A note on the exponential Diophantine $\text{equation}\ (a^x-1)(b^y-1)=az^2$

Yasutsugu Fujita^a **, Maohua Le**^b

^aDepartment of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan fujita.yasutsugu@nihon-u.ac.jp

> b Institute of Mathematics, Lingnan Normal College, Zhanjiang, Guangdong, 524048 China lemaohua2008@163.com

Abstract. Let *a, b* be fixed positive integers such that $(a \mod 8, b \mod 8) \in$ $\{(0,3), (0,5), (2,3), (2,5), (4,3), (6,5)\}.$ In this paper, using elementary methods with some classical results for Diophantine equations, we prove the following three results: (i) The equation (*) $(a^x - 1)(b^y - 1) = az^2$ has no positive integer solutions (x, y, z) with $2 \nmid x$ and $x > 1$. (ii) If $a = 2$ and $b \equiv 5 \pmod{8}$, then (*) has no positive integer solutions (x, y, z) with $2 \nmid x$. (iii) If $a = 2$ and $b \equiv 3 \pmod{8}$, then the positive integer solutions (x, y, z) of $(*)$ with $2 \nmid x$ are determined. These results improve the recent results of R.-Z. Tong: On the Diophantine equation $(2^{x} - 1)(p^{y} - 1) = 2z^{2}$, Czech. Math. J. 71 (2021), 689–696. Moreover, under the assumption that *a* is a square, we prove that (\ast) has no positive integer solutions (*x, y, z*) even with 2 | *x* in some cases.

Keywords: polynomial-exponential Diophantine equation, Pell's equation, generalized Ramanujan-Nagell equation

AMS Subject Classification: 11D61

1. Introduction

Let N be the set of all positive integers. Let a, b be fixed positive integers with $\min\{a, b\} > 1$. In 2000, L. Szalay [\[7\]](#page-9-0) completely solved the equation

$$
(2x - 1)(3x - 1) = z2, \quad x, z \in \mathbb{N}.
$$
 (1.1)

He proved that (1.1) has no solutions (x, z) . Since then, this result has led to a series of related studies for the equation

$$
(ax - 1)(bx - 1) = z2, \quad x, z \in \mathbb{N}
$$
 (1.2)

(see $[3]$). Obviously, the solution of (1.2) involves a system of generalized Ramanujan-Nagell equations. Recently, R.-Z. Tong [\[8\]](#page-9-2) discussed the equation

$$
(2x - 1)(py - 1) = 2z2, x, y, z \in \mathbb{N},
$$
\n(1.3)

where *p* is an odd prime with $p \equiv \pm 3 \pmod{8}$. He proved the following two results: (i) [\(1.3\)](#page-1-1) has no solutions (x, y, z) with $2 \nmid x, 2 \mid y$ and $y > 4$. (ii) If $p \neq 2g^2 + 1$, where *g* is an odd positive integer, then [\(1.3\)](#page-1-1) has no solutions (x, y, z) with $2 \nmid x$. In this paper, we will discuss the generalized form of (1.3) as follows:

$$
(ax - 1)(by - 1) = az2, x, y, z \in \mathbb{N}.
$$
 (1.4)

For any positive integer *n*, let r_n , s_n be the positive integers satisfying

$$
r_n + s_n\sqrt{2} = \left(3 + 2\sqrt{2}\right)^n. \tag{1.5}
$$

For any odd positive integer *m*, let R_m , S_m be the positive integers satisfying

$$
R_m + S_m \sqrt{2} = \left(1 + \sqrt{2}\right)^m.
$$
 (1.6)

Using elementary methods with some classical results for Diophantine equations, we prove the following results:

Theorem 1.1. *If*

$$
(a \mod 8, b \mod 8) \in \{(0,3), (0,5), (2,3), (2,5), (4,3), (6,5)\},\tag{1.7}
$$

then [\(1.4\)](#page-1-2) *has no solutions* (x, y, z) *with* $2 \nmid x$ *and* $x > 1$ *.*

Theorem 1.2. *If* $a = 2$ *and* $b \equiv 5 \pmod{8}$ *, then* [\(1.4\)](#page-1-2) *has no solutions* (x, y, z) *with* $2 \nmid x$ *. If* $a = 2$ *and* $b \equiv 3 \pmod{8}$ *, then* [\(1.4\)](#page-1-2) *has only the following solutions* (x, y, z) *with* $2 \nmid x$:

- (i) $b = 3$, $(x, y, z) = (1, 1, 1), (1, 2, 2)$ *and* $(1, 5, 11)$ *.*
- (ii) $b = 2g^2 + 1$, $(x, y, z) = (1, 1, g)$, where g is an odd positive integer with $g > 1$.
- (iii) $b = r_m$, $(x, y, z) = (1, 2, s_m)$, where *m* is an odd positive integer with $m > 1$.

