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Abstract. In this paper, we introduce ruled like surfaces in three-dimensional
Euclidean space, E3. To form a ruled like surface in E3, we consider a base
curve γ(s) and a director curve X(s). Let parameter s be the angle between
the tangent of γ(s) and X(s) when X(s) lie on rectifying plane or in the
osculating plane. Whereas, if X(s) is in the normal plane, then parameter s
will be the angle between the normal of γ(s) and position vector of X(s) at
the corresponding point in E3. Then we investigate some characterizations
of such types of surfaces (say S(s, v)). Moreover, we find the condition for
the existence of Bertrand mate of γ(s) in S(s, v). Finally, as examples, we
construct the surfaces S(s, v) by using a straight line, circle and helix in E3.

Keywords: Bertrand curve, Frenet frame, rectifying plane, osculating plane,
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1. Introduction

Ruled surfaces are one of the basic and useful types of surfaces in differential
geometry. Ruled surfaces are in the class of those surfaces which are broadly
used in CAD systems. Ruled surfaces were introduced by G. Monge as a solution
of a partial differential equation. Different properties depending upon geodesic
curvature and the second fundamental form of ruled surfaces in E3 were studied
in [1]. Whereas the ruled surfaces generated by some special curves like circular
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helices, circular slant helices and Salkowski curves were considered in [15]. In
[18], authors derived the isogeodesic surface pencil so that the geodesic curve is a
directrix of the ruled surface.

The notion of pitch function for ruled surfaces was introduced by H. R. Müller
in 1951. The pitch function and angle function of the pitch for non-developable
ruled surfaces in E3 and E3

1 were further generalized in [9, 10]. For any non-
developable ruled surface, if the base curve is a striction line and the directrix
is a spherical curve, then the spherical Frenet frame can be obtained by using
directrix. This spherical Frenet frame brings out three functions along the base
curve on E3, known as structural functions. In [19], authors studied the properties
of non-developable ruled surfaces using structure functions. Ruled surfaces were
also studied in Minkowski space [7, 17] and in three-dimensional Lie groups [16].

The idea of the Bertrand curve was given by Saint Venant in 1845 by the
question “for any surface generated by a curve γ(s), does there exist any other curve
whose normal coincides with the normal of the initial curve”. Bertrand answered
this question in 1850 [4] by the condition, “a curve γ(s) on E3 is a Bertrand curve
if and only if there exists a linear relationship with constant coefficients between
the curvature and torsion of the original curve”. In [3, 5, 11], authors studied the
Bertrand curve in Minkowski space and three-dimensional sphere.

We organize our article as follows: Section 2, discusses some basic results of
curves and surfaces in E3. Ruled like surfaces, which are the core of our research
article, are also defined in the same section. In Section 3, we talk about various
characterizations of our surfaces, normal of the surface, Gaussian curvature, mean
curvature etc. In Section 4, the conditions are obtained for the Bertrand mate of
the curve γ(s), which lie in the normal ruled like surface formed by γ(s). In the
final section, as examples, the surfaces are constructed using a straight line, plane
curve circle and space curve helix.

2. Preliminaries and some results

Let γ(s) be a unit speed space curve in R3 with Frenet frame {T, N, B} along γ(s).
Then, we know that

T ′ = κN, N ′ = −κT + τB, B′ = −τN,

where κ is a curvature and τ is a torsion of γ(s).

Definition 2.1 ([6]). Let γ(s) be a smooth curve on E3. Then γ(s) is said to be a
Bertrand curve if there exists another curve β(s̄ = ϕ(s)) in E3 such that the normals
of γ(s) and β(s̄ = ϕ(s)) are linearly dependent to each other at corresponding
points. Here ϕ is a bijection from γ(s) to β(s̄) and β(s̄) is the Bertrand mate of
γ(s).

Definition 2.2 ([8]). The parametric representation of a ruled surface S(s, v) in
E3 is S(s, v) = γ(s) + vδ(s), where γ(s) is a space curve, δ : I → R3 − {0} is a
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smooth map and I is an open interval or a unit circle. The curves γ(s) and δ(s)
are known as the base and director curves, respectively. The map v → γ(s)+vδ(s)
is known as a ruling of S(s, v).

Let S(s, v) be a ruled surface in E3, then the various quantities associated with
the surface are defined as follows:

(A). Unit surface normal: N̂ = Ss×Sv

∥Ss×Sv∥ , where Ss = ∂S
∂s and Sv = ∂S

∂v .

(B). First fundamental form: I = Eds2 + 2Fdsdv + Gdv2, where E = ⟨Ss,Ss⟩,
F = ⟨Ss,Sv⟩ and G = ⟨Sv,Sv⟩.

(C). Second fundamental form: II = Lds2 + 2Mdsdv +Ndv2, where L = ⟨Sss, N̂⟩,
M = ⟨Ssv, N̂⟩ and N = ⟨Svv, N̂⟩.

If K is a Gaussian curvature, H is a mean curvature and λ is a distribution pa-
rameter of S(s, v), then from [13]

(D). K = LN−M2

EG−F2 , H = EN+GL−2FM
2(EG−F2) and λ = det(γ′(s),δ(s),δ′(s))

∥δ′(s)∥ .

