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1. Preliminaries
Concerning preliminaries we refer to [1, 4, 5], however, for convenience of the reader
we recall some basic definitions and theorems.

An incidence geometry (P,L, I ⊂ P × L) is a projective plane if

(P1) for every pair of distinct points A and B there is a unique line incident with
A and B (we denote this line by

←→
AB);

(P2) for every pair of distinct lines m and n there is a unique point incident with
m and m (we denote this point by m ∩ n);

(P3) there are four points no three of which are collinear.

In a projective plane an ordered triple of noncollinear points is a triangle. Then
the points are called the vertices, and the lines joining the three possible distinct
pairs of vertices are called sides.

We say that two triangles ABC and A′B′C ′ are centrally perspective from a
point O if the lines

←−→
AA′,

←−→
BB′ and

←−→
CC ′ are incident with O. The triangles are
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called axially perspective from a line l if the points
←→
AB ∩

←−→
A′B′,

←→
AC ∩

←−→
A′C ′ and←→

BC ∩
←−→
B′C ′ are incident with l. A projective plane is Dersarguesian, if any two

triangles that are perspective from a point are perspective from a line. This holds
of and only if it can be coordinatized by a skewfield.

In this paper we focus on the Bricard property of projective planes:

Let ABC and A′B′C ′ be two triangles, and let P :=
←→
BC∩

←−→
B′C ′, Q :=

←→
AC∩

←−→
A′C ′

and R :=
←→
AB ∩

←−→
A′B′. If

←−→
A′P ,

←−→
B′Q and

←−→
C ′R are concurrent, then D :=

←→
BC ∩

←−→
AA′,

E :=
←→
AC ∩

←−→
BB′ and F :=

←→
AB ∩

←−→
CC ′ are collinear.

Figure 1. The Bricard property.

In [3] it is shown that the Bricard property follows from the Desargues property.
It is an open question if the Desargues property is necessary in a projective

plane to satisfy the Bricard property. The author of [3] conjectures that the Bricard
property follows from the following weaker version of the Desargues property:
(D9): If the triangles A1B1C1 and A2B2C2 are perspective from a point O, and
the triplets (A1, B2, C1) and (A2, B1, C2) are collinear, then the two triangles are
perspective from a line.

In [5] we proved that the converse of the Bricard property does not necessar-
ily hold even under the following, somewhat stronger condition, which is valid in
Moufang planes:
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(D10): If two triangles A1B1C1 and A2B2C2 are perspective from a point O, and
O is incident to the line of

←−−→
A1B1 ∩

←−−→
A2B2 and

←−−→
A1C1 ∩

←−−→
A2C2, then the triangles are

perspective from a line.

However, it is unknown whether the Bricard property and its converse are equiv-
alent, therefore it is still unknown if the Bricard property hold in every Moufang
plane, or every projective plane satisfying (D10). In this paper we prove that nei-
ther (D9), nor (D10) implies the Bricard property, as we provide a counterexample
for the Bricard property in a Moufang plane.

We recall that a projective plane is a Moufang plane if and only if it can be
coordinatized by an alternative division ring, i.e., it is isomorphic to a projective
plane over an alternative division ring. We recall that a triplet (R, +, ·) (briefly R)
is called an alternative division ring if

Let R be a set and +, · be binary operations on R such that

• (R, +) is a commutative group with zero element 0;

• a · 0 = 0 · a = 0 for all a ∈ R;

• (R\{0}, ·) is a loop (for a definition, see, e.g., [2]);

• a · (b + c) = a · b + a · c,

• (a + b) · c = a · c + b · c,

• a · (a · b) = (a · a) · b,

• a · (b · b) = (a · b) · b; a, b, c ∈ R.

In the following we will write simply ab instead of a · b. We denote the unit of
(R\{0}, ·) by 1. In an alternative division ring for all a ∈ R\{0} there exists a
unique element a−1 such that aa−1 = a−1a = 1, canned the inverse of a. By a
difficult theorem of Bruck-Kleinfield and Skornyakov, an alternative division ring
either is associative or is a Cayley-Dickson algebra over some field. From this it
follows that in every alternative division ring we have the inverse property

a(a−1b) = (ba−1)a = b for all a ∈ R \ {0}, b ∈ R,

since this holds in every Cayley-Dickson algebra.
Let R be an alternative division ring. The incidence structure (P,L, I), where

• P := {[x, y, 1], [1, x, 0], [0, 1, 0] | x, y ∈ R};