Theorem 1.3. Let $N(a, b)$ denote the number of solutions (x, y, z) of (1.4) with $2 \nmid x$ *. If* $a = 2$ *and* $b \equiv 3 \pmod{8}$ *, then*

$$
N(2, b) = \begin{cases} 3, & \text{if } b = 3, \\ 2, & \text{if } b = 2g^2 + 1 \text{ and } g = R_m \text{ with } m > 1, \\ 1, & \text{if } b = 2g^2 + 1 \text{ and } g \neq R_m, \\ 0, & \text{otherwise.} \end{cases}
$$

Obviously, the above theorems improve the result of [\[8\]](#page-9-2).

The following results concern the solvability of (1.4) including even the case where $2 \mid x$.

Theorem 1.4. *If* (*a* mod 8*, b* mod 8) ∈ {(0*,* 3*)*, (0*,* 5*)*, (4*,* 3*)*} *and a is a square, then* [\(1.4\)](#page-1-2) *has no solutions* (x, y, z) *with* $x > 1$ *.*

Theorem 1.5. *Assume that one of the following conditions holds*:

- (i) $a = 4$ and either $b = 3$ or b has a prime divisor p with $p \equiv 11 \pmod{24}$.
- (ii) $a = 16$ *and either* $b \in \{3, 5\}$ *or b has a prime divisor p with*

p ≡ 11*,* 13*,* 29*,* 37*,* 43*,* 59*,* 67 *or* 101 (mod 120)*.*

Then, [\(1.4\)](#page-1-2) *has no solutions.*

2. Preliminaries

Let *D* be a nonsquare positive integer, and let D_1, D_2 be positive integers such that $D_1 > 1$, $D_1 D_2 = D$ and $gcd(D_1, D_2) = 1$. By the basic properties of Pell's equation (see [\[5,](#page-9-3) [10\]](#page-9-4) and [\[4,](#page-9-5) Lemma 1]), we obtain the following two lemmas immediately.

Lemma 2.1. *The equation*

$$
u^2 - Dv^2 = 1, \quad u, v \in \mathbb{N}
$$
 (2.1)

has solutions (u, v) *, and it has a unique solution* (u_1, v_1) *such that* $u_1 + v_1$ √ *Dutions* (u, v) , and it has a unique solution (u_1, v_1) such that $u_1 + v_1 \sqrt{D} \leq$ $u + v \sqrt{D}$, where (u, v) *runs through all solutions of* (2.1) *. The solution* (u_1, v_1) *is called the least solution of* [\(2.1\)](#page-2-0). For any positive integer *n*, let $u_n + v_n \sqrt{D} =$ $(u_1 + v_1)$ √ \overline{D} ⁿ. Then we have

- (i) $(u, v) = (u_n, v_n)$ $(n = 1, 2, ...)$ *are all solutions of* (2.1) *.*
- (ii) *If* 2 | *n, then each prime divisor p of* u_n *satisfies* $p \equiv \pm 1 \pmod{8}$ *.*
- (iii) *If* $2 \nmid n$ *, then* $u_1 \mid u_n$ *.*

Lemma 2.2. *If the equation*

$$
D_1 U^2 - D_2 V^2 = 1, \quad U, V \in \mathbb{N}
$$
\n(2.2)

has solutions (U, V) *, then it has a unique solution* (U_1, V_1) *such that* $U_1 \sqrt{D_1} +$ $V_1\sqrt{D_2} \leq U\sqrt{D_1} + V\sqrt{D_2}$, where (U, V) runs through all solutions of (2.2) . The *solution* (U_1, V_1) *is called the least solution of* (2.2) *. For any odd positive integer m*, let $U_m \sqrt{D_1} + V_m \sqrt{D_2} = (U_1 \sqrt{D_1} + V_1 \sqrt{D_2})^m$. Then we have

(i) $(U, V) = (U_m, V_m)$ $(m = 1, 3, ...)$ *are all solutions of* (2.2) *.*

 $(ii) u_1 + v_1$ √ $\overline{D} = (U_1 \sqrt{D_1} + V_1 \sqrt{D_2})^2$, where (u_1, v_1) *is the least solution of* [\(2.1\)](#page-2-0)*.*

For any positive integer *l*, let $\text{ord}_2(l)$ denote the order of 2 in the factorization of *l*.