The second Gaussian curvature KII of S(s, v) in E3 is defined by replacing the
components of the first fundamental form E, F and G by the components of the
second fundamental form L, M and N in Brioschi’s formulae respectively. In [2],
the second Gaussian curvature of a surface is defined as

KII = 1
(LN−M2)2

∣∣∣∣∣∣
− 1

2Lvv + Msv − 1
2Nss

1
2Ls Ms − 1

2Lv

Mv − 1
2Ns L M

1
2Nv M N

∣∣∣∣∣∣ −

∣∣∣∣∣∣
0 1

2Lv Ns
1
2Lv L M
1
2Ns M N)

∣∣∣∣∣∣
.

Let β(s) be a curve in S(s, v), then the normal curvature κn, geodesic curvature
κg and geodesic torsion τg of β(s) [1] are given by

κn = ⟨N̂ , T ′⟩, κg = ⟨N̂ × T, T ′⟩, and τg = ⟨N̂ × N̂ ′, T ′⟩.

The curve γ(s) in S(s, v) can be characterized on the basis of the values of κg, κn

and τg. That is
(1) γ(s) will be a geodesic if and only if κg = 0.
(2) γ(s) will be a asymptotic line if and only if κn = 0.
(3) γ(s) will be a principal line if and only if τg = 0.

In case of ruled surface S(s, v), the position vector of unit director curve δ(s)
can be written as [1]

δ(s) = f1T + f2N + f3B, (2.1)

where {T, N, B} is a Frenet frame along γ(s) and fi, i ∈ {1, 2, 3}, are fixed com-
ponents, i.e., f2

1 + f2
2 + f2

3 = 1.
In equation (2.1), it is clear that the components fi of the director curve are

fixed. Now, consider δ(s) lie on the normal plane of γ(s), such that the angle
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between δ(s) and N is arc length parameter s at the corresponding point. Then
the parametrization of S(s, v) is

S(s, v) = Sn(s, v) = γ(s) + v(cos(s)N + sin(s)B). (2.2)

Obviously, the parametrized surface formed in (2.2), is not a ruled surface. Be-
cause the components f1 = 0, f2 = cos(s) and f3 = sin(s) are not fixed. Similarly,
we can construct the surfaces

S(s, v) = So(s, v) = γ(s) + v(cos(s)T + sin(s)N), (2.3)

and
S(s, v) = Sr(s, v) = γ(s) + v(cos(s)T + sin(s)B), (2.4)

by taking δ(s) in osculating plane {T, N}, and rectifying plane {T, B} respectively,
such that the angle between δ(s) and T is s at corresponding point. Here, we define
the definition of a ruled like surface.

Definition 2.3. A surface S(s, v) with parametrization given by any one of the
equations (2.2), (2.3) and (2.4) is said to be a ruled like surface generated by a
curve γ(s) on E3. The surface Sn(s, v) is said to be a normal ruled like surface of
γ(s). Similarly, So(s, v) and Sr(s, v) are named as osculating ruled like surface and
rectifying ruled like surface of γ(s) on E3.

3. Some characterization of ruled like surfaces

For any surface in E3, unit surface normal, Gaussian curvature and Mean curvature
are some basic properties that help to understand the surface. In this section, all
these mentioned properties of ruled like surfaces generated by a space curve and a
plane curve in E3 are studied.

3.1. Normal ruled like surfaces
Let Sn(s, v) be a normal ruled like surface generated by space curve γ(s) on E3.
Then the partial derivative of (2.2), gives us{

Sn
s (s, v) = (1 − vκ cos(s))T − v(1 + τ) sin(s)N + v(1 + τ) cos(s)B,

Sn
v (s, v) = cos(s)N + sin(s)B,

as a natural frame {Sn
s (s, v),Sn

v (s, v)} of tangent space on Sn(s, v). Also,

∥ Sn
s (s, v) × Sn

v (s, v) ∥2= v2(1 + τ)2 + (1 − vκ cos(s))2 = 0,

if and only if τ = −1 and v = 1
κ cos(s) , for all s ∈ R − {(2n − 1) π

2 }, n is an integer.
Thus the singularity of Sn(s, v) can be removed by considering either τ ̸= −1 or
v ̸= 1

κ cos(s) , for all s ∈ R − {(2n − 1) π
2 }, n is an integer.
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From now on, we will take only those ruled like surfaces that are generated by
curves with τ(s) ̸= −1. The unit surface normal N̂n of Sn(s, v) generated by a
curve γ(s) with τ(s) ̸= −1 is obtained as follows:

N̂n = −v(1 + τ)T − sin(s)(1 − vκ cos(s))N + cos(s)(1 − vκ cos(s))B√
v2(1 + τ)2 + (1 − vκ cos(s))2

. (3.1)

The coefficients of first and second fundamental forms of surface Sn(s, v) are
E = v2(1 + τ)2 + (1 − vκ cos(s))2,

F = 0,

G = 1,

and, 
L = 1√

E{v2(1 + τ)(κ′ cos(s) − κ(2 + τ) sin(s))
−(1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)},

M = 1+τ√
E ,

N = 0,

respectively. Therefore the Gaussian curvature K and mean curvature H of the
surface are given by

K = − (1+τ)2

E2 ,

H = 1
2E

3
2

{v2(1 + τ)(κ′ cos(s) − κ(2 + τ) sin(s))
−(1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)}.

