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Abstract. In educational settings, the utilisation of didactic games is a grow-
ing trend. Modifying existing games often proves inadequate for addressing
certain complex course materials, necessitating the development of original
didactic games with novel sets of rules. The design of such games is a chal-
lenging endeavour fraught with potential pitfalls. The fine-tuning of new
games typically involves extensive trial and error, a process that is both
time-consuming and labour-intensive. However, Monte Carlo simulations of-
fer a time-efficient alternative for determining the optimal values of numerical
game parameters. This paper illustrates this approach through the example
of the YETI cooperative board game, which has the direct comparison test
of infinite series at its didactic focus. First, the three levels of game design
are briefly introduced as defined by the MDA framework. Drawing from this
model, the tuning process of the game is presented, involving a systematic,
cluster-based approach to marking the infinite sums featured in the YETI
card decks, several strategies to mitigate the impact of the Alpha Player
Problem in the game, and the configuration of key game parameters via sim-
ulations.
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1. Introduction

Didactic game design plays an important role in developing innovative approaches
for teaching mathematics. Game-based learning is a widespread educational method
that is gaining more and more prominence due to the preference of younger gener-
ations for hands-on learning experiences [11, 20, 30]. Games can engage students,
help them maintain their attention, boost their motivation, and improve their skills
while simultaneously promoting teamwork and communication, which are essential
skills in adulthood. Researchers often regard digital games as the primary medium
for educational purposes. Nonetheless, traditional tabletop games with tangible
components offer considerable advantages as well, such as fostering collaboration,
or allowing for smooth adjustments and overall control of the gaming experience
[3, 40]. Non-digital games also have the potential to stimulate learners’ creativity,
memory, empathy, problem-solving skills, and self-confidence [31].

The design of educational games is guided by several key principles and shaped
by the creators’ decisions throughout the process. Didactic board game design can
be challenging yet rewarding. At times, it entails creating entirely new games, while
on other occasions, it involves adapting existing games for educational purposes. In
the context of games, modding is defined as “using existent commercial games and
adapting their mechanisms, narratives, rules, and components to achieve specific
goals” [32]. For instance, LimStorm is a card game that follows the rules of SOLO,
designed as an educational tool for practising the topic of limits [34]. The original
game was modified to integrate the intended didactic content by replacing the
numbers on traditional SOLO cards with limit expressions. Another example of
an adaptation is GemHunters, which originated from the well-known board game
Saboteur and aims to help players master the use of certain trigonometric functions
and identities [7]. In the modded version of Saboteur, path cards include additional
trigonometric formulas, the values of which must form monotonically increasing
or decreasing sequences on each assembled path. Generally speaking, modded
games can often be constructed more quickly than original games. Their design
process typically involves fewer logical errors, though didactic flaws can still occur.
However, adaptations are constrained by the structure and rules of their source
material, offering limited flexibility compared to the invention of original games.

On the other hand, when no suitable game exists for adaptation, educators can
design original games tailored to the needs and preferences of their students. This
intricate process is prone to errors and miscalculations, necessitating a methodology
that allows for continuous and thorough testing from the beginning. For more
complex games, separate tests for different components may be required. However,
the additional effort is often worthwhile, as original games offer significantly greater
flexibility and wider customisation options compared to adaptations. One such
didactic game is YETI, designed to familiarise university students with the concept
of infinite series and the application of their direct comparison test.

This paper presents the application of Monte Carlo simulations in game design
as a time-efficient method for fine-tuning numerical game parameters, using the
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example of YETI as a case study. In the next section, a literature review is pro-
vided of relevant research on game design and the application of the Monte Carlo
method. Subsequently, the board game YETI is briefly introduced, followed by the
presentation of its tuning process, which encompasses the selection of the infinite
sums featured in the YETI card decks, and the calibration of the most important
game parameter values, as well as the exploration of different game variants for
addressing the Alpha Player Problem.

2. Literature review
Tabletop game design presents a myriad of challenges that must be addressed. Un-
like other forms of entertainment such as books, music, or movies, the consumption
of games is unpredictable [14]. When a game is being developed, the specific events
and outcomes that will unfold during gameplay are unknown to the designer, which
complicates the design process. An important aspect of game development is user-
centred design, where the game must provide an interactive experience in which
the player exercises agency and autonomy [41]. For a game design attempt to
be considered successful, it must harmonise the three key elements of the gaming
experience: the designer’s intentions, the game artifact providing said experience,
and the impressions of the player who engages with the game [41].

Hunicke, Leblanc, Zubek [14] identify three levels of abstraction in their
MDA model for game design. Mechanics refer to the fundamental activities and
mechanisms available to the player, while dynamics describe the real-time be-
haviour of these mechanics during gameplay. The third level, aesthetics, encom-
passes the emotional responses elicited in the player during interactions with the
game system. From the designer’s viewpoint, mechanics define the boundaries of
dynamic behaviour, which in turn shapes the aesthetic experience. On the other
hand, the players first connect with the aesthetics of the game, which are expressed
through observable dynamics and mechanics. Mechanics consist of manipulable
game components, permissible actions, and the rules governing these actions. For
instance, the mechanics of card games include shuffling and betting, from which
dynamics like bluffing can originate [14]. Adjusting game mechanics has a direct
impact on game dynamics. Thus, developing models that predict and describe
dynamics can help avoid common design errors.

In a revision of the MDA model, Zubek [41] makes a distinction between me-
chanics, gameplay – the process of players interacting with game mechanics – and
player experience, noting that the term aesthetics is often misunderstood to refer
solely to visual appeal rather than the entire experience. Zubek [41] also points
out that positioning the designer and the player at opposite ends of the MDA
chain may be misleading, as the iterative design process involves both top-down
and bottom-up approaches, simultaneously addressing game design from both per-
spectives. Top-down design begins with the desired experience and deconstructs
it into various components, identifying the type of gameplay needed to generate
this experience and the mechanics required to produce this gameplay. Each game
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aims to achieve multiple player experience goals to varying extents, such as provid-
ing enjoyable sensory experiences (sensation), transporting players into a different
world where they can engage in activities that are impossible or unlikely in real life
(fantasy), inducing challenge through time pressure and competition, fostering fel-
lowship through teamwork and information sharing, and creating dramatic tension
through a compelling narrative [14].