Lemma 2.3. *If* [\(2.2\)](#page-2-1) *has solutions* (U, V) *, then every solution* (U, V) *of* (2.2) satisfies $\text{ord}_2(D_1U^2) = \text{ord}_2(D_1U_1^2)$, where (U_1, V_1) is the least solution of [\(2.2\)](#page-2-1).

Proof. By (i) of Lemma [2.2,](#page-2-2) there exists an odd positive integer *m* which makes *U* $\sqrt{D_1} + V \sqrt{D_2} = (U_1 \sqrt{D_1} + V_1 \sqrt{D_2})^m$, whence we get

$$
U = U_1 \sum_{i=0}^{(m-1)/2} {m \choose 2i} (D_1 U_1^2)^{(m-1)/2-i} (D_2 V_1^2)^i.
$$
 (2.3)

Since $D_1 U_1^2 - D_2 V_1^2 = 1$ implies that $D_1 U_1^2$ and $D_2 V_1^2$ have opposite parity, we have

$$
2 \nmid \sum_{i=0}^{(m-1)/2} \binom{m}{2i} \left(D_1 U_1^2\right)^{(m-1)/2-i} \left(D_2 V_1^2\right)^i. \tag{2.4}
$$

Hence, by [\(2.3\)](#page-3-0) and [\(2.4\)](#page-3-1), we get $\text{ord}_2(U) = \text{ord}_2(U_1)$. It implies that $\text{ord}_2(D_1U^2) =$ $\text{ord}_2(D_1U_1^2)$. The lemma is proved.

Lemma 2.4. *Let* r_n *, s_n be defined as in* [\(1.5\)](#page-1-3)*. Then* $(u, v) = (r_n, s_n)$ $(n = 1, 2, ...)$ *are all solutions of the equation*

$$
u^2 - 2v^2 = 1, \quad u, v \in \mathbb{N}, \tag{2.5}
$$

and

$$
r_n \equiv \begin{cases} 1 \pmod{8}, & \text{if } 2 \mid n, \\ 3 \pmod{8}, & \text{if } 2 \nmid n. \end{cases}
$$
 (2.6)

Proof. Since $(u_1, v_1) = (3, 2)$ is the least solution of (2.5) , by (i) of Lemma [2.1,](#page-2-3) we see from (1.5) that $(u, v) = (r_n, s_n)$ $(n = 1, 2, ...)$ are all solutions of (2.5) . By (1.5) we have

$$
r_n = \sum_{i=0}^{[n/2]} \binom{m}{2i} 3^{n-2i} \cdot 8^i,
$$

where $\lfloor n/2 \rfloor$ is the integer part of $n/2$. It follows that

$$
r_n \equiv 3^n \pmod{8},
$$

whence we obtain (2.6) . The lemma is proved.

Lemma 2.5. For any odd positive integer m , we have $r_m = 2R_m^2 + 1$, where r_m , R_m *are defined as in* [\(1.5\)](#page-1-3) *and* [\(1.6\)](#page-1-4) *respectively.*

 \Box

Proof. Since $3 + 2\sqrt{2} = (1 + \sqrt{2})^2$ and $3 - 2$ $\sqrt{2} = (1 -$ √ $\sqrt{2}$, by [\(1.5\)](#page-1-3) and [\(1.6\)](#page-1-4), we have

$$
r_m = \frac{1}{2} \left(\left(3 + 2\sqrt{2} \right)^m + \left(3 - 2\sqrt{2} \right)^m \right) = \frac{1}{2} \left(\left(1 + \sqrt{2} \right)^{2m} + \left(1 - \sqrt{2} \right)^{2m} \right)
$$

= $\frac{1}{2} \left(\left(\left(1 + \sqrt{2} \right)^m + \left(1 - \sqrt{2} \right)^m \right)^2 - 2 \left(1 + \sqrt{2} \right)^m \left(1 - \sqrt{2} \right)^m \right)$
= $\frac{1}{2} \left((2R_m)^2 + 2 \right) = 2R_m^2 + 1.$

The lemma is proved.