(3.2)

If γ(s) is a plane curve, then for a normal ruled like surface of γ(s) the unit surface
normal N̂n, the Gaussian and the mean curvatures can be obtained simply by
substituting τ = 0, in equations (3.1) and (3.2), respectively. Here we discuss only
the second Gaussian curvature KII of Sn(s, v) generated by a plane curve. The
second Gaussian curvature of Sn(s, v) is computed as:

KII = −LvEv

4 + L
4E

(
E2

v

2 − EEvv

)
+ Evs

2
√
E

− EsEv

2E 3
2

+ 1√
E

{
κ′ cos(s) + κ sin(s)

(
1 − κ2 cos2(s)

)}
,

where

Ev = 2{v − κ cos(s)(1 − vκ cos(s))},

Es = 2v(κ sin(s) − κ′ cos(s))(1 − vκ cos(s)),
Evv = 2(1 + κ2 cos2(s)),

L = 1√
E

{
v2(2κ sin(s) + κ′ cos(s)) − κ sin(s)(1 − vκ cos(s))2

}
,
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Lv = 1
E

[
2
√
E

{
v(2κ sin(s) + κ′ cos(s)) + κ2 sin(s) cos(s)(1 − vκ cos(s))

}
− 1

2LEv

]
.

From all the above discussions, we obtain the following theorems and corollary.

Theorem 3.1. Let Sn(s, v) be a normal ruled like surface generated by a space
curve γ(s), s ∈ I ⊂ R. Then the surface is singular if and only if τ(s) = −1, where
τ(s) is a torsion of γ(s).

Theorem 3.2. Let Sn(s, v) be a normal ruled like surface generated by a space
curve γ(s) with τ(s) ̸= −1. Then Sn(s, v) is neither a part of a sphere nor a plane.

Corollary 3.3. The Gaussian curvature and the mean curvature of a normal ruled
like surface are related by aH + bK = 0, where a = 2(1 + τ)2 and b = EL =√
E

{
v2(2κ sin(s) + κ′ cos(s)) − κ sin(s)(1 − vκ cos(s))2

}
.

Theorem 3.4. Let Sn(s, v) be a normal ruled like surface generated by γ(s) with
τ(s) ̸= −1. Then Sn(s, v) is a minimal surface if and only if γ(s) is a straight line.

Proof. Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then
from second part of equation (3.2), we have

v2(1 + τ)(κ′ cos(s) − 2κ sin(s)) = (1 − vκ cos(s))(κ sin(s)(1 − vκ cos(s)) − vτ ′)
=⇒ v2{

(1 + τ)(κ′ cos(s) − 2κ sin(s)) − κ3 sin(s) cos2(s) − κτ ′ cos(s)
}

+ v
(
τ ′ + 2κ2 sin(s) cos(s)

)
+ κ sin(s) = 0.

Now, comparing the coefficients of v on both sides, we get
(1 + τ)(κ′ cos(s) − 2κ sin(s)) − κ3 sin(s) cos2(s) − κτ ′ cos(s) = 0,

τ ′ + 2κ2 sin(s) cos(s) = 0,

κ sin(s) = 0.

(3.3)

Because s ∈ I ⊂ R, therefore sin(s) ̸= 0 ∀ s. Thus, from the last part of (3.3),
κ = 0. Hence γ(s) is a straight line.

Conversely, assume that Sn(s, v) be a normal ruled like surface generated by a
straight line. Then taking κ = 0 and τ = 0 in second part of equation (3.2), we
have H = 0. Hence Sn(s, v) is a minimal surface.

3.2. Osculating and rectifying ruled like surfaces
In this section, the coefficients of the first and the second fundamental forms, the
Gaussian and the mean curvatures of osculating and rectifying ruled like surfaces
are studied.

Let γ(s) be a space curve in E3 and So(s, v), Sr(s, v) are osculating and rec-
tifying ruled like surfaces, respectively. Then natural frame {So

s(s, v),So
v(s, v)} of
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So(s, v), and {Sr
s(s, v),Sr

v(s, v)} of Sr(s, v) are{
So

s(s, v) = (1 − v(1 + κ) sin(s))T + v(1 + κ) cos(s)N + vτ sin(s)B,

S0
v(s, v) = cos(s)T + sin(s)N,

and, {
Sr

s(s, v) = (1 − v sin(s))T + v(κ cos(s) − τ sin(s))N + v cos(s)B,

Sr
v(s, v) = cos(s)T + sin(s)B,

respectively. First, we will discuss various properties of So(s, v) in E3. The unit
surface normal for So(s, v) is obtained by using the relation N̂ = So

s×So
v

∥So
s×So

v∥ , where

So
s × So

v = −τv sin2(s)T + τv sin(s) cos(s)N + (sin(s) − v(1 + κ))B,

∥ So
s × So

v ∥2= v2τ2 sin2(s) + (sin(s) − v(1 + κ))2.

Now, ∥ So
s × So

v ∥2= 0 if and only if any one of the following conditions holds:
(1) v = 0 and s = nπ, where n is an integer,
(2) τ = 0 and v = sin(s)

1+κ .
Therefore, if γ(s) is neither a plane curve nor a straight line, then So(s, v),

s, v ∈ I(open interval) ⊂ R, have singularity only at v = 0 and s = nπ, where n is
an integer. The parametrization for So(s, v) can be further modified by removing
v = 0.

