify anoma-
lies by measuring discrepancies between predicted and actual frames. Reconstruc-
tion-based methods [17] minimize errors for normal patterns, while prediction-based
methods identify anomalies by comparing predicted and actual frames.

Traditional autoencoder-based methods for anomaly detection have been en-
hanced with hybrid scoring mechanisms that improve accuracy and reduce false
positives. These mechanisms combine multiple evaluation techniques to address
the limitations of relying solely on reconstruction errors. Motion-based scoring pri-
oritizes dynamic regions by using motion gradients, ensuring that moving anomalies
receive higher anomaly scores while reducing false alarms from background varia-
tions. Masked autoencoder scoring enhances anomaly localization by forcing the
model to reconstruct only selective occluded regions, focusing on foreground objects
where anomalies are more likely to occur. Additionally, spatially weighted recon-
struction loss assigns greater importance to motion-rich areas, minimizing false
positives caused by minor background changes [25]. Finally, temporal consistency
analysis detects anomalies based on frame-to-frame motion patterns, allowing the
model to identify unexpected behavioral changes over time rather than isolated
frame discrepancies. By integrating these techniques, hybrid scoring mechanisms
significantly improve the accuracy, robustness, and interpretability of video.

Generative Adversarial Networks (GANs) [24], such as VALD-GAN (Video
Anomaly Detection using Latent Discriminator-Augmented GAN) [24], divide-and-
conquer strategies decompose VAD into smaller sub-problems, improving detection
by integrating spatial, temporal, and multi-modal fusion techniques [31]. The self-
distilled masked autoencoder approach further enhances detection efficiency by
incorporating synthetic anomaly augmentation and motion-based weighting tech-
niques, achieving state-of-the-art performance while maintaining high-speed pro-
cessing [18, 26]. These advancements highlight the shift toward interpretable deep
learning models, capable of detecting diverse anomalies across real-world surveil-
lance scenarios.

This paper aims to improve the accuracy and interpretability of VAD by inte-
grating reconstruction-based estimation methods with hybrid methods [4], which
use motion gradients and masked autoencoders to prioritise foreground objects over
static backgrounds [14, 19]. In the proposed framework, we train autoencoders to
learn and reconstruct jointly the normal patterns and apply anomaly scoring to
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detect deviations.
The proposed VAD framework consists of three main stages: data preprocessing,

model training, and evaluation, which are as follows:

• Data Preprocessing: It includes resizing video frames, normalisation and aug-
mentation to have consistent input.

• Model Training: It applies convolutional layers for feature extraction, dropout
layers to prevent overfitting [21], and masked autoencoders for anomaly de-
tection [2]. These components work together to focus on dynamic regions
while reducing background noise, thereby improving anomaly detection.

• Evaluation and Metrics: We assess the performance of the model using ROC
AUC [26] and precision-recall curves. Reconstruction errors and anomaly
maps are visualized to provide insights into the system’s effectiveness.

In the following sections, these stages will be described in detail.

2. Data preprocessing and visualization

2.1. Dataset overview
This project uses well-known video anomaly detection benchmarks: ShanghaiTech
Campus [11] and UCSD Ped2 [22]. ShanghaiTech captures diverse scenes in a
university campus, featuring varying crowd sizes and occlusions that complicate
anomaly detection [26], while UCSD Ped2 focuses on pedestrian-only zones, where
anomalies include bicycles and vehicles [15]. Both datasets predominantly con-
tain normal activities, with anomalies comprising a small fraction [23]. In UCSD
Ped2, normal events involve pedestrians on paths, while anomalies include bicycles
crossing them [10], compared to typical actions like walking or standing [9].

ShanghaiTech is large-scale, filmed in outdoor campus settings with complex
backgrounds, objects, and variable lighting conditions [28]. It includes 330 training
and 107 testing videos, resized to 128 × 128 pixels with a 70 : 30 train-test split.
UCSD Ped2, in contrast, is smaller and recorded in a controlled pedestrian zone
with consistent lighting and low background complexity [3]. Its 16 training and 12
testing videos (also 128×128 pixels, 70 : 30 split) include clearly defined anomalies,
though its small size can lead to overfitting in deep learning models.

Preprocessing scripts addressed frame rate and resolution inconsistencies for
uniform video loading [20], and visual anomalies were verified for consistency with
dataset labels and definitions [21].