Lemma 2.6 ([\[9\]](#page-9-6))**.** *The equation*

$$
2X^2 + 1 = Y^3, \quad X, Y \in \mathbb{N}
$$

has no solutions (*X, Y*)*.*

Lemma 2.7 ([\[6\]](#page-9-7))**.** *The equation*

$$
2X^2 + 1 = Y^q, \quad X, Y \in \mathbb{N}, \quad q \text{ is an odd prime with } q > 3
$$

has only the solution $(X, Y, q) = (11, 3, 5)$ *.*

Lemma 2.8 ([\[1,](#page-9-8) [2\]](#page-9-9))**.** *The equation*

$$
X^4 - DY^2 = 1, \quad X, Y \in \mathbb{N}
$$

has solutions (X, Y) *if and only if either* $X^2 = u_1$ *or* $X^2 = 2u_1^2 - 1$ *.*

Lemma 2.9. *The equation*

$$
2X^2 + 1 = Y^t, \quad X, Y, t \in \mathbb{N}, \ t > 2 \tag{2.7}
$$

has only the solution $(X, Y, t) = (11, 3, 5)$ *.*

Proof. Let (X, Y, t) be a solution of (2.7) , and let q be the largest prime divisor of *t*. By Lemmas [2.6](#page-4-1) and [2.7,](#page-4-2) [\(2.7\)](#page-4-0) has only the solution $(X, Y, t) = (11, 3, 5)$ with $q \geq 3$. Since $t > 2$, if $q = 2$, then 4 | *t* and the equation

$$
(X')^4 - 2(Y')^2 = 1, \quad X', Y' \in \mathbb{N}
$$
\n(2.8)

has a solution $(X', Y') = (Y^{t/4}, X)$. However, since the least solution of (2.5) is $(u_1, v_1) = (3, 2)$, neither $u_1 = 3$ nor $2u_1^2 - 1 = 17$ is a square. By Lemma [2.8,](#page-4-3) [\(2.8\)](#page-4-4) has no solutions (X', Y') . Therefore, (2.7) has no solutions (X, Y, t) with $q = 2$. The lemma is proved. \Box

 \Box

3. Proof of Theorem 1.1

In this section, we assume that (1.7) holds and that (x, y, z) is a solution of (1.4) with $2 \nmid x$ and $x > 1$. Then we have

$$
x \ge 3. \tag{3.1}
$$

Since $gcd(a, a^x - 1) = 1$, by (1.4) , we get

$$
a^x - 1 = df^2, \ b^y - 1 = adg^2, \ z = dfg, \ d, f, g \in \mathbb{N}.
$$
 (3.2)

By the first equality of (3.2) , we have

$$
\gcd(a, d) = 1. \tag{3.3}
$$

Since $2 \mid a$, by [\(3.1\)](#page-5-1) and the first equality of [\(3.2\)](#page-5-0), we get $2 \nmid f$ and

$$
d \equiv df^2 \equiv a^x - 1 \equiv 0 - 1 \equiv 7 \pmod{8}.
$$
 (3.4)

Hence, we see from [\(3.4\)](#page-5-2) that

$$
d \text{ is not a square.} \tag{3.5}
$$

On the other hand, substituting (3.4) into the second equality of (3.2) , we have

$$
b^{y} \equiv 1 + 7ag^{2} \equiv \begin{cases} 1 \pmod{8}, & \text{if } a \equiv 0 \pmod{8} \text{ or } 2 \mid g, \\ 7 \pmod{8}, & \text{if } a \equiv 2 \pmod{8} \text{ and } 2 \nmid g, \\ 5 \pmod{8}, & \text{if } a \equiv 4 \pmod{8} \text{ and } 2 \nmid g, \\ 3 \pmod{8}, & \text{if } a \equiv 6 \pmod{8} \text{ and } 2 \nmid g. \end{cases}
$$
(3.6)

Further, since $b \equiv \pm 3 \pmod{8}$, we get

$$
b^y \equiv \begin{cases} 1 \pmod{8}, & \text{if } 2 \mid y, \\ \pm 3 \pmod{8}, & \text{if } 2 \nmid y. \end{cases}
$$
 (3.7)