But just for convenience we are considering the surface So(s, v) with parameters
s, v ∈ I(open interval) ⊂ R such that v > 1 i.e., v = (1, |a|), where 1 < |a| ∈ R.
Thus the surface So(s, v) is now a regular surface for all s ∈ I, and v = (1, |a|).
The unit surface normal N̂o of So(s, v), is obtained as

N̂o = −τv sin2(s)T + τv sin(s) cos(s)N + (sin(s) − v(1 + κ))B√
τ2v2 sin2(s) + (sin(s) − v(1 + κ))2

. (3.4)

The components of the first and second fundamental forms, the Gaussian and
mean curvatures of So(s, v) are

E = cos2(s) + (sin(s) − v(1 + κ))2 + τ2v2 sin2(s), F = cos(s), G = 1.
L = 1√

EG−F2 {τv sin(s)
[
vκ′ + cos(s)

(
κ − vτ2 sin(s)

)]
+ (sin(s) − v(1 + κ))(vτ(2 + κ) cos(s) + vτ ′ sin(s))},

M = τ sin2(s)√
EG−F2 , N = 0.

(3.5)

Ko = − τ2 sin4(s)
(EG − F2)2 , Ho = L

2(EG − F2) − cos(s)
√

−Ko,

respectively. Similarly, for surface Sr(s, v), ∥ Sr
s ×Sr

v ∥2= v2(κ cos(s) − τ sin(s))2 +
(v − sin(s))2 = 0 if and only if it satisfies any one of the following conditions:
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(1) v = 0 and s = nπ, where n is an integer,
(2) κ cos(s) − τ sin(s) = 0 and v = sin(s).

Because −1 ≤ sin(s) = v ≤ 1, therefore the surface Sr(s, v) is regular ∀ s ∈
I(open interval) ⊂ R and v = (1, |a|), where |a| is some real number greater then
one. The unit surface normal, the Gaussian curvature and the mean curvature of
Sr(s, v) are given by the following relations

N̂r = v sin(s)(κ cos(s)−τ sin(s))T +(v−sin(s))N+v cos(s)(τ sin(s)−κ cos(s))B√
(v−sin(s))2+v2(κ cos(s)−τ sin(s))2

, (3.6)

Kr = − sin2(s)(κ cos(s)−τ sin(s))2

(EG−F2)2 , Hr = L
2(EG−F2) − cos(s)

√
−Kr. (3.7)

where,
EG − F2 = (v − sin(s))2 + v2(κ cos(s) − τ sin(s))2,

and,

L = 1√
EG−F2 {

[
−v2(κ cos(s) − τ sin(s))2(κ sin(s) + τ cos(s))

]
+ (v − sin(s))(v(κ cos(s) − τ sin(s))′ + κ(1 − v sin(s)) − τv cos(s))}.

Thus, we have the following theorems:

Theorem 3.5. Let γ(s) be a space curve with τ ̸= 0 and surfaces So(s, v), Sr(s, v),
s ∈ I(open interval) ⊂ R, 1 < v ∈ J(open interval) ⊂ R are generated by γ(s).
Then at points s = nπ, the surfaces are flat.

Theorem 3.6. Let γ(s) be a plane curve and So(s, v), s ∈ I(open interval) ⊂ R,
1 < v ∈ J(open interval) ⊂ R is an osculating surface. Then So(s, v) is flat and
minimal in E3.

Theorem 3.7. Let Sr(s, v), s ∈ I(open interval) ⊂ R, 1 < v ∈ J(open interval) ⊂
R be a rectifying ruled like surfaces generated by γ(s); s ∈ I. Then Sr(s, v) is a
flat and minimal surface if and only if it is generated by a straight line.

4. Characterizations of curves in normal ruled like
surface Sn(s, v)

Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then the
different properties of γ(s) in Sn(s, v) like, whether γ(s) is a geodesic or not and
asymptotic curve of Sn(s, v) or not are studied. Also, we find the condition for
Bertrand mate of γ(s) to lie on Sn(s, v).

Theorem 4.1. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and Sn(s, v) be a normal
ruled like surface of unit speed space curve γ(s) with τ(s) ̸= 0 . Then unit speed
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curve β(s̄) with κ̄(s̄) ̸= 0 lies on Sn(s(s̄), v(s̄)) if and only if the parameters s(s̄)
and v(s̄) satisfies the following conditions

sin(s)v̈ + 2b cos(s)(1 + τ)v̇
+ b2

(
cos(s)(ηab(1 + τ) + τ ′) − sin(s)(1 + τ)2

)
v = 0,

−2κ cos(s)v̇ + (κ sin(s)(2 + τ) − cos(s)(κ′ + abηκ))v + ηab2 = 0,
ds
ds̄ = 1√

(1−ηκ)2+η2τ2
= b and η(κ2 − τ2)′ = 2(κ′ − a

b ),

(4.1)

where ϵ = ±1, η ̸= 0 is an arbitrary constant and a = ϵ
√

(κ′2 + τ ′2).