• L := {⟨a, 1, b⟩, ⟨1, 0, a⟩, ⟨0, 0, 1⟩ | a, b ∈ R};

• ([x, y, z], ⟨a, b, c⟩) ∈ I if and only if xa + yb + zc = 0
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is a projective plane called the projective plane over the alternative division ring R.
The most simple example of an alternative division ring that is not a skewfield is

the alternative division ring of octonions. They can be constructed by the Cayley-
Dickson procedure from the ring of quaternions. An octonion can be written in
form

x = x0 + x1i + x2j + x3k + x4l + x5I + x6J + x7K,

where xi (i ∈ {0, 1, 2, 3, 4, 5, 6, 7}) are real numbers, and the rule of multiplication
of the basic elements i, j, k, l, I, J , K is given by the the following table:

i j k l I J K

i −1 l K −j J −I −k

j −l −1 I i −k K −J

k −K −I −1 J j −l i

l j −i −J −1 K k −I

I −J k −j −K −1 i l

J I −K l −k −i −1 j

K k J −i I −l −j −1

The conjugate of x = x0 + x1i + x2j + x3k + x4l + x5I + x6J + x7K is

x := x0 − x1i− x2j − x3k − x4l − x5I − x6J − x7K,

and the norm of x is

∥x∥ :=
√

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 + x2

7.

Then the inverse of x is
x−1 = x

∥x∥2 .

The projective plane over the octonions is called the octonion plane.

2. A counterexample for the Bricard property in
the octonion plane

Theorem 2.1. The Bricard property does not hold in every Moufang plane.

Proof. Consider the following triangles ABC and A′B′C ′ in the octonion plane:

A′[1, 0, 0], B′[0, 1, 0], C ′[0, 0, 1];

A

[
−1

2 + 1
2 i− 1

2k + 1
2K,−1

2 −
1
2 i− 1

2k + 1
2K, 1

]
,

B

[
1
2 + 1

2 i− j − l,
1
2 −

1
2 i− j − l, 1

]
,
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C

[
1
2 −

1
2j − 1

2k + 1
2I,

1
2 −

1
2j − 1

2k − 1
2I, 1

]
.

It is easy to see that A is incident to ⟨−1, 1, i⟩ and ⟨−k, 1, k⟩; B is incident to
⟨−1, 1, i⟩ and ⟨j, 1,−1⟩; C is incident to ⟨j, 1,−1⟩ and ⟨−k, 1, k⟩, therefore

←→
AB = ⟨−1, 1, i⟩,

←→
BC = ⟨j, 1,−1⟩,

←→
AC = ⟨−k, 1, k⟩.

Since ←−→
A′B′ = ⟨0, 0, 1⟩,

←−→
B′C ′ = ⟨1, 0, 0⟩,

←−→
A′C ′ = ⟨0, 1, 0⟩,

we get
P = [0, 1, 1], Q = [1, 0, 1], R = [1, 1, 0].

Therefore
←−→
A′P ,

←−→
B′Q and

←−→
C ′R are concurrent at the point O[1, 1, 1].

We are going to show that the points D :=
←→
BC ∩

←−→
AA′, E :=

←→
AC ∩

←−→
BB′ and

F :=
←→
AB ∩

←−→
CC ′ are not collinear.

To obtain the coordinates of D, first we determine the line
←−→
AA′. Since [1, 0, 0]

is incident to it, it is of the form
←−→
AA′ = ⟨0, 1, e⟩ for some octonion e. As the point

A is incident to the line, we get

−1
2 −

1
2 i− 1

2k + 1
2K + e = 0,

e = 1
2 + 1

2 i + 1
2k − 1

2K.

So
←−→
AA′ =

〈
0, 1,

1
2 + 1

2 i + 1
2k − 1

2K

〉
.

Next we calculate the intersection of
←−→
AA′ with the line

←→
BC = ⟨j, 1,−1⟩. If D =

[d1, d2, 1], then

d1j + d2 − 1 = 0;

d2 + 1
2 + 1

2 i + 1
2k − 1

2K = 0.

From the second equation we get d2, and the first equation gives d1 = (−d2 +
1)j−1 = −(−d2 + 1)j; therefore

D =
[
−3

2j − 1
2 l + 1

2I + 1
2J,−1

2 −
1
2 i− 1

2k + 1
2K, 1

]
.