On the other hand, bottom-up design consists of developing game mechanics,
testing them with real players, and continuously evaluating the resulting player
experience. Upton [37] provides six important heuristics for assessing and im-
proving game mechanics. The initial two heuristics, choice and variety, highlight
that players must perceive a diverse array of possible actions. A limited range of
actions can lead to boredom due to the repetitive nature of the game, while an
excess of choices can result in confusion and frustration. The third heuristic, con-
sequence, emphasises the importance of player actions having tangible outcomes,
given that players may feel a loss of agency within the game in the absence of direct
consequences. The fourth heuristic is predictability, followed by uncertainty as the
fifth, indicating that players must be able to foresee the outcomes of their actions
to a certain extent, but these consequences must not be completely predetermined.
The final heuristic, satisfaction, suggests that in a game of high quality, desirable
outcomes must always be within reach. An unwinnable game can lead to frustra-
tion and disinterest, whereas a game that always delivers desirable outcomes with
minimal effort can lack challenge and excitement. Hence, balancing difficulty and
attainability is essential for sustaining players’ interest and engagement [37].

Balancing, which aims to boost game quality through numerous iterations of
fine-tuning and playtesting [17], is among the most challenging phases of game
design. During this process, designers rely on adjustable game parameters to reach
the intended player experience. Each unique combination of game parameter values
can be regarded as a distinct vector in a multidimensional space of game variants,
called the game space [16, 36]. It is important to note that this iterative tuning
approach can be both costly and time-consuming. In game-based learning, the
need to harmonise educational content with gameplay mechanics introduces an
additional layer of complexity to the balancing process [4].

The ability to explore the game space without relying entirely on human testers
can significantly accelerate the tuning process, as automated methods that facilitate
the identification of the most promising configurations reduce the need for extensive
playtesting. Jaffe et al. [17] raise the possibility of automating some aspects of
game evaluation using AI-driven simulation tools. Similarly, Nelson [21] suggests
that metrics derived directly from the game itself, rather than empirical playtests,
can offer valuable insights. Hypothetical player-testing, as described by Nelson
[21], is an evaluation strategy that uses simplified player models to analyse how
the game behaves in idealised or extreme scenarios. Prior studies imply that this
approach can effectively reduce the need for player-intensive testing [2, 18, 19].
Chaslot et al. [6] argue that game AI often requires extensive domain knowledge
and long development cycles. However, Monte Carlo-based solutions can counter
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these challenges by using simulated playouts instead of domain-specific heuristics.
The Monte Carlo method, named after the Monte Carlo Casino in Monaco,

relies on probabilistic models to estimate the average characteristics of real-world
processes [27]. This approach is particularly valuable if direct experimentation is
too time-consuming, impractical, or costly [10]. John von Neumann and Stanislaw
Ulam pioneered Monte Carlo simulations during the Manhattan Project to model
the random diffusion of neutrons in nuclear materials [28]. The application of the
method consists of repeated random sampling and statistical analysis. It approxi-
mates the value of an unknown quantity using the principles of inferential statistics,
which assert that a random sample – a proper subset of a population – tends to
reflect the properties of the population.

Monte Carlo simulation typically involves several steps. First, a determinis-
tic model, closely resembling the real scenario, is generated using the most likely
values of input parameters, and mathematical relationships to transform the in-
put values into the desired outputs. Once the deterministic model is satisfactory,
risk components are added by identifying the underlying distributions of the input
variables, based on historical data. Subsequently, random samples are drawn from
these distributions representing various sets of input values, which are used in the
deterministic model to generate sets of output values. This process is repeated
to collect a range of possible outputs. Finally, statistical analysis is performed on
these output values to provide a basis for decision-making with statistical confi-
dence [26]. Confidence in the estimate depends on both the size and the variance of
the sample: higher variance necessitates larger samples to attain the same level of
confidence. By leveraging simulations, researchers can investigate complex systems,
repeat experiments, and make modifications as needed. However, there are limita-
tions to using simulations as a modelling methodology. Instead of providing exact
measurements, simulations yield statistical estimates, leading to uncertain results
prone to experimental errors [28]. Additionally, simulations can be computation-
ally intensive, and the accuracy of the results depends heavily on the quality of the
model and the inputs used. Furthermore, like any software, simulation programs
can have bugs [10].

In the context of game design, according to Nummenmaa, Kuittinen, Holo-
painen [24], simulations aim to abstract models to a degree where designers can
focus on the core dynamics of a system without being overwhelmed by small details.
This approach is particularly advantageous, as simulations can uncover potential
issues in the long-term dynamics of a game. Beyond diagnostics, simulations can
assist in the tuning of game parameter values during the balancing process. They
also serve as a powerful tool for analysing existing games, contributing to the inven-
tion of optimal strategies, the discovery of new game variants, and the development
of AI-driven players. Additionally, Schell [29] suggests that Monte Carlo simu-
lations can be valuable in assessing the role of chance within a non-deterministic
game.