2.2. Visualizations
Visualization techniques were employed to better understand the dataset and assess
model behavior. Sample frames from UCSD Ped2 illustrated the distinction be-
tween normal pedestrians walking and anomalous activities bicycles or skateboards,
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helping verify label accuracy and provide visual evaluation references. Graphs
and charts revealed a dataset imbalance: normal frames vastly outnumber anoma-
lous ones, which may hinder model generalization.Reconstruction error histograms
showed higher errors for anomalies, validating the autoencoder’s effectiveness, while
precision-recall curves illustrated detection trade-offs.

Anomaly maps overlaid on frames used heatmaps red for anomalies, blue for
normal to localize abnormal regions. The model focused on moving foreground ob-
jects, reducing false positives from background changes, though high-motion areas
still caused occasional misclassification. Motion-based scoring improved localiza-
tion by prioritizing dynamic elements (see Figures 1, 2, 3).

Figure 1. Sample normal training and testing frames from the
UCSD Ped2 Dataset.

Figure 2. Sample non normal training and testing frames from
the UCSD Ped2 Dataset.

Feature maps, generated via Grad-CAM, highlighted regions influencing the
model’s decisions. In UCSD Ped2, they confirmed the model’s focus on relevant
anomalies like bicycles or vehicles on walkways [7]. Loss curves tracked training
and validation performance to detect overfitting or underfitting [5], while frame-
wise anomaly scores visualized anomaly timing and model confidence across video
sequences [1].
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Figure 3. Anomaly Maps.

2.3. Preprocessing techniques
Preprocessing ensures consistency across datasets, enhances model performance,
and improves generalization. Raw video frames often contain variations in resolu-
tion, lighting conditions, and noise, which can negatively impact model training.

By applying systematic preprocessing techniques, we create a standardized in-
put format that enables effective learning and robust anomaly detection. In this
section, we describe the preprocessing pipeline applied to the datasets used in this
study. The key steps include image resizing, normalization, data augmentation and
splitting data to train and test sets. The preprocessing technique used in the paper
is frame sampling, which was applied to optimize computational efficiency while
preserving essential motion information. Instead of processing every frame in high-
frame-rate videos, key frames were selected at fixed intervals to maintain temporal
coherence and capture relevant motion dynamics. This approach helped reduce re-
dundancy in the dataset while ensuring that the anomaly detection model focused
on meaningful variations in the video sequences. By carefully selecting frames, the
model was able to learn normal motion patterns effectively, improving its ability to
detect anomalies while keeping computational costs manageable. To standardize
the data and improve model performance,

3. Model architecture and methodology

3.1. Autoencoder architecture
An autoencoder is a neural network used mainly in unsupervised learning to learn
efficient representations of input data. It has two main parts: encoder and decoder.
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The network is trained to minimize the difference between the input and its recon-
struction, allowing it to learn efficient data representations. Autoencoders are used
for tasks such as dimensionality reduction, anomaly detection, denoising images,
and feature extraction. These layers use small filters (kernels) of size 3×3 to extract
local features from the input images. They help identify edges, textures, and other
patterns crucial for understanding the image content. Immediately following the
convolutional layers, max pooling reduces the dimensions (both width and height)
of the feature maps. This downsampling helps to focus on the most prominent
features and reduces the computational load. A convolutional autoencoder (CAE)
is trained to reconstruct normal patterns, while anomalies are detected based on
higher reconstruction errors. During training, we incorporate dropout layers with
a 0.2 rate to prevent overfitting. To provide a clearer understanding of our au-
toencoder’s structure and how each layer contributes to the feature extraction and
reconstruction process, Table 1 presents a detailed breakdown of the network ar-
chitecture, including layer types, output dimensions, and parameter counts.

Table 1. Autoencoder architecture with layer types, output shapes,
and parameter counts.