Proof. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and γ(s) be a space curve with
τ(s) ̸= 0 . Then

β(s̄) = γ(s) + η(s)N, (4.2)

where η is a smooth function on E3 and N is a normal vector field of Frenet frame
{T, N, B} along γ(s) on E3. The derivative of equation (4.2), with respect to s̄,
gives the relation

T̄ (s̄) = ((1 − η(s)κ)T + η′N + ητB)ds

ds̄
, (4.3)

where T̄ is a tangent vector field of β(s̄) in E3. The scalar product of equation
(4.3) with N , implies that η(s) = constant ̸= 0. Now differentiating the equation
(4.3) with respect to s̄, and then taking the scalar product of differential equation
with T̄ , B̄, we have

(1 − ηκ)d2s

ds̄2 = ηκ′

((1 − ηκ)2 + η2τ2) and ητ
d2s

ds̄2 = − ητ ′

((1 − ηκ)2 + η2τ2) .

=⇒ d2s

ds̄2 =
ϵη

√
(κ′2 + τ ′2)

((1 − ηκ)2 + η2τ2)
3
2

, (4.4)

where ϵ = ±1. Also

ds

ds̄
= 1√

((1 − ηκ)2 + η2τ2)
=⇒ d2s

ds̄2 = ηκ′ − η2(κκ′ + ττ ′)
((1 − ηκ)2 + η2τ2)2 . (4.5)

Thus from (4.4) and (4.5), we get η(κ2 − τ2)′ = 2(κ′ − a
b ), where a = ϵ

√
(κ′2 + τ ′2)

and b = 1√
((1−ηκ)2+η2τ2)

.
Let β(s̄) be a curve on surface Sn(s(s̄), v(s̄)). Then β(s̄) is given by

β(s̄) = Sn(s(s̄), v(s̄)); s̄ 7→ (s(s̄), v(s̄)). (4.6)

Differentiating (4.6), two times with respect to s̄, we have

κ̄(s̄)N̄(s̄) = Sn
v (s(s̄), v(s̄))v̈ + 2Sn

sv(s(s̄), v(s̄))ṡv̇ + Sn
vv(s(s̄), v(s̄))v̇2
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+ Sn
ss(s(s̄), v(s̄))ṡ2 + Sn

s (s(s̄), v(s̄))s̈, (4.7)

where v̈ = d2v
ds̄2 , v̇ = dv

ds̄ , s̈ = d2s
ds̄2 and ṡ = ds

ds̄ . The partial derivatives of Sn(s(s̄), v(s̄))
with respect to s and v, are

Sn
v (s(s̄), v(s̄)) = (cos(s)N + sin(s)B), (4.8)

Sn
sv(s(s̄), v(s̄)) = −κ cos(s)T − sin(s)(1 + τ)N + cos(s)(1 + τ)B, (4.9)
Sn

s (s(s̄), v(s̄)) = (1 − vκ cos(s))T − v sin(s)(1 + τ)N + v cos(s)(1 + τ)B, (4.10)
Sn

ss(s(s̄), v(s̄)) = v(κ(2 + τ) sin(s) − κ′ cos(s))T
+ v

(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
B,

+
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
N. (4.11)

Now, using the equations (4.8)–(4.11), in equation (4.7), and the fact that N̄ and
N are collinear, we get

sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2 = 0,

−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2 = 0.

(4.12)

Substituting ṡ and s̈ from (4.3) and (4.4), in equation (4.12), we obtained the
required conditions.

Conversely, Let β(s̄) is a curve on surface Sn(s(s̄), v(s̄)) such that the map
s̄ 7→ (s(s̄), v(s̄)), satisfies the equation (4.1). Then, on substituting (4.8)–(4.11), in
equation (4.7), we obtain

κ̄(s̄)N̄(s̄) = {sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2}B + {cos(s)v̈ − 2 sin(s)(1 + τ)ṡv̇

− sin(s)(1 + τ)vs̈ +
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
ṡ2}N

{−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2}T.

As ⟨N̄ , T ⟩ = 0 and ⟨N̄ , B⟩ = 0, hence N̄ and N are collinear. Therefore, β(s̄) is a
Bertrand mate of γ(s).

Theorem 4.2. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and β(s̄) is lying on
normal ruled like surface Sn(s, v) of γ(s) with τ(s) ̸= 0 . Then the map s̄ 7→ v(s̄)
satisfies the relation

v =


κ sin(s) cos(s)b(κ−(κ(1−ηκ)−ητ2)b3)−η(1+τ)ab

κ sin(s)(κ2 cos2(s)+(1+τ)(2+τ))+cos(s)(κτ ′−κ′(1+τ)) if sin(s) ̸= 0 and cos(s) ̸= 0,

−λ ηab
κ(2+τ) if sin(s) = ±1 = λ and cos(s) = 0,

−λ ηab(1+τ)
τ ′κ−κ′(1+τ) if cos(s) = ±1 = λ and sin(s) = 0,

where ϵ = ±1, η ̸= 0 is an arbitrary constant, a = ϵ
√

(κ′2 + τ ′2) and b =
1√

(1−ηκ)2+η2τ2
.
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Proof. Let (γ(s), β(s̄)) be a Bertrand couple in E3 and β(s̄), lying on normal
ruled like surface Sn(s, v) of γ(s) with τ(s) ̸= 0 . Then, substituting (4.8)–(4.11),
in (4.7), and taking the scalar product with T , N and B, we have

−2κ cos(s)v̇ṡ + (1 − vκ cos(s))s̈ + v(κ(2 + τ) sin(s) − κ′ cos(s))ṡ2 = 0,

cos(s)v̈ − 2 sin(s)(1 + τ)ṡv̇ − sin(s)(1 + τ)vs̈

+
(
κ(1 − vκ cos(s)) − vτ ′ sin(s) − v(1 + τ)2 cos(s)

)
ṡ2 = κ̄⟨N, N̄⟩,

sin(s)v̈ + 2 cos(s)(1 + τ)ṡv̇ + cos(s)(1 + τ)vs̈

+ v
(
τ ′ cos(s) − (1 + τ)2 sin(s)

)
ṡ2 = 0.