Numerous examples highlight the versatility of Monte Carlo methods in game
design. Browne, Maire [5] employed simulations to assess the quality of turn-
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based, deterministic games and to discover new, high-quality game variants. Sim-
ilarly, Isaksen et al. [15] applied Monte Carlo simulations to explore the game
space in Flappy Bird, uncovering a wide range of playable configurations. A spe-
cific implementation of Monte Carlo methods, Monte Carlo Tree Search (MCTS),
is a best-first search method designed to pinpoint the most promising moves in a
given game scenario [39]. In addition to its applications in persona-based player
modelling [12] and skill-based automated playtesting [13], MCTS has proven to be
a valuable tool in research related to deterministic games, such as Go [9] and Hex
[1], as well as games involving multiplayer interactions or elements of uncertainty,
such as Chinese Checkers [33], Magic: The Gathering [38], and Scotland Yard [23].
Monte Carlo simulations are also instrumental in the design and analysis of ed-
ucational games. For instance, Fitrianawati et al. [8] leveraged Monte Carlo
simulations to enumerate all possible solutions for each draw in the arithmetic
card game 24. This enabled the assignment of difficulty levels to different card
combinations, contributing to the mitigation of students’ mathematics anxiety.

3. Presentation of the board game YETI
YETI is a collaborative board game designed for application in a higher education
context, with a focus on the topic of infinite series and their direct comparison
test. Infinite series play a significant role in various disciplines, including finance,
physics, statistics, and engineering. Determining the convergence property of an
infinite sum presents a significant challenge which can be tackled using convergence
tests. The nth term test for divergence is a straightforward technique stating that
if the terms of an infinite sum do not approach zero, the sum diverges. Cauchy’s
test, also known as the root test, involves taking the nth root of the absolute value
of the nth term, and evaluating its limit as n approaches infinity. Similarly, the
application of D’Alembert’s test entails calculating the limit of the ratio of the
series’ successive terms. The direct comparison test asserts that if an infinite sum
of non-negative terms has a majorant that converges, the original sum also con-
verges. Conversely, an infinite sum having a divergent minorant of non-negative
terms indicates that the original sum diverges. The application of the direct com-
parison test requires an intuitive initial guess, making its usage considerably less
algorithmic than the application of the other tests mentioned above. Depending
on whether the examined infinite sum is believed to converge or diverge, one must
find a sufficiently simple convergent majorant or divergent minorant to support this
belief. The development of this intuitive approach necessitates extensive practice,
the process of which can be supported by playing the board game YETI.

At the outset of the development process of YETI, it was essential to identify
the primary aesthetic goals of the game to enable the use of a top-down design
approach. The new tabletop board game aimed, most of all, to present a challenge
for learners through its main didactic content, create a collaborative environment,
offer sensory experiences through tactile and visual elements, and feature a simple
yet effective narrative. A decision was made early on to design a cooperative rather
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than a competitive game, encouraging students with a strong grasp of the given
topic to help their peers understand the course materials. Parallel to the top-down
development, a bottom-up design approach was also employed, focusing on the
key mechanics of the new game, with all six heuristics presented by Upton [37]
thoroughly considered.

A common challenge educators face when designing didactic games is the fragility
of the strategy-luck equilibrium in the game mechanics. For a game to serve as
an effective learning tool, it must incorporate a substantial portion of the course
materials. In addition, a degree of uncertainty is critical for maintaining the game’s
enjoyment factor, as Upton [37] suggests. Introducing elements of randomness,
such as cards, dice, or spinners, is necessary to prevent the game from becoming a
mere exercise sheet in an unusual format rather than a genuinely engaging educa-
tional experience. However, if winning is perceived to be based more on luck than
on skill and comprehension, players may lose motivation to engage with the course
materials, thus undermining the educational objectives of a didactic game. There-
fore, although the inclusion of a card deck is pivotal in the game YETI, it must be
ensured that the role of luck does not overshadow the importance of actual knowl-
edge. Given the wide variance in potential players’ skills, differentiation, achieved
by developing card decks of three levels of difficulty, was key to maintaining the
game’s satisfaction aspect through adapting the gameplay experience to the prior
knowledge of participants.

Beyond these considerations, it is essential to acknowledge that the complexity
of a game strongly impacts its effectiveness as a teaching tool. Based on his exten-
sive research on the topic, Sousa [32] states that didactic games that students are
likely to play only once should have a low level of complexity. Unknown, original
games necessitate debriefing and the continuous presence of facilitators to support
gameplay. Given that the rules of YETI are not derived from another well-known
game, additional time must be allocated for concise explanations of the game’s
narrative and rules before each session. Therefore, it is essential to keep the rules
simple and intuitive, facilitating an immediate understanding of the game logic.
Additionally, it is important to consider the time constraints and repeatability of
the game. Since a university practical lesson has a duration of around 90 minutes,
the gameplay must not exceed 35-40 minutes.

With these guiding principles in mind, the main components of YETI were
developed, featuring an immersive narrative, an original set of rules, a versatile
game mat, and three card decks of varying levels of difficulty, ranging from beginner
to expert. The game encourages players to engage with the direct comparison test
in a hands-on, interactive manner, promoting a deeper understanding of the subject
material through repeated practice and collaborative problem-solving.

3.1. Narrative
The game’s narrative revolves around a Yeti attack in a small mountain village.
Players are tasked with repelling the invading beasts before they destroy the entire
village. Players can gain territory by identifying valid pairs among the infinite
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sums on the cards in the YETI deck. A valid pair consists of a divergent sum
and its divergent minorant, or a convergent sum and its convergent majorant.
Within the game’s narrative, these sums act as identifiers for different Yeti hunters,
who must be paired into squads of two based on their fighting styles, determined
by the divergence or convergence of their identifiers. If at least two squads are
present in the same neighbourhood of the village, any Yeti previously based there
is successfully driven away, and no further invaders dare to enter the given area.
However, if two Yetis occupy the same neighbourhood, they soon engage in a
territorial fight and destroy the entire village as a consequence, an unfavourable
outcome which players must prevent.