Therefore, in view of (1.7) , comparing (3.6) and (3.7) , we obtain

$$
2 \mid y. \tag{3.8}
$$

We see from (3.8) and the second equality of (3.2) that the equation

$$
u^2 - adv^2 = 1, \quad u, v \in \mathbb{N} \tag{3.9}
$$

has a solution

$$
(u, v) = (b^{y/2}, g). \tag{3.10}
$$

By [\(3.3\)](#page-5-6) and [\(3.5\)](#page-5-7), *ad* is a nonsquare positive integer. Hence, applying (i) of Lemma 2.1 to (3.10) , there exists a positive integer n' which makes

$$
b^{y/2} + g\sqrt{ad} = \left(u_1 + v_1\sqrt{ad}\right)^{n'},
$$
\n(3.11)

where (u_1, v_1) is the least solution of (3.9) .

For any positive integer *n*, let

$$
u_n + v_n \sqrt{ad} = \left(u_1 + v_1 \sqrt{ad}\right)^n. \tag{3.12}
$$

If $2 | n'$, then from [\(3.11\)](#page-5-10) and [\(3.12\)](#page-6-0) we get $b^{y/2} = u_{n'}$ and, by (ii) of Lemma [2.1,](#page-2-3) $b \equiv \pm 1 \pmod{8}$, which contradicts the assumption. So we get

$$
2 \nmid n'.\tag{3.13}
$$

Since $2 \nmid x$, we see from the first equality of (3.2) that the equation

$$
aU^2 - dV^2 = 1, \quad U, V \in \mathbb{N} \tag{3.14}
$$

has a solution

$$
(U, V) = (a^{(x-1)/2}, f).
$$
 (3.15)

Let (U_1, V_1) be the least solution of (3.14) . For any odd positive integer *m*, let

$$
U_m\sqrt{a} + V_m\sqrt{d} = \left(U_1\sqrt{a} + V_1\sqrt{d}\right)^m.
$$
\n(3.16)

Applying (i) of Lemma [2.2](#page-2-2) to (3.15) , by (3.16) , there exists an odd positive integer *m*′ which makes

$$
(a^{(x-1)/2}, f) = (U_{m'}, V_{m'}).
$$
\n(3.17)

Hence, by Lemma 2.3 , we get from (3.1) and (3.17) that

$$
\text{ord}_2(aU_1^2) = \text{ord}_2(aU_{m'}^2) = \text{ord}_2(a^x) \ge x \ge 3. \tag{3.18}
$$

By (ii) of Lemma [2.2,](#page-2-2) we find from (3.11) , (3.13) and (3.16) that

$$
b^{y/2} + g\sqrt{ad} = \left(U_1\sqrt{a} + V_1\sqrt{d}\right)^{2n'} = \left(\left(U_1\sqrt{a} + V_1\sqrt{d}\right)^{n'}\right)^2
$$

= $\left(U_{n'}\sqrt{a} + V_{n'}\sqrt{d}\right)^2$. (3.19)

Since $aU_{n'}^2 - dV_{n'}^2 = 1$, by [\(3.19\)](#page-6-6), we have

$$
b^{y/2} = aU_{n'}^2 + dV_{n'}^2 = 2aU_{n'}^2 - 1.
$$
\n(3.20)

Further, by Lemma [2.3,](#page-3-4) we have $\text{ord}_2(aU_{n'}^2) = \text{ord}_2(aU_1^2)$. Hence, by [\(3.18\)](#page-6-7), we get ord₂ $(aU_{n'}^2) \geq 3$ and $aU_{n'}^2 \equiv 0 \pmod{8}$. Therefore, by [\(3.20\)](#page-6-8), we obtain $b^{y/2} \equiv 7$ (mod 8). But, since $b \equiv \pm 3 \pmod{8}$, it is impossible. Thus, the theorem is proved.

4. Proof of Theorem 1.2

In this section, we assume that $a = 2$, $b \equiv \pm 3 \pmod{8}$ and (x, y, z) is a solution of (1.4) with $2 \nmid x$. By Theorem [1.1,](#page-1-6) we have

$$
x = 1.\t\t(4.1)
$$

Since $a = 2$, substituting (4.1) into (3.2) , we get

$$
d = f = 1 \tag{4.2}
$$

and

$$
b^y - 1 = 2g^2, \ z = g, \ g \in \mathbb{N}.
$$
 (4.3)

If $b \equiv 5 \pmod{8}$, then from the first equality of [\(4.3\)](#page-7-1) we get $1 = (-2/b)$ $(2/b) = -1$, a contradiction, where $(*/b)$ is the Jacobi symbol. Therefore, if $a = 2$ and $b \equiv 5 \pmod{8}$, then [\(1.4\)](#page-1-2) has no solutions (x, y, z) with $2 \nmid x$.