(4.13)

Now, if both cos(s) ̸= 0 and sin(s) ̸= 0, then from second and third part of (4.13),
we get

2(1 + τ)v̇ṡ + (1 − τ)vs̈ + (−κ sin(s)(1 − vκ cos(s)) + vτ ′)ṡ2

= −κ̄ sin(s)⟨N, N̄⟩, (4.14)

Using equations (4.3), (4.4) and (4.14) in the first part of (4.13), we obtain

v =
κ sin(s) cos(s)b

(
κ − κ̄⟨N, N̄⟩b

)
− η(1 + τ)ab

κ sin(s)(κ2 cos2(s) + (1 + τ)(2 + τ) + cos(s)(κτ ′ − κ′(1 + τ))) , (4.15)

where a = ϵ
√

(κ′2 + τ ′2) and b = 1√
((1−ηκ)2+η2τ2)

. Also, if we differentiate (4.3)
with respect to s̄, and take the scaler product with the normal, then

κ̄⟨N, N̄⟩ = κ(1 − ηκ) − ητ2

(1 − ηκ)2 + η2τ2 = b2(
κ(1 − ηκ) − ητ2)

. (4.16)

Hence, equations (4.15) and (4.16) together prove the first part of the theorem. To
prove the other two parts consider cos(s) = 0, sin(s) = ±1 = λ and sin(s) = 0,
cos(s) = ±1 = λ in equation (4.13), we get

s̈ + λκ(2 + τ)vṡ2 = 0,

−2λ(1 + τ)ṡv̇ − λ(1 + τ)vs̈ + (κ − vτ ′λ)ṡ2 = κ̄⟨N, N̄⟩,
λv̈ − vλ(1 + τ)2ṡ2 = 0,

(4.17)

and, 
−2κλv̇ṡ + (1 − vκλ)s̈ − κ′λvṡ2 = 0,

λv̈ +
(
κ(1 − vλκ) − v(1 + τ)2λ

)
ṡ2 = κ̄⟨N, N̄⟩,

2λ(1 + τ)ṡv̇ + λ(1 + τ)vs̈ + τ ′λvṡ2 = 0.

(4.18)

The second part of the theorem is proved by the first part of (4.17), (4.3) and (4.4).
Whereas to prove the third part of the theorem, solve the first and third parts of
(4.18) by replacing the values of v̇ṡ, and then use equations (4.3) and (4.4) to get
the required result.
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Theorem 4.3. Let Sn(s, v) be a normal ruled like surface generated by a curve
γ(s). Then γ(s) is neither an asymptotic curve nor a geodesic of Sn(s, v).

Proof. Let Sn(s, v) be a normal ruled like surface generated by a curve γ(s). Then
the unit surface normal of Sn(s, v) is given by the equation (3.1). Now from [14,
p. 166], we have

κg = κ⟨N, N̂ × T ⟩ and κn = κ⟨N, N̂⟩. (4.19)

Thus the unit surface normal N̂ and N̂ × T along γ(s), from (3.1) we have{
N̂(s, 0) = − sin(s)N + cos(s)B,

N̂(s, 0) × T = cos(s)N + sin(s)B.
(4.20)

Therefore, from (4.19) and (4.20), κg = κ cos(s) ̸= 0 and κn = −κ sin(s) ̸= 0 for
all s. Hence γ(s) is neither an asymptotic curve nor a geodesic of Sn(s, v).

Corollary 4.4. The geodesic torsion of the curve γ(s) on normal ruled like surface
Sn(s, v) is given by τg = κ cos(s) sin(s).

Proof. From relation τg
Υ = ⟨N̂(s, 0) × N̂s(s, 0), κN⟩, we get the solution of this

corollary by direct calculation.

As we know Sn(s, v) = γ(s) + v(cos(s)N + sin(s)B), where X(s) = cos(s)N +
sin(s)B); ⟨X(s), X(s)⟩ = 1 and ⟨T, X⟩ = 0. Therefore, we can make another frame
{T, X(s), T × X = Y } in Sn(s, v), such that the derivative of T , X and Y satisfies
the equations ∣∣∣∣∣∣

T ′

X ′

Y ′

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 κ cos(s) −κ sin(s)

−κ cos(s) 0 (1 + τ)
κ sin(s) −(1 + τ) 0

∣∣∣∣∣∣
∣∣∣∣∣∣
T
X
Y

∣∣∣∣∣∣, (4.21)

and this frame coincides with the Darboux frame along γ(s) in Sn(s, v).

Theorem 4.5. Let Sn(s, v) = γ(s)+vX(s), where X(s) = cos(s)N +sin(s)B. Then
orthogonal trajectory of X(s) lies in Sn(s, v) if and only if v = κ cos(s)

κ2 cos2(s)+(1+τ)2 .