3.2. Game mat
The structure of the YETI game mat, as seen in Figure 1, is clean and simple,
with designated slots for Yeti or series cards. The illustrations on the mat depict a
small valley village with tiny houses and meandering paths, surrounded by snowy
mountain peaks. Four card slots of the same colour constitute a field, symbolising a
neighbourhood within the fictional village. The relational operators between neigh-
bouring card slots indicate the direction of relations between the pairs of infinite
sums that players must respect when placing cards onto the mat. Three distinct
field colours are used: dark blue indicates convergence and light blue signifies di-
vergence, while grey card slots serve as wild cards, allowing players to play both
their convergent and divergent pairs [35]. An additional rule, reinforced by the
relational operators on the game mat, restricts the placement of infinite sums with
equal nth terms as pairs to the grey fields.

Figure 1. Game mat graphics for the board game YETI.
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3.3. Set of rules
The beginning of the game YETI is marked by players strategically positioning five
Yeti cards onto five different fields of their choosing on the game mat. Subsequently,
the remaining deck comprising 95 cards is shuffled, and players start drawing cards.
Upon encountering a Yeti card, it must be promptly laid down on any unoccupied
field. If no such field is available, resulting in multiple Yeti cards being placed
onto the same field, the game is lost immediately. Otherwise, drawing continues
until players collectively have exactly 12 series cards in their possession, signalling
the onset of the pairing phase. During the pairing phase, participants engage in
discussions regarding potential card pairings, and lay down the pairs of infinite sums
they identify. Successfully filling a field of four card slots results in the expulsion
of any Yeti previously occupying the given field, enabling players to discard the
corresponding Yeti card. The game culminates in victory if all Yeti cards are
removed from the mat and more than four fields are filled, or if at least eight fields
are filled. However, defeat ensues if players possess the maximum of 12 series cards
but are unable to form valid pairs.

4. The tuning process of the game

The final stage of game design typically involves playtesting and tuning [14]. Dur-
ing the development of the board game YETI, dynamics originating from proposed
sets of mechanics were continuously tested and refined using computer simulations.
Through the iterative improvement of game mechanics and parameters, specific
learning objectives and aesthetic goals could be reached. The tuning process con-
sisted of two major steps: marking the exact infinite series featured in the card
decks and establishing the optimal values for all numerical game parameters. In
addition to these endeavours, it was imperative to address certain concerns raised
by the cooperative nature of the game, such as the Alpha Player Problem.

4.1. The composition of the card decks
The development of the YETI card decks on three different levels posed a consider-
able challenge for multiple reasons. Primarily, the 80 infinite sums of non-negative
terms featured in a deck must represent the various series types and solution meth-
ods covered in the course materials. Moreover, determining an optimal ratio of
Yeti cards to series cards, achieved through extensive playtesting, is essential to
align with Upton’s satisfaction heuristic mentioned in Section 2. Another criti-
cal demand is guaranteeing the pairability of randomly drawn cards, increasing
the likelihood of identifying pairs among the cards dealt at the beginning of each
round, thus maintaining the game’s dynamic flow. This requires each series card
to be compatible with multiple other cards, ideally between three to five, within a
deck.

To meet these criteria, a systematic methodology was employed for selecting
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the series included in the card decks, leading to the establishment of clusters of
infinite sums with the following properties:

1. Infinite sums within the same cluster either all converge or all diverge, allow-
ing the entire cluster to be classified as either convergent or divergent.

2. Half of the infinite sums in each cluster are simpler majorant or minorant
series (depending on the cluster’s convergence property).

3. Majorants or minorants within a cluster are equal, differing only in the form
their nth term is written in.

4. The other half of sums in a cluster are more intricate infinite series to which
the direct comparison test needs to be applied after finding a suitable majo-
rant or minorant.

5. All of the intricate series within a cluster can be paired with any majorant
or minorant in the same cluster.

6. Majorants or minorants within a cluster can also be paired with each other
but only on the grey fields of the game mat due to their equality.

7. Valid pairings can also be established between infinite sums in different clus-
ters. The clustering approach only serves as a guarantee for a minimum
number of possible pairings within a deck.

Figure 2 provides an illustrative example of clusters.

Figure 2. An illustrative example of the structure of clusters.

The deliberate construction of clusters with the specified properties ensured an
adequate number of valid pairings within the game decks. Consider, for instance, a
cluster of size s ∈ {2k | k ∈ Z+}, bearing in mind that such a cluster must always
contain an even number of cards. This cluster consists of s

2 minorants/majorants
and the same number of more intricate series. The intricate series are guaranteed
to form valid pairs with each majorant or minorant within the cluster, while the
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minorants and majorants can form valid pairs with all other members of the cluster,
including other minorants and majorants, except for themselves. Thus, the total
number of possible pairings within a cluster is given by:

s

2 · s

2 +
(

s
2 ·
(

s
2 − 1

))
2 = 3s2

8 − s

4

Table 1. The number of pairing possibilities within a cluster de-
pending on cluster size.

Cluster size Number of pairing possibilities
2 cards 1
4 cards 5
6 cards 12
8 cards 22
10 cards 35

Table 1 presents the number of guaranteed pairing possibilities within a cluster
of a given size for all five cluster sizes appearing in the YETI decks. Table 2 details
the distribution of clusters by size and convergence property across the various
levels of YETI. Each deck, whether beginner, intermediate, or expert, contains
exactly six divergent and eight convergent clusters, resulting in a total of 14 clusters.
On average, each cluster comprises approximately 80/14 ≈ 5.71 cards, leading to a
mean value of pairing possibilities between 5 and 12 per cluster, and, consequently,
a total of roughly 5 · 14 = 70 to 12 · 14 = 168 guaranteed pairs per deck.

Table 2. The distribution of clusters by size and convergence prop-
erty in the three YETI decks. The abbreviation ‘div.’ denotes di-

vergent and ‘conv.’ denotes convergent.