We obtain the point E =
←→
AC ∩

←−→
BB′ in a similar manner. Since

←−→
BB′ =〈

1, 0,− 1
2 −

1
2 i + j + l

〉
and

←→
AC = ⟨−k, 1, k⟩, the [e1, e2, 1] coordinates of E sat-

isfy the following system of equations:

−e1 + e2 + k = 0;
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e1 −
1
2 −

1
2 i + j + l = 0.

From the first equation e2 = (e1 − 1)k and from the second equation e1 can be
expressed, therefore

E =
[

1
2 + 1

2 i− j − l,−1
2k − I + J + 1

2K, 1
]
.

Finally, we determine the point F =
←→
AB ∩

←−→
CC ′. Since C ′ = [0, 0, 1], the line

←−→
CC ′ is of the form ⟨c, 1, 0⟩ for some octonion c. To obtain c we use the fact that
C ∈

←−→
CC ′: (

1
2 −

1
2j − 1

2k + 1
2I

)
c +

(
1
2 −

1
2j − 1

2k − 1
2I

)
= 0.

From this equation,

c =
(

1
2 −

1
2j − 1

2k + 1
2I

)−1(
−1

2 + 1
2j + 1

2k + 1
2I

)
=

(
1
2 + 1

2j + 1
2k − 1

2I

)(
−1

2 + 1
2j + 1

2k + 1
2I

)
= −1

2 + 1
2I − 1

2k + 1
2j.

Thus
←−→
CC ′ =

〈
−1

2 + 1
2j − 1

2k + 1
2I, 1, 0

〉
.

So for the coordinates [f1, f2, 1] of F we have

−f1 + f2 + i = 0;

f1

(
−1

2 + 1
2j − 1

2k + 1
2I

)
+ f2 = 0.

From this we get
f1

(
1
2 + 1

2j − 1
2k + 1

2I

)
= i,

whence

f1 = i

(
1
2 + 1

2j − 1
2k + 1

2I

)−1
= i

(
1
2 −

1
2j + 1

2k − 1
2I

)
= 1

2 i− 1
2 l + 1

2K − 1
2J.

Therefore
F =

[
1
2 i− 1

2 l − 1
2J + 1

2K,−1
2 −

1
2 l + 1

2K − 1
2J, 1

]
.

It is well-known that if A[a1, a2, 1] and B[b1, b2, 1] are points in a projective
plane over an alternative division ring R, then the points of the line

←→
AB are of the

form
[t(a1, a2, 1) + (1− t)(b1, b2, 1)], t ∈ R or [1, x, 0].
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Therefore, if we want to check whether D, E and F are collinear, we need to check
if the coordinates of F can be combined from the coordinates of D and E in this
way. Suppose that such a t octonion exists. Then, from the first coordinates of D,
E and F , we get

t

(
−3

2j − 1
2 l + 1

2I + 1
2J

)
+ (1− t)

(
1
2 + 1

2 i− j − l

)
= 1

2 i− 1
2 l − 1

2J + 1
2K.

This equation leads to

t

(
−1

2 −
1
2 i− 1

2j + 1
2 l + 1

2I + 1
2J

)
= −1

2 + j + 1
2 l − 1

2J + 1
2K,

hence

t =
(
−1

2 + j + 1
2 l − 1

2J + 1
2K

)(
−1

2 −
1
2 i− 1

2j + 1
2 l + 1

2I + 1
2J

)−1

=
(
−1

2 + j + 1
2 l − 1

2J + 1
2K

)(
−1

3 + 1
3 i + 1

3j − 1
3 l − 1

3I − 1
3J

)
= −1

6 −
5
6 i− 1

6j − 1
6k + 1

6 l − 1
6I + 1

2J − 1
2K.

We check if the second coordinates can be combinated using the same coefficient.
In this case the following equation would hold:

t

(
−1

2 −
1
2 i− 1

2k + 1
2K

)
+ (1− t)

(
−1

2k − I + J + 1
2K

)
= −1

2 −
1
2 l + 1

2K − 1
2J.

Here the left side is(
−1

6 −
5
6 i− 1

6j − 1
6k + 1

6 l − 1
6I + 1

2J − 1
2K

)(
−1

2 −
1
2 i− 1

2k + 1
2K

)
+

(
7
6 + 5

6 i + 1
6j + 1

6k − 1
6 l + 1

6I − 1
2J + 1

2K

)(
−1

2k − I + J + 1
2K

)
,

whose real part is

1
12 −

5
12 −

1
12 + 1

4 + 1
12 + 1

6 + 1
2 −

1
4 = 1

3 .

Otherwise, the real part of the right side is − 1
2 ; therefore D, E and F are not

collinear.
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