Proof. Let δ(s) be an orthogonal trajectory of X(s) lying on Sn(s, v). Then

δ(s) = γ(s) + v(s)X(s) and ⟨δ′(s), X ′(s)⟩ = 0

Also, from 4.21, we get

0 =⟨δ′(s), X ′(s)⟩ = ⟨T, X ′(s)⟩ + v⟨X ′(s), X ′(s)⟩,

=⇒ v = κ cos(s)
κ2 cos2(s) + (1 + τ)2 . (4.22)

Equation (4.22) proves the first part of the theorem.
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Now to prove converse part, let Sn(s, v) = γ(s)+vX(s), with X(s) = cos(s)N +
sin(s)B and v = κ cos(s)

κ2 cos2(s)+(1+τ)2 . Then by taking

δ(s) = γ(s) + κ cos(s)
κ2 cos2(s) + (1 + τ)2 (cos(s)N + sin(s)B),

it is easy to prove that ⟨δ′(s), X ′(s)⟩ = 0(use Frenet frame of γ(s)). Hence δ(s) is
an orthogonal trajectory of γ(s) in Sn(s, v).

Note. Similar way, we can also study the characterizations of curves lying on
osculating and rectifying ruled like surfaces.

5. Examples for ruled like surfaces
In this section, we form the normal, osculating and rectifying ruled like surfaces
generated from a straight line, circle and helix. Also, we plot the orthogonal
trajectory of X(s) = cos(s)N + sin(s)B in a normal ruled like surface.

Example 5.1. Let γ(s) = (s, 0, 0) be a straight line in E3. Then Frenet frame
along γ(s) can be taken as follows

T (s) = (1, 0, 0), N(s) = (0, 1, 0), B(s) = (0, 0, 1).

Then, the parametrization for normal, osculating and rectifying ruled like surfaces
for a straight line are given by

Sn(s, v) =
(

s, v cos(s), v sin(s)
)

, ∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

s + v cos(s), v sin(s), 1
)

, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sn(s, v) =
(

s + v cos(s), 1, v sin(s)
)

∀ s ∈ I ⊂ R, v ∈ (1, b); and 1 < b ∈ R.

Now, we will discuss these surfaces one by one.

Case 1. Consider the surface Sn(s, v) = (s, v cos(s), v sin(s)), ∀ s ∈ I and v ∈ J ;
I, J ⊂ R. Then the natural frame {Sn

s (s, v),Sn
v (s, v)} on Sn(s, v) are

Sn
s (s, v) = (1, −v sin(s), v cos(s)), and Sn

v (s, v) = (0, cos(s), sin(s)).

Therefore the unit surface normal of Sn(s, v) is N̂n = 1√
1+v2 (−v, sin(s), cos(s)).

The coefficients of first fundamental form are E = (1 + v2), F = 0 and G = 1.
Whereas coefficients of the second fundamental form are L = 0, M = 1√

1+v2 and
N = 0.

Thus the surface Sn(s, v) is minimal and a surface of negative Gaussian curva-
ture in E3.
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Case 2. Let So(s, v) = (s + v cos(s), v sin(s), 1), ∀ s ∈ I, v ∈ (1, b), I ⊂ R and
1 < b ∈ R. Then {So

s(s, v),S0
v(s, v)} is a natural frame of So(s, v) and So

s(s, v),
S0

v(s, v) are obtained as follows

So
s(s, v) = (1 − v sin(s), v cos(s), 0), and S0

v(s, v) = (cos(s), sin(s), 0).

The unit surface normal N̂o of So(s, v) is N̂o = (0, 0, 1). Thus the first I and the
second II fundamental forms of So(s, v) are I =

(
(s + v cos(s)2 + v2 sin2(s))

)
ds2 +

2Fdsdv+dv2 and II = 0, respectively. Hence the surfaces of type So(s, v) generated
by the straight line in E3 are minimal and flat.

The nature of rectifying surface of a straight line is not much different as com-
pared to the osculating surface. Because the rectifying and osculating ruled like
surfaces of straight-line look the same. Therefore we give figures only for regular
osculating surfaces and irregular rectifying surfaces in E3.

(a) Normal ruled like surface of
the straight line for −5 < s < 5

and −10 < v < 10.

(b) Osculating ruled like surface
of the straight line for −5 < s < 5

and 1 < v < 10.

(c) Rectifying ruled like surface
of the straight line(Irregular) for

−5 < s < 5 and −10 < v < 10.

Figure 1. Ruled like surfaces of a straight line.

Example 5.2. Let γ(s) = (cos(s), sin(s), 0) be a circle in E3. Then Frenet frame
of γ(s) on E3 are

T (s) = (− sin(s), cos(s), 0), N(s) = (− cos(s), − sin(s), 0), B(s) = (0, 0, −1).
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Therefore the ruled like surfaces of the circle are given by

Sn(s, v) =
(

cos(s) − v cos2(s), sin(s) − v sin(s) cos(s), −v sin(s)
)

,

∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

cos(s) − 2v sin(s) cos(s), sin(s) + v(cos2(s) − sin2(s)), 0
)

,

∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sr(s, v) =
(

cos(s) − v sin(s) cos(s), sin(s) + v cos2(s), −v sin(s)
)

∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R.