Number of clusters
Cluster size Beginner Intermediate Expert

Div. Conv. Div. Conv. Div. Conv.
2 cards 2 0 2 0 2 0
4 cards 1 1 1 3 1 2
6 cards 1 5 1 2 1 3
8 cards 2 2 2 2 2 3
10 cards 0 0 0 1 0 0

all 6 8 6 8 6 8

Following the selection of the series featured in the game, abstract models of
the card decks were constructed as directed graphs, representing the relationships
between the infinite sums within a deck. Each infinite series in a deck, associated
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with a vertex in a directed graph, was assigned a unique identifier. The edges of
the graphs were defined by the relationships between the nth terms of the sums,
pointing from the smaller nth term to the larger, and from the smaller identifier
to the larger in cases of equality. It is crucial to note that these models do not
encompass all possible relationships between the infinite series showcased on the
cards, since the primary objective of YETI is to help students build an intuition
for recognising valid pairings that are easily identifiable without using a calculator.
Thus, in the graphs, only these straightforward pairing possibilities are represented
by edges.

Figure 3. Directed graph G1 = (V1, E1) of the relations between
the infinite sums in the beginner deck, limited to the relations easily
noticeable to the naked eye. The vertices representing divergent

sums are light blue, while the convergent ones are dark blue.
|V1| = 50 + 30 = 80, |E1| = 177 + 88 = 265.

Initially, the abstract representations of the decks were restricted to the most
easily identifiable relations. However, more advanced players might uncover addi-
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tional relationships between the infinite series on the cards, including those stem-
ming from the transitive property of inequalities. Both the graphs depicting only
the most easily identifiable relations (Figure 3) and those illustrating single tran-
sitive relations (Figure 4), the recognition of which requires more practice and
insight, were generated using the NetworkX Python package for the creation and
manipulation of complex networks [22]. In the context of the subsequent game
simulations, these two slightly different model types served as approximations for
the knowledge of complete beginners and more experienced players.

Figure 4. Directed graph G2 = (V2, E2) of the relations between
the infinite sums in the beginner deck, including the relations formed
using the transitive property of inequalities. The vertices repre-
senting divergent sums are light blue, while the convergent ones are

coloured dark blue.
|V2| = 50 + 30 = 80, |E2| = 248 + 159 = 407.

For instance, consider the following convergent sums of non-negative terms in
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the beginner deck:
∞∑

n=1

6n

52n + 3n

∞∑
n=1

(
3
4

)n ∞∑
n=1

(
6
25

)n

For all n ∈ Z+, the easily identifiable relations between the nth terms are:

1) 6n

52n + 3n
<

6n

52n
= 6n

25n
=
(

6
25

)n

2)
(

6
25

)n

<

(
6
8

)n

=
(

3
4

)n

With a bit of practice, the two inequalities above can be combined forming the
following relation:

3) 6n

52n + 3n
<

(
6
25

)n

<

(
3
4

)n

Thus, three possible pairings exist among the given infinite series:

P =



( ∞∑
n=1

6n

52n + 3n
,

∞∑
n=1

(
6
25

)n
)

,

( ∞∑
n=1

(
6
25

)n

,

∞∑
n=1

(
3
4

)n
)

,( ∞∑
n=1

6n

52n + 3n
,

∞∑
n=1

(
3
4

)n
)


4.2. Monte Carlo simulations in the design process
During the tuning process of the game YETI, Monte Carlo simulations were em-
ployed to determine the optimal values of key numerical game parameters, such
as the number of Yeti cards in a deck. Considering that a deck of 100 cards can
be shuffled in 100! different ways, exhaustive playtesting was deemed unfeasible,
necessitating a complex, multi-parameter optimisation process, which would have
been not only impractical but also highly susceptible to error if performed man-
ually. Consequently, computer simulations were used for experimental purposes.
Despite the series cards in the YETI deck forming an intricate network of inter-
connections, in an ideal game scenario, where player decision-making is optimised,
the outcomes depend solely on the initial shuffle of the card deck, which introduces
the only element of uncertainty into the game. Therefore, computer simulations
focused on card shuffling were used to conduct a statistical analysis of the game,
generating thousands of randomised sample game setups.

4.2.1. Optimisation targets

The primary objective of the optimisation process was to achieve a balance between
the strategic and stochastic elements of the game, while minimising the occurrence
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of unfavourable scenarios such as premature victories, stalemates, and inevitable
losses. Based on this principle and the didactic goals of the game, the following
optimisation targets were defined:

1. Coverage: Players should be incentivised to seek both convergent and diver-
gent pairs, primarily pairing the simpler infinite series, intended as majorants
or minorants, with more intricate series.

2. Seamless start: There should always be easily identifiable pairs among the
dealt infinite series at the beginning of the game. The deck shuffle should
result in stalemates in no more than 1% of cases.

3. Incentive to think and act: Players should be motivated to play a minimum
of 2 pairs of infinite sums on average per round.

4. Balance of knowledge and luck: As per Upton’s insights detailed in Section 2,
the uncertainty introduced by the card deck should be offset by ensuring that
optimal decisions lead to victories. Experienced players should lose no more
than 10-15% of their games when making optimal decisions, aligning with
Upton’s satisfaction heuristic.

4.2.2. Methodology

The law of large numbers asserts that as the number of trials in random experiments
increases, the average of the results obtained from these trials will converge to
the expected value of the underlying probability distribution. Essentially, with
an infinite number of trials, empirical results will match theoretical probabilities.
Guided by this principle, a large number of simulations were carried out for different
potential values of the key YETI game parameters, where the relative frequency
of certain designated adverse cases was recorded and analysed in order to identify
an optimal setup. These simulations, implemented in Python and interfacing with
a database of the infinite sums featured in the card decks, ranged from simple
card shuffling to comprehensive game simulations, with algorithms replacing the
mid-game decision-making of human players.