Layer (Type) Output Shape Param #
Input Layer (None, 200, 200, 1) 0
Conv2D (None, 200, 200, 32) 320
MaxPooling2D (None, 100, 100, 32) 0
Conv2D_1 (None, 100, 100, 64) 18,496
MaxPooling2D_1 (None, 50, 50, 64) 0
Conv2D_2 (None, 50, 50, 128) 73,856
MaxPooling2D_2 (None, 25, 25, 128) 0
Conv2D_3 (None, 25, 25, 128) 147,584
UpSampling2D (None, 50, 50, 128) 0
Conv2D_4 (None, 50, 50, 64) 73,792
UpSampling2D_1 (None, 100, 100, 64) 0
Conv2D_5 (None, 100, 100, 32) 18,464
UpSampling2D_2 (None, 200, 200, 32) 0
Conv2D_6 (None, 200, 200, 1) 289

This table details how the model progressively compresses and reconstructs
input frames, enabling effective anomaly detection. The resulting design guaran-
tees that the network can learn robust representations of normal data, without
sacrificing computational efficiency. The hybrid approach builds upon the baseline
CAE by integrating additional layers that enhance anomaly detection. Specifically,
motion-based scoring is implemented through a gradient-based attention module
that assigns higher importance to dynamic regions. Masked autoencoders introduce
a spatial masking layer, which selectively occludes portions of the input to force
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the network to reconstruct only key regions, improving sensitivity to anomalies.
Additionally, a spatial weighting layer is applied to the loss function, prioritizing
reconstruction errors in foreground areas over static backgrounds. These enhance-
ments has been seamlessly integrated into the encoder-decoder pipeline, ensuring
that anomaly detection is guided by both spatial and motion-aware features. Ta-
ble 1 provides a layer-by-layer breakdown of this hybrid architecture, illustrating
its improvements over the standard autoencoder. A hybrid activation function is
used in the autoencoder to improve anomaly detection.

To train the model and improve anomaly detection, a weighted loss is used:

S = αLreconstruction + βLmotion

Where:

• α and β are weights to balance the losses

• Lreconstruction is the standard pixel-level loss

• Lmotion reflects motion-based scoring

The model is designed to learn normal patterns by encoding input video frames
into a compressed latent representation and then reconstructing them. The encoder
consists of a series of convolutional and max-pooling layers that progressively re-
duce the spatial dimensions while capturing essential features. The decoder mirrors
this structure using upsampling and convolutional layers to reconstruct the origi-
nal frame. Each layer plays a crucial role in learning hierarchical representations,
from low-level edges to high-level semantic features. Dropout is used to prevent
overfitting, and hybrid activation functions (ReLU in hidden layers, Sigmoid in
the output layer) ensure non-linearity and normalized output. The design bal-
ances model complexity and reconstruction accuracy, enabling robust detection of
anomalies based on deviations in reconstruction quality.

3.2. Training procedure
The model was trained with an Adam optimizer with a learning rate of 0.001 for
training due to its adaptive learning capabilities and efficiency on complex datasets.
Adam combines the benefits of momentum and RMSProp by adaptively updating
learning rates for each parameter using estimates of first and second moments of
gradients [12]. To prevent overfitting, early stopping was used. Adam optimizer
was selected due to its adaptive learning rate properties, which improve stability
in training non-stationary datasets. A learning rate decay of 0.95 was applied
every 10 epochs to ensure stable convergence. During training, we minimized the
reconstruction loss function, Training was monitored using validation loss, with
early stopping applied if the loss did not decrease for 10 consecutive epochs. The
Mean Squared Error, as you can see on Figure 4, improves the model’s ability to
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separate normal and anomalous frames.

MSE = 1
n

n∑
i=1

(Ei − Êi)2

Where:

• n is the number of pixels (or features) in the frame

• Ei is the original pixel value at position i

• Êi is the reconstructed pixel value at position i

• The summation
∑

computes the squared error for each pixel

• The division by n averages the error over all pixels

In Figure 4, the validation loss is observed to be slightly lower than the train-
ing loss. This behavior, while uncommon, can occur due to several factors. First,
the training process employs dropout and data augmentation (cropping, flipping,
and rotation), which increase the difficulty of reconstruction on the training data
but improve generalization to validation samples. Second, the hybrid loss func-
tion combines reconstruction and motion-based components; since the validation
sequences often exhibit smoother motion patterns and less noise, the model incurs
smaller motion-based penalties. Similar effects have been reported in regularized
autoencoder training, where strong regularization and early stopping can result in
lower validation loss compared to training loss. Therefore, this observation reflects
good generalization rather than model overfitting.

Figure 4. Training and validation loss curves.
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3.3. Hybrid approach
The hybrid approach to video anomaly detection improves traditional reconstruc-
tion-based methods by integrating motion-based scoring and masked autoencoders.
Although autoencoders typically learn to reconstruct normal patterns, they often
struggle to differentiate between subtle anomalies and normal variations, leading
to false negatives.