We just need to consider the case $b \equiv 3 \pmod{8}$. Applying Lemma [2.9](#page-4-5) to the first equality of (4.3) , by (4.1) and (4.3) , equation (1.4) has only the solution

$$
b = 3, \quad (x, y, z) = (1, 5, 11) \tag{4.4}
$$

with $y > 2$.

When $y = 2$, by the first equality of (4.3) , $(u, v) = (b, q)$ is a solution of (2.5) Since $(u_1, v_1) = (3, 2)$ is the least solution of (2.5) , by (i) of Lemma [2.1,](#page-2-3) we get from (1.5) that

$$
(b,g) = (r_{n'}, s_{n'}), \quad n' \in \mathbb{N}.
$$
 (4.5)

Further, since $b \equiv 3 \pmod{8}$, by Lemma [2.4,](#page-3-5) we see from (4.5) that $2 \nmid n'$. Hence, by (4.1) , (4.2) , (4.3) and (4.5) , we obtain

$$
b = r_m, (x, y, z) = (1, 2, s_m), \quad m \in \mathbb{N}, 2 \nmid m. \tag{4.6}
$$

When $y = 1$, by (4.1) , (4.2) and (4.3) , we have

$$
b = 2g^2 + 1, (x, y, z) = (1, 1, g), g \in \mathbb{N}, 2 \nmid g. \tag{4.7}
$$

Thus, since $r_1 = 2 \cdot 1^2 + 1 = 3$, the combination of [\(4.4\)](#page-7-4), [\(4.6\)](#page-7-5) and [\(4.7\)](#page-7-6) yields the solutions (i), (ii) and (iii). The theorem is proved.

5. Proof of Theorem 1.3

By Theorem [1.2,](#page-1-7) we get $N(2,3) = 3$ immediately. By Lemma [2.5,](#page-3-6) if $b = 2g^2 + 1$ and $g = R_m$ with $m > 1$, then $b = r_m > 3$. Hence, by Theorem [1.2,](#page-1-7) we have $N(2, b) = 2$. In addition, if $b = 2g^2 + 1$ with $g \neq R_m$ or $b \neq 2g^2 + 1$, then $N(2, b) = 1$ or 0. The theorem is proved.

6. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. By Theorem [1.1,](#page-1-6) we may assume that $x = 2x_0$ for some $x_0 \in \mathbb{N}$. In addition, since *a* is a square, we may write $a = a_0^2$ for some $a_0 \in \mathbb{N}$. Then, by the first equality of [\(3.2\)](#page-5-0), we get

$$
(a_0^{x_0})^4 - df^2 = 1.
$$
\n(6.1)

It is clear from [\(6.1\)](#page-8-0) that

 d is not a square. (6.2)

Applying Lemma [2.8](#page-4-3) to [\(6.1\)](#page-8-0), we see that either $a^{x_0} = u'_1$ or $a^{x_0} = 2(u'_1)^2 - 1$, where (u'_1, v'_1) is the least solution of (2.1) with $D = d$. Since $2 | a$, we must have

$$
a^{x_0} = u'_1. \t\t(6.3)
$$

On the other hand, we know by $4 | a$ and $2 | x$ that (3.4) holds, which together with [\(3.6\)](#page-5-3) and [\(3.7\)](#page-5-4) yields $2 \mid y$. Since $a = a_0^2$, we see from the second equality of (3.2) that (2.1) with $D = d$ has a solution $(u, v) = (b^{y/2}, a_0 g)$. By (i) of Lemma [2.1](#page-2-3) and (6.2) , we have

$$
(u'_n, v'_n) = (b^{y/2}, a_0 g), \quad n \in \mathbb{N},
$$
\n(6.4)

√ √ \overline{d})ⁿ. If 2 | *n*, then, by (ii) of Lemma [2.1,](#page-2-3) $b \equiv \pm 1$ $\overline{d} = \left(u'_1 + v'_1\right)$ where $u'_n + v'_n$ (mod 8), which contradicts the assumption. If $2 \nmid n$, then, by (iii) of Lemma [2.1,](#page-2-3) $u'_1 \mid u'_n$. However, by [\(6.3\)](#page-8-2) and [\(6.4\)](#page-8-3), we have $a \mid b^{y/2}$, which contradicts 2 | *a* and $b \equiv \pm 3 \pmod{8}$. The theorem is proved. \Box