In the game simulations, two distinct decision-making models were employed:
simplified and optimal moves. In each round, either the first identified pair was
immediately placed on the game mat (simplified move), or the pairing process was
optimised to maximise the number of cards played (optimal move). In the latter
case, all potential pairs among the dealt series cards were aggregated into a set P .
Next, it was determined whether the elements in each subset of P had any overlap.
The optimal move for the given round was selected as the largest subset containing
independent pairs of infinite series, meaning all pairs in the subset could be placed
onto the game mat simultaneously. While the optimal move simulations naturally
yielded more realistic outcomes, they significantly increased the program’s runtime
due to the exhaustive process of generating and evaluating these subsets.
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For instance, suppose that the following pairs can be played in a round:
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In a simplified move, M1 represents the set of pairs to be placed. The remaining
potential pairs cannot be utilised since each infinite sum appears only once per
deck.

M1 =
{( ∞∑
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)n
)}

In contrast, the optimal move simulation, by generating all subsets of P , can pro-
duce a more favourable, larger set of pairs to be placed, denoted as M2:

M2 =
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4.2.3. Avalanche cards

The rules of YETI create an imbalance between the fields on the game mat, with the
grey card slots becoming overpowered compared to the blue ones. While blue card
slots can only accommodate either convergent or divergent pairs, grey fields can
house both types, effectively doubling the number of playable pairs. Additionally,
pairs with identical nth terms can only be placed onto grey fields. Consequently,
players are incentivised to prioritise filling the grey card slots first, where even the
simplest of pairs can be laid down, leading to a potential imbalance in the game’s
didactic content.

To address this issue, avalanche cards were introduced. An avalanche card can
clear the contents of a field of a specific colour, providing a means to discard Yeti
cards effectively. There are three sorts of avalanche cards, corresponding to the
three primary field types: convergent, divergent, and mixed avalanches. These are
distinguished by the colour of the avalanche card’s borders and are only applicable
to a field of the matching colour. Moreover, avalanche cards must be played during
the round in which they are drawn. Therefore, to use avalanches to their advantage,
players must distribute their Yeti cards across fields of different colours early in the
game, as the timing and the appearance order of avalanche cards are unpredictable.
All things considered, the introduction of avalanches encourages players to keep
each distinct field type in the game, seeking both divergent and convergent pairs of
infinite sums, as well as both simpler and more intricate pairings throughout the
game, meeting the requirements of the coverage optimisation target.
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4.2.4. The number of cards drawn per round

The number of cards dealt per round, denoted by k, is one of the most significant
game parameters. In setting this parameter, the second optimisation target, seam-
less start, was considered, ensuring that players could begin their games in at least
99% of cases after drawing the first k series cards. To prevent a stalemate, it is
evident that there must be at least one valid pair among the dealt cards, suggest-
ing that a higher value of k might be reasonable. However, to avoid overwhelming
players, the count of infinite sums they need to manage each round must be min-
imised. Consequently, the value of k must be set to the smallest possible value that
meets the seamless start target.

To assess all potential values of k, a straightforward deck shuffling simulation
was implemented. The shuffle() method from the random module in Python
was invoked on a list comprising all the infinite sums featured in a deck. This
list served as an approximation for the shuffled deck of cards. Through numerous
shuffling simulations for different values of k, it was examined how frequently the
initial shuffle resulted in unfavourable starting scenarios, defined as instances where
a stalemate ensued at the game’s onset. The shuffling experiment was conducted
N = 100,000 times for each examined value of k, the results of which are detailed
in Table 3, where f denotes the ratio of experiments resulting in a stalemate.

Table 3. Results of the simulations for different values of k out
of N = 100,000 experiments per parameter value, where f denotes

the percentage of simulations with unfavourable outcomes.

k 5 6 7 8 9 10 11 12 13
f (%) 41.85 27.41 16.34 9.14 4.85 2.32 1.07 0.47 0.18

As illustrated by Table 3, a lower value of k correlates with a higher incidence of
adverse cases. For instance, when only five cards were dealt per round, the relative
frequency of stalemates at the beginning of the game exceeded 40%. The lowest
possible value of k where the percentage of stalemates was deemed acceptable is 12,
with the ratio of adverse cases falling below 1%. Thus, the value of the parameter
k has been finalised: in each round of the game YETI, players must draw enough
new cards to ensure that the total number of series cards in front of them amounts
to 12.

4.2.5. The number of Yeti cards per deck

To meet the third optimisation target, it was essential for YETI to encourage
participants to identify at least two valid pairs of infinite series per round. The
Yeti cards featured in the game deck serve as the primary incentive for this, as an
excess of Yetis on the game mat can quickly lead to defeat. Evidently, a lack of
Yeti cards would render the gameplay monotonous, depriving it of excitement. In
contrast, an excess of Yeti cards would make victory nearly unattainable, even for
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the most experienced players. Therefore, to promote an engaging and motivating
player experience, the appearance of one new Yeti per round was deemed ideal,
inspiring the placement of two pairs of infinite sums in each round to avoid an
increase in the number of Yeti cards on the game mat. Nevertheless, any scenarios
requiring players to play more than three Yeti cards in quick succession were to be
prevented. Hence, fine-tuning the number of Yeti cards per deck, denoted by y,
became a critical step in the optimisation process.

In the shuffling simulation, the distribution of Yeti cards in a deck was modelled
by adding y − 5 Yeti elements, with the five initially placed Yeti cards substracted,
to the list representing the dealer deck. The YETI game mat accommodates a
total of 13 fields. To motivate players to make their pairing decisions as quickly
and efficiently as possible, it was necessary to maintain the possibility of two Yetis
being forced onto the same field, which constitutes a key condition for defeat.
Consequently, the minimum value considered for y had to be 13 + 1 = 14. The
main optimisation goal regarding the number of Yeti cards was to minimise the
frequency of scenarios where numerous consecutive Yetis appear in a deck. The
upper limit for an acceptable cluster size of Yeti cards was fixed at three; any
cluster exceeding this size was considered an adverse case. Thus, the probability
of encountering at least one group of four or more consecutive Yeti cards in the
shuffled deck was estimated as a function of the discrete parameter y.