To address this, motion gradients are incorporated to assign higher importance
to dynamic regions, ensuring that moving objects receive greater attention than
static backgrounds. Additionally, masked autoencoders force the model to focus
on reconstructing only partially visible regions of frames, improving its ability to
detect abnormalities by prioritizing key foreground objects.

This hybrid strategy not only improves the accuracy of anomaly detection,
but also reduces false positives by ensuring that only significant deviations from
normal patterns are flagged. By combining reconstruction loss, motion-based scor-
ing, and masked autoencoders, the proposed model provides a robust and inter-
pretable solution for real-world surveillance applications, such as traffic monitoring
and security systems. This approach effectively bridges the gap between deep
learning-based anomaly detection and practical deployment, making it a reliable
choice for various safety-critical environments. However, the hybrid model en-
hances anomaly detection accuracy. To improve the autoencoder’s ability to de-
tect anomalies, we integrate a hybrid anomaly scoring mechanism that addresses
the limitations of traditional reconstruction-based methods. This hybrid approach
introduces motion-based scoring, which prioritizes dynamic regions, masked au-
toencoders, which reconstruct selectively occluded areas to improve sensitivity to
anomalies, and spatially weighted loss, which reduces false positives by focusing on
motion-rich regions. These modifications enhance the interpretability and robust-
ness of the autoencoder, making it more effective in distinguishing anomalies from
normal variations.

Table 1 outlines the detailed architecture, illustrating how these enhancements
are embedded within the model. Our proposed hybrid deep learning framework for
video anomaly detection (VAD) enhances anomaly detection by combining auto-
encoder-based reconstruction with hybrid anomaly scoring mechanisms. The model
preprocesses video frames through resizing, normalization, and augmentation to
ensure consistency across datasets; it introduces additional computational overhead
due to motion gradient calculations.

Shybrid = αLrec(t) + βSmotion(t)

Where:

• α and β are weighting factors

• Lrec(t) is the reconstruction loss at time t

• Smotion(t) is the motion-based scoring term at time t
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3.4. Evaluation metrics
To evaluate the performance of the model in detecting anomalies, we used standard
metrics: ROC-AUC, precision-recall curves, and reconstruction error distribution.
ROC-AUC measures how well the model separates normal and abnormal frames see
Tables 2, 3, while the precision-recall curve highlights the trade-off between detect-
ing true anomalies and avoiding false alarms [8]. We also analyzed reconstruction
error distributions to confirm that the autoencoder effectively reconstructs normal
data and flags deviations. The use of hybrid scoring, combining motion and spatial
cues, improved detection accuracy and reduced false positives [30].

Table 2. Precision-Recall Evaluation Metrics.

Threshold TP FP FN Precision Recall F1 Score
0.1 318 45 84 0.88 0.79 0.83
0.3 339 28 63 0.92 0.84 0.88
0.5 351 19 51 0.95 0.87 0.91
0.7 360 11 42 0.97 0.89 0.93
0.9 297 4 105 0.99 0.74 0.85

Table 3. Performance comparison of different model types on the
UCSD Ped2 dataset.

Model Type Dataset Avg. Error
(Normal)

Avg. Error
(Anomaly) False Positives ROC-AUC

Standard Autoencoder UCSD Ped2 0.013 0.038 High 0.89
GAN-Based Model UCSD Ped2 0.011 0.036 Medium 0.91

Hybrid Model (Proposed) UCSD Ped2 0.012 0.041 Low 0.95

Reconstruction Error Distribution: Reconstruction error distribution plays a
crucial role in video anomaly detection, particularly in deep learning models that
rely on autoencoder-based frameworks. In an anomaly detection system, an au-
toencoder is trained to learn the normal patterns of video frames by minimizing
the reconstruction error—the difference between the original frame and the recon-
structed output. Since the model is only trained on normal data, it can effectively
reconstruct familiar frames with low error values [32]. However, when an anoma-
lous event occurs, the autoencoder struggles to accurately reconstruct the frame,
leading to significantly higher reconstruction errors (see Figure 5).