Proof of Theorem 1.5. By Theorem [1.4,](#page-2-4) we have

$$
x = 1.\t\t(6.5)
$$

(i) Substituting $a = 4$ and (6.5) into (3.2) , we get

$$
d=3, f=1
$$

and

$$
b^y - 1 = 12g^2, \ z = 3g, \ g \in \mathbb{N}.
$$
 (6.6)

Obviously, we have $b \neq 3$. If *b* has a prime divisor *p* with $p \equiv 11 \pmod{24}$, then by (6.6) we have

$$
-1 = \left(\frac{-1}{p}\right) = \left(\frac{12g^2}{p}\right) = \left(\frac{3}{p}\right) = 1,
$$

a contradiction. Thus, (i) is proved.

(ii) Substituting $a = 16$ and (6.5) into (3.2) , we get

$$
d = 15, f = 1
$$

and

$$
b^y - 1 = 15 \cdot 16g^2, \ z = 15g, \quad g \in \mathbb{N}.
$$
 (6.7)

Obviously, we have $b \notin \{3, 5\}$. If *b* has a prime divisor *p* with $p \equiv 11, 43, 59$ or 67 $(mod 120)$, then, by (6.7) ,

$$
-1 = \left(\frac{-1}{p}\right) = \left(\frac{15}{p}\right) = 1,
$$

a contradiction. If *b* has a prime divisor *p* with $p \equiv 13, 29, 37$ or 101 (mod 120), then, by (6.7) ,

$$
1 = \left(\frac{-1}{p}\right) = \left(\frac{15}{p}\right) = -1,
$$

a contradiction. Thus, the theorem is proved.

Acknowledgements. The authors thank the referee for careful reading and helpful comments.

References

- [1] J. H. E. COHN: *The Diophantine equation* $(aⁿ - 1)(bⁿ - 1) = x²$, Period. Math. Hung. 44 (2002), pp. 169–175, doi: [10.1023/A:1019688312555](https://doi.org/10.1023/A:1019688312555).
- [2] M.-H. LE: *A* necessary and sufficient condition for the equation $x^4 - Dy^2 = 1$ to have *positive integer solutions*, Chinese Sci. Bull. 30 (1984), p. 1698.
- [3] M.-H. Le, G. Soydan: *A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation*, Surv. Math. Appl. 15 (2020), pp. 473–523.
- [4] L. Li, L. Szalay: *On the exponential Diophantine equation* $(a^n - 1)(b^n - 1) = x^2$, Publ. Math. Debrecen 77 (2010), pp. 465-470, DOI: [10.5486/PMD.2010.4697](https://doi.org/10.5486/PMD.2010.4697).
- [5] L. J. Mordell: *Diophantine equations*, London: Academic Press, 1969.
- [6] T. Nagell: *Sur l'impossibilité de quelques equations á deux indéterminées*, Norsk Mat. Forenings Skr. 13 (1923), pp. 65–82.
- [7] L. Szalay: *On the Diophantine equation* $(2^n - 1)(3^n - 1) = x^2$, Publ. Math. Debrecen 57 (2000), pp. 1–9, doi: [10.5486/PMD.2000.2069](https://doi.org/10.5486/PMD.2000.2069).
- [8] R.-Z. Tong: *On the Diophantine equation* $(2^x - 1)(p^y - 1) = 2z^2$, Czech. Math. J. 71 (2021), pp. 689–696, doi: [10.21136/CMJ.2021.0057-20](https://doi.org/10.21136/CMJ.2021.0057-20).
- [9] R. W. van der Waall: *On the Diophantine equations* $x^2 + x + 1 = 3y^2$, $x^3 - 1 = 2y^2$, $x^3 + 1 = 2y^2$, Simon Stevin 46 (1972/1973), pp. 39–51.
- [10] D. T. WALKER: *On the Diophantine equation* $mx^2 - ny^2 = \pm 1$, Amer. Math. Monthly 74 (1967), pp. 504–513, doi: [10.1080/00029890.1967.11999992](https://doi.org/10.1080/00029890.1967.11999992).

 \Box