The shuffling simulation was run N = 100.000 times for each examined value
of y. The results are presented in Table 4, where f denotes the percentage of
experiments where clusters of four or more Yeti cards were present in the shuffled
deck. The table indicates that the values of y for which the ratio of unfavourable
shuffle outcomes did not exceed or barely exceeded 1% fell between 14 and 16.
However, further experiments were necessary to adjust the value of y, ensuring
that approximately one Yeti would appear in each round.

Table 4. Results of the simulations for different values of y out
of N = 100,000 experiments per parameter value, where f denotes

the percentage of simulations with unfavourable outcomes.

y 14 15 16 17 18 19 20
f (%) 0.44 0.66 1.00 1.43 1.96 2.62 3.43

In addition to modelling card shuffling, a comprehensive simulation of YETI
was also implemented to draw conclusions about the balance between uncertainty
and predictability in the game. Two simulation variations were distinguished based
on the simulated players’ experience level. For modelling beginner gameplay, only
the most easily identifiable relations, illustrated by Figure 3, were taken into ac-
count when pairing infinite sums. In contrast, for approximating the decisions
of experienced players, pairs generated through transitivity, as seen in Figure 4,
were also included. Experiments were conducted using both the simplified and the
optimal move types detailed in Subsection 4.2.2.

The first task to be addressed using comprehensive game simulations was setting
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the number of Yeti cards in a deck. The range of possible values had previously
been narrowed down to the set {14, 15, 16} based on the deck shuffling simulations.
It had also been stated that, ideally, approximately one new yeti would emerge in
each round. The fluctuation of the average number of Yetis appearing per round
was examined as a function of y, the count of Yeti cards in a deck. The data from
simulations encompassing N = 10,000 game iterations are detailed in Table 5.
The results indicate that the average value of one Yeti per round is most closely
approached with y = 16, marking 16 as the optimal number of Yeti cards in a deck.

Table 5. The average number of Yeti cards emerging in a round as
a function of y, out of N = 10,000 simulations per parameter value.

Player experience Move type y

14 15 16

Beginner simplified 0.69 0.77 0.86
optimal 0.72 0.81 0.90

Experienced simplified 0.69 0.78 0.85
optimal 0.72 0.81 0.89

4.2.6. Comprehensive game simulations

Following the establishment of key game parameter values, additional simulations
were executed to examine various aspects of YETI’s game dynamics. These exper-
iments aimed to determine the total number of rounds played and pairings made
in a game, the percentage of games resulting in a win, and the proportion of losses
attributable to either an inability to make a move or an excess of Yeti cards on the
game mat. Arithmetic means were calculated based on N = 10,000 comprehensive
game simulations, summarised in Table 6.

Table 6. Sample averages for N = 10,000 comprehensive game
simulations without the reinforcement option.

Player
experience

Move
type

Number
of

rounds

Number
of

pairs
Victory

(%)

Loss

Stalemate
(%)

Multiple
yetis per
field (%)

Beginner simpl. 5.53 9.75 42.06 57.18 0.76
opt. 5.46 9.94 44.77 54.55 0.68

Experienced simpl. 5.17 12.03 71.38 27.95 0.67
opt. 4.99 12.19 73.68 25.53 0.79

The data collected indicate that the most common cause of defeat for both
novice and experienced players in the game YETI is a stalemate, an inability to
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make a move. Only a negligible percentage of losses results from multiple Yetis
occupying a single field. On average, the game concludes after 5-6 rounds, with
experienced players playing approximately two more pairs of cards than beginners.
Regrettably, the ratio of games won turns out to be notably low, falling below
50% for novices and below 75% for experienced players, with a high number of
losses attributable to stalemates. This suggests that even players making optimal
decisions might lose a significant portion of their games, implying an imbalance
between strategy and luck in the established rules and mechanics of YETI, which
may negatively impact player motivation.

Table 7. Sample averages for N = 10,000 comprehensive game
simulations integrating the reinforcement option.

Player
experience

Move
type

Number
of

rounds

Number
of

pairs
Victory

(%)

Loss

Stalemate
(%)

Multiple
yetis per
field (%)

Beginner simpl. 7.31 11.88 69.23 29.71 1.06
opt. 7.12 11.96 70.83 27.99 1.18

Experienced simpl. 6.02 13.15 89.89 9.32 0.79
opt. 5.69 13.28 91.24 7.74 1.02

To mitigate this problem, a new optional action named reinforcement was added
to the game mechanics. Once per game, this rule allows players to replace three of
their series cards with new cards from the dealer deck. Should a Yeti card be dealt
during this process, it can be shuffled back into the deck, and another card can be
drawn in its place. The simulation results for N = 10,000 games integrating the
reinforcement option are detailed in Table 7. In the simulation of the reinforcement
option, the series cards selected for discarding are chosen randomly without any
optimisation. Still, its integration results in a considerable increase in both the
number of rounds and the number of pairs played. More significantly, a shift in
the victory rate reflects a substantial improvement: leveraging the reinforcement
option, beginners, when making optimal decisions, can win approximately 70% of
their games, while experienced players can benefit from a victory rate of around
90%.