High reconstruction errors indicate anomalies. However, some normal frames
also produce high errors, leading to false positives. By incorporating hybrid scoring,
false positive rates were reduced by 15%, and the reconstruction error distribution
is further enhanced through the integration of hybrid scoring mechanisms. By in-
corporating motion-based scoring techniques and Masked autoencoders are a type
of autoencoder that reconstruct only selected parts of an input frame,typically
focusing on important or dynamic regions. where anomalies are likely to occur)
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Figure 5. Reconstruction Error Distribution.

and ignore static backgrounds, see Table 3, the system prioritizes dynamic re-
gions and foreground objects while reducing the influence of static backgrounds.
This approach improves the model’s sensitivity that may otherwise be difficult to
detect [1]. The study demonstrates that this technique outperforms traditional
reconstruction-only methods, achieving superior anomaly detection performance
across various datasets such as UCSD Ped2 and ShanghaiTech. Our model achieved
an ROC-AUC of 0.97 on ShanghaiTech and 0.95 on UCSD Ped2, outperforming
traditional autoencoders. The effectiveness of the method is confirmed by high
ROC-AUC scores, precision-recall curves, and visual anomaly maps, all of which
indicate a robust ability to detect deviations from learned normal patterns [2].

4. Results and discussion

4.1. Results
Understanding the distribution of keywords across datasets provides insight into
their structure and focus [2]. Terms such as ‘pedestrians’, ‘normal’ and ‘anomaly’
are very prominent terms used in this dataset owing to the dataset’s focus on
pedestrian behaviour and the primary objective of identifying normal activities
from anomalous. Additionally, these keywords help us define dataset labels as well
as create any semantic embeddings to be used during the data preprocessing stage
[29]. The datasets that contain normal activities, such as walking and running, are
ShanghaiTech Campus and Ped2, examples of abnormal events are the presence of
a bicycle or an unattended object. Such terms occur with some frequency, giving a
clue as to how best to perform feature extraction and interpret models. This enables
the design of feature representations that are aligned with the semantic nature of
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the dataset, such that the proposed model can learn to capture the deviation from
normal patterns [26].

4.2. Model performance

The performance of the proposed model was evaluated using widely recognized
metrics, providing a comprehensive assessment of its effectiveness:

ROC-AUC Score: A score of 0.97 was achieved. This means that the model
is very good at discriminating between normal and anomalous frames. The steep
rise in the curve indicates that this model will reduce false positives at a low cost
of true positives.

Confusion Matrix: A robust classification performance is depicted in Fig-
ure 6, as shown in the confusion matrix. It correctly identified 6,561 normal frames
and 359 anomalous frames and had a very small amount of false positives and nega-
tives. Finally, these results confirm the reliability of the model in case of anomalies,
even in more complex scenarios with overlapping patterns [18].

Figure 6. Confusion matrix for video anomaly detection.

Reconstruction Accuracy: Among the testing datasets, the model itself
attained an overall accuracy of 95.3%. The fraction of anomaly signals it flags is
this value, which underscores its robustness and precision in determining anomalies,
comparable to today’s best methods [10].

Comparative Analysis: Finally, we evaluate the proposed model with exist-
ing benchmarks and find that they outperform existing methods on datasets such
as UCSD Ped2. These reconstruction loss with motion-based scoring designs, a
hybrid design that integrates reconstruction loss with motion-based scoring, out-
perform traditional reconstruction-only approaches in both speed and accuracy, see
Table 4.
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Table 4. Benchmark comparison for video anomaly detection.

Method Dataset ROC-AUC
Score

Precision Recall

Our Proposed Model UCSD Ped2 97 94 92
Autoencoder-Based Approach ShanghaiTech 89 86 83
GAN-Based Approach UCSD Ped2 91 89 87
Transformer-Based Model Avenue 95 93 91
Hybrid Model (Reconstruction + Motion) ShanghaiTech 96 95 94
Motion-only (Optical Flow Magnitude) UCSD Ped2 80 75 70
Motion-only (Frame Differencing) UCSD Ped2 72 68 65
Motion-only (Background Subtraction – MOG2) UCSD Ped2 77 73 69

4.3. Discussion
While the proposed model achieved remarkable results, certain challenges were
observed during evaluation:

Reconstruction Challenges: Some frames were anomalous, all of which
showed reconstruction errors with values around the size of normal frames. The
weak spot here draws attention to attention to the fact that anomaly detection can
be improved by adding more scoring mechanisms, including temporal consistency
checks.