Thus, the unit surface normal of the surfaces from equations (3.1), (3.4) and (3.6)
are

Nn(s, v) = 1√
v2+(1−v cos(s))2

{
v sin(s) + sin(s) cos(s)

(
1 − v cos(s)

)
,

−v cos(s) + sin2(s)(1 − v cos(s)), cos(s)
(
1 − v cos(s)

)}
,

No(s, v) = (0, 0, −1),
Nr(s, v) = 1√

(v−sin(s))2+v2 cos(s)2

{
v sin2(s) cos(s) − cos(s)(v − sin(s)),

v sin(s) cos2(s) − sin(s)(v − sin(s)), v cos(s) cos(s)
}

.

Similarly, the Gaussian and the mean curvatures for the surfaces can be obtained
from (3.2), (3.5) and (3.7). Also, the orthogonal trajectory of X(s) = cos(s)N +
sin(s)B = (− cos2(s), − sin(s) cos(s), − sin(s)) from Theorem 4.5 is (see the Fig-
ure 2)

δ(s) =
(

cos(s)
1 + cos2(s) ,

sin(s)
1 + cos2(s) ,

− sin(s) cos(s)
1 + cos2(s)

)
.

Figure 2. Orthogonal trajectory of X(s) for −5 < s < 5 in Fig-
ure 3a.

Example 5.3. Let γ(s) = 1√
2 (cos(s), sin(s), s) be a circular helix in E3. Then

Frenet frame along γ(s) are
T (s) = 1√

2 (− sin(s), cos(s), 1),
N(s) = (− cos(s), − sin(s), 0),
B(s) = 1√

2 (sin(s), − cos(s), 1).
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(a) Normal ruled like surface of
the circle for −5 < s < 5 and

−10 < v < 10.

(b) Osculating ruled like surface
of a circle for −5 < s < 5 and

1 < v < 10.

Figure 3. Normal and osculating ruled like surfaces of the circle.

(a) Rectifying ruled like surface
of the circle(regular) for −5 <

s < 5 and 1 < v < 10.

(b) Rectifying ruled like surface
of the circle(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 4. Rectifying ruled like surfaces of the circle.

Thus, the ruled like surfaces of the circular helix are given by the following equa-
tions:

Sn(s, v) =
(

cos(s)√
2 + v(− cos2(s) + sin2(s)√

2 ), sin(s)√
2 − v(cos(s) sin(s))( 1+

√
2√

2 ),
s√
2 + v sin(s)√

2

)
, ∀ s ∈ I, v ∈ J and I, J ⊂ R,

So(s, v) =
(

cos(s)√
2 − v( sin(s) cos(s)√

2 + sin(s) cos(s)), sin(s)√
2 + v( cos2(s)√

2 − sin2(s)),
s√
2 + v cos(s)√

2

)
, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R,

Sr(s, v) = 1√
2

(
cos(s) + v sin(s)(sin(s) − cos(s)), sin(s) + v cos(s)

(
cos(s)

− sin(s)
)
, s + v(sin(s) + cos(s))

)
, ∀ s ∈ I ⊂ R, v ∈ (1, b) and 1 < b ∈ R.

The unit surface normal for these surfaces can be obtained by using equations
(3.1), (3.4) and (3.6), respectively. Also, the orthogonal trajectory of X(s) =
cos(s)N + sin(s)B = (− cos2(s), − sin(s) cos(s), − sin(s)) from Theorem 4.5 is (see
Figure 5b)

δ(s) =
(

1√
2

cos(s) +
√

2 cos(s)
cos2(s) + (1 +

√
2)2

(
sin2(s)√

2
− cos2(s)

)
,

1√
2

sin(s)
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− (1 +
√

2) sin(s) cos2(s)
cos2(s) + (1 +

√
2)2

,
s√
2

+ sin(s) cos(s)
cos2(s) + (1 +

√
2)2

)
.

(a) Normal ruled like surface of
the helix for −5 < s < 5 and

−10 < v < 10.

(b) Orthogonal trajectory of
X(s) for −5 < s < 5 in Figure

5a.

Figure 5. Normal ruled like surface of the helix and Orthogonal
trajectory of X(s).

(a) Osculating ruled like surface
of the helix for −5 < s < 5 and

1 < v < 10.

(b) Osculating ruled like surface
of the helix(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 6. Osculating ruled like surfaces of the helix.

(a) Rectifying ruled like surface
of the helix for −5 < s < 5 and

1 < v < 10.

(b) Rectifying ruled like surface
of the helix(Irregular) for −5 <

s < 5 and −10 < v < 10.

Figure 7. Rectifying ruled like surfaces of the helix.
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6. Conclusion
For normal ruled like surfaces, we consider only those surfaces which are generated
by curves with τ(s) ̸= −1, therefore in the case of Salkowski curves [12] heaving
τ(s) = tan(s) regular normal ruled like surfaces are not possible with the same
parametrization. Whereas in the case of rectifying ruled like surfaces generated by
a curve, we got a case for some curve whose ratio of curvature and torsion holds
the equation

κ

τ
=

{
tan(s), if s ̸= (2n + 1) π

2 ,

0, if s = (2n + 1) π
2 .

Thus exploring more details about this curve may give some new results. Fur-
thermore, we believe that using this way of parametrization, one can find different
surfaces in Minkowski space as well.
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