It is evident that the YETI game variant with the parameter values k = 12
and y = 16, along with the addition of avalanche cards and the reinforcement
option, fully meets the optimisation targets outlined in Subsection 4.2.1. However,
it is important to emphasise that the parameter optimisation process was focused
solely on game mechanics. To validate the effectiveness and assess the educational
content of the game, further experiments with human participants, who are subject
to errors and learning curves, are necessary. Additionally, potential issues arising
from the collaborative nature of the game warrant further investigation.
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4.3. Cooperativity variants of the game

Drawing from their research on mathematical board games, Nurnberger-Haag,
Wernet, Benjamin [25] propose that an effective didactic board game should en-
compass competitiveness and asynchronicity, integrate elements of luck, strategy,
and mathematical knowledge, and be suitable for both introducing and revising a
specific topic. However, their study exclusively examines competitive games, and
the authors themselves acknowledge that their recommendation is not definitive
regarding the question of competition versus cooperation. Despite this limitation,
YETI, with an added feature supporting asynchronous play, aligns with the enumer-
ated recommendations. The proposed modification can be implemented following
the drawing phase, when players cooperatively identify pairs of infinite series from
the pool of dealt cards. During this phase, each player is encouraged to choose a
series card and formulate a hypothesis regarding the convergence property of the
infinite sum showcased on it. If the others agree with the hypothesis, the selected
card is set aside into a group labelled as “convergent” or “divergent”. In contrast,
disagreements result in the chosen card remaining in the center, indicating that
its convergence property remains undetermined. This individual guessing exercise
not only introduces an asynchronous element into the game, but also simplifies
the pairing process by narrowing down the pool of possible combinations, as only
infinite sums with matching convergence properties can be paired up in the game.

The collaborative aspect of the game YETI prompts several key considerations.
A common issue in cooperative games is referred to as the Alpha Player Problem,
where a dominant player dictates the group’s actions and strategies, reducing the
input and control of others, thus diminishing their engagement and enjoyment.
YETI addresses this by allowing players to take turns hypothesising the convergence
of the dealt series at the beginning of each round, ensuring active participation from
all. Additionally, all pairing decisions must be explained, providing an opportunity
for less experienced players to learn from their more skilled counterparts. Since
YETI is recommended for supervised play, educators also have the opportunity to
address the Alpha Player Problem directly by either reassigning dominant players
to more suitable groups or creating new groups equipped with more challenging
decks.

The game’s structure is also adaptable to mitigate the Alpha Player Problem.
In collaborative game design, the most widely implemented solutions to prevent a
single player’s dominance include rotating leadership roles, realising exceptionally
quick gameplay, introducing hidden information, or incorporating a traitor me-
chanic. The latter two can be applied to the game YETI as well. The traitor can
be narratively presented as a spy from a rival village, aiming to mislead players into
making at least five pairing mistakes. If successful, the traitor wins the game, and
the others lose. Naturally, the impact of the traitor role requires thorough eval-
uation regarding its effect on players, its impact on the learning process, and the
potential confusion it may cause for less experienced players. Alternatively, hidden
information can be introduced by dealing each player two hidden series cards at the
beginning of the game. In this case, players have the option to exchange one card
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with another player each round, gradually becoming acquainted with all hidden
cards. If a player obtains pairable infinite sums as hidden cards, they can place
them on the game mat at the beginning of the round. This modification prevents
the dominance of alpha players, maintaining a balanced and engaging gameplay
experience for each participant.

5. Conclusion
This paper presented the intricate process of fine-tuning the didactic board game
YETI, which aims to familiarise students with the direct comparison test of infinite
series. Key aspects addressed by the tuning process include building a systematic
approach to marking the infinite sums featured in the card decks, tackling con-
cerns related to cooperativity, and optimising the key numerical parameters of the
game. In this endeavour, important targets such as balancing strategy and luck,
achieving seamless starts, and encouraging player engagement were reached. Monte
Carlo simulations were employed to resolve potential gameplay issues such as early
victories, stalemates, and guaranteed losses. Additionally, new gameplay features
like the reinforcement option and avalanche cards were introduced as part of the
optimisation process to maintain a challenging yet enjoyable player experience.

In board game research, Monte Carlo simulations are a well-established tool,
primarily used for developing AI-driven game agents and simulating opponents
via Monte Carlo Tree Search (MCTS) [1, 9, 23, 33, 38]. While there have been
attempts to leverage these simulations for fine-tuning mechanics or exploring game
configurations, such uses have largely been limited to computer games [12, 13,
15, 16]. It is also important to note that, so far, the Monte Carlo method has
predominantly been used as a technique for analysing adversarial, deterministic,
turn-based games [1, 5, 9]. Using YETI as a case study, our research illustrates
how Monte Carlo simulations can contribute to optimising game mechanics and
achieving balanced gameplay in the context of a non-deterministic, non-digital,
cooperative didactic board game.

The vast number of possible scenarios in game design makes manual testing
impractical and time-consuming, covering only a small area of the game space.
This is where Monte Carlo simulations prove valuable, bridging the gap between
the invention of mechanics and the assessment of the resulting dynamics. The
utilisation of simulations in the case of YETI enabled a thorough examination of
various game parameters, which significantly expedited the design process by re-
ducing the reliance on time-consuming manual testing. This efficiency allowed for
a comprehensive analysis of potential gameplay scenarios within a shorter time
frame, ensuring that the design process was concluded promptly and effectively.
Nevertheless, it is essential to acknowledge the limitations of such simulations.
While they are highly effective for setting game parameter values, they are not a
substitute for real-world testing. The behaviour of virtual players in simulations
does not accurately reflect the playing style, learning curve, and strategic diver-
sity of human players. Therefore, further testing involving human participants is
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necessary to validate the effectiveness and educational value of the game.
As evidenced by our research, tuning is an indispensable phase of didactic board

game design, where the finer details of the game are established to achieve the
intended player experience. This process can be approached in various ways, but it
consistently demands rigorous, critical thinking, a problem-solving mindset, and a
systematic approach. Monte Carlo simulations are a powerful tool in didactic game
design, particularly for games where the structure can be accurately simulated. The
successful application of these simulations in the development of the board game
YETI highlights their potential to facilitate the game design process and provide
well-balanced, engaging gameplay.
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