Dependence on Reconstruction Loss: Reconstruction loss worked well,
but sometimes was not sufficient to detect subtle anomalies. Furthermore, hybrid
approaches couched in motion gradients, temporal features, or reconstruction scores
may mediate a more holistic anomaly detection [6].

Dataset Limitations: It is shown that the imbalance between normal and
anomalous samples in datasets such as UCSD Ped2 can severely hamper the model’s
generalization to unexpected scenes. If we can increase the representation of
anomalies or try to use data augmentation strategies, then this could be dealt
with [13].

Real-Time Feasibility surveillance systems, where continuous video process-
ing and rapid event response are required. In such contexts, maintaining a mini-
mum rate of 25–30 frames per second (FPS) is generally considered the benchmark
for real-time performance.

When evaluated on a NVIDIA RTX 3060 GPU (24 GB VRAM) using 200×200
grayscale video frames, the proposed hybrid model achieved an average inference
time of approximately 42 milliseconds per frame, corresponding to a through-
put of 23.8 FPS. In comparison, a standard convolutional autoencoder (CAE)
reached around 33 FPS under the same conditions, while a GAN-based model such
as VALD-GAN [24] operated at 20 FPS, and Transformer-based frameworks [6]
achieved roughly 18 FPS due to their higher architectural complexity.

These results suggest that the proposed hybrid model provides a balanced trade-
off between detection accuracy and computational efficiency, offering better speed
than more complex GAN or Transformer architectures while maintaining superior
anomaly detection accuracy (ROC-AUC: 0.95–0.97). Although the model operates
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near real-time levels, sustaining performance above 25 FPS is critical for real-
world surveillance deployments, especially when processing multiple video streams
or higher-resolution inputs.

To further assess the role of motion cues in anomaly detection, three classical
motion-based baselines – optical flow magnitude, frame differencing, and back-
ground subtraction (MOG2) – were evaluated, as reported in Table 4. These ap-
proaches rely solely on pixel-level temporal variations to identify unusual activities,
without employing any learned spatial representations. While motion-only meth-
ods achieved ROC-AUC scores in the range of 0.72 to 0.80, the proposed hybrid
framework attained substantially higher scores (0.95–0.97) on the same datasets.
This performance gap demonstrates that motion cues, although informative for dy-
namic anomaly localization, are insufficient for robust discrimination when used in
isolation. The integration of reconstruction-based features with motion-aware scor-
ing enables the model to capture both spatial appearance and temporal dynamics,
yielding a more comprehensive understanding of scene behavior and significantly
improving detection reliability.

5. Conclusion and future work
This paper presented a hybrid deep learning framework for video anomaly detec-
tion, designed to improve both accuracy and interpretability in surveillance applica-
tions. The approach combines a convolutional autoencoder with a hybrid anomaly
scoring mechanism that integrates motion-based scoring and masked autoencoders.
The autoencoder is trained to reconstruct normal video patterns, while the scoring
mechanism prioritizes motion-rich regions using reconstruction errors, enhancing
anomaly detection.

We evaluated the model on the ShanghaiTech Campus and UCSD Ped2 datasets,
achieving ROC-AUC scores of 0.97 and 0.95, respectively. Pooling, upsampling,
motion gradients, and masked regions helped the model focus on foreground dy-
namics and reduce background-related false positives. Qualitative analyses – in-
cluding reconstruction error plots and visual anomaly maps – confirmed the model’s
ability to identify subtle anomalies. Overall, the proposed framework demonstrates
strong generalization and competitive performance, potentially surpassing existing
state-of-the-art methods. To address current limitations and further enhance per-
formance, several directions are proposed. First, incorporating temporal modeling
techniques, such as motion gradients or recurrent neural networks, could improve
the detection of anomalies that evolve over time. Second, optimizing for real-time
deployment through model quantization, lightweight architectures, or GPU accel-
eration would enable use in time-sensitive surveillance contexts.

Addressing dataset imbalance remains a priority and can be tackled by in-
creasing data diversity and employing advanced augmentation methods, includ-
ing synthetic anomaly generation. Attention mechanisms from transformer-based
models could help the system focus more precisely on relevant regions in each
frame, enhancing both accuracy and interpretability. Lastly, combining the current
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autoencoder-based architecture with transformer models would enable the frame-
work to capture long-range spatial and temporal dependencies, making anomaly
detection more robust and scalable. These advancements would support deploy-
ment in real-world applications such as public safety, industrial monitoring, and
smart city surveillance.
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