Computation of the Wedderburn decomposition of semisimple group algebras of groups up to order 120

Gaurav Mittal ${ }^{\text {a }}$, Rajendra Kumar Sharma ${ }^{\text {b }}$

${ }^{\text {a }}$ Defence Research and Development Organization, New Delhi, 110054, India gaurav.mittaltwins@gmail.com
${ }^{\mathrm{b}}$ Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, 110016, India
rksharmaiitd@gmail.com

Abstract

In this paper, we discuss the Wedderburn decompositions of the semisimple group algebras of all groups up to order 120. More precisely, we explicitly compute the Wedderburn decompositions of the semisimple group algebras of 26 non-metabelian groups.

Keywords: Unit group, Finite field, Wedderburn decomposition
AMS Subject Classification: 16U60, 20C05

1. Introduction

Let G be a finite group and \mathbb{F}_{p} be a finite field for a prime p having characteristics p. Let p be such that $p \nmid|G|$. This means that the group algebra $\mathbb{F}_{p} G$ is semisimple (see [13]). Due to various applications of units of group algebras (for example, in cryptography $[6,14]$, in coding theory [7], in isomorphism problems and exploration of Lie properties of group algebras [2] etc.), the problem of computing the Wedderburn decompositions (or unit groups) of finite semisimple group algebras is an extensively studied problem (see $[1,3,5,9,11,12,15,19,21]$ and the references therein).

One of the major steps in the direction of computation of Wedderburn decompositions (WDs) of finite semisimple group algebras was taken in [1]. The paper [1] gave an algorithm to compute the WDs of the semisimple group algebras of all

[^0]metabelian groups. We recall that a finite group G is metabelian if its derived subgroup is abelian. Consequently, the entire research in this direction is shifted on to the computation of WDs of semisimple group algebras of non-metabelian groups. Mittal et al. [17] computed the WDs of semisimple group algebras of all non-metabelian groups up to order 72. Furthermore, Mittal et al. [16, 18, 22] also computed the WDs of all semisimple group algebras of all non-metabelian groups of order 108 and some non-metabelian groups of order 120. Since, the WDs of semisimple group algebras of the symmetric groups S_{n} can be easily computed by employing the representation theory (see [8]), the papers [18, 22] completed the task of computation of WDs of group algebras of non-metabelian groups of order 120.

Using [20] we note that the only non-metabelian groups of order less than 120 that are not yet studied in the literature are those of order 96 . Hence, the main objective of this paper is to complete the task of computation of WDs of group algebras of 26 non-metabelian groups of order 96 . Consequently, with this paper, the computation of the WDs of semisimple group algebras of all groups up to order 120 will be complete. From the WD, the unit group can be computed straightforwardly.

Organization of the paper. Section 2 contains certain preliminaries that play an important role in the computation of WDs. Our main results related to WDs of semisimple group algebras are discussed in Section 3. We give the complete details of computation of WDs only for a few groups among the 26 groups. This is because for the remaining groups, the details can be generated analogously. We conclude the paper in the last section.

2. Preliminaries

Let the exponent of the group G be denoted by e and let the primitive $e^{\text {th }}$ root of unity be denoted by ε. In our work, we use the notations of [4]. Let \mathbb{F} denote a finite field. Let us define

$$
I_{\mathbb{F}}=\left\{\omega \mid \varepsilon \mapsto \varepsilon^{\omega} \text { is an automorphism of } \mathbb{F}(\varepsilon) \text { over } \mathbb{F}\right\} .
$$

It can be noted that the Galois group $\operatorname{Gal}(\mathbb{F}(\varepsilon), \mathbb{F})$ is a cyclic group. This guarantees the existence of an $s \in \mathbb{Z}_{e}^{*}$ fulfilling $\lambda(\varepsilon)=\varepsilon^{s}$ for any $\lambda \in \operatorname{Gal}(\mathbb{F}(\varepsilon), \mathbb{F})$. More specifically, $I_{\mathbb{F}}$ is a subgroup of the group \mathbb{Z}_{e}^{*} (multiplicative). Let g be a p-regular element of the group G. Let us define

$$
\gamma_{g}=\sum_{h \in C(g)} h
$$

where $C(g)$ denotes the set of all those elements of G that are conjugate to the p-regular element g. For γ_{g}, let the cyclotomic \mathbb{F}-class of be represented by

$$
S\left(\gamma_{g}\right)=\left\{\gamma_{g^{\omega}} \mid \omega \in I_{\mathbb{F}}\right\} .
$$

Let $J(\mathbb{F} G)$ represent the Jacobson radical of the group algebra $\mathbb{F} G$.
Next, we discuss two important results of [4].
Theorem 2.1. The number of cyclotomic \mathbb{F}-classes in G is equal to the number of simple components of $\mathbb{F} G / J(\mathbb{F} G)$.

Theorem 2.2. Let the number of cyclotomic \mathbb{F}-classes in G be π and let ε be primitive $e^{t h}$ root of unity, where e is the exponent of G. Let S_{1}, \ldots, S_{π} be the simple components of the center of $\mathbb{F} G / J(\mathbb{F} G)$ and let Y_{1}, \ldots, Y_{π} be the cyclotomic \mathbb{F}-classes in G. Then, $\left|Y_{i}\right|=\left[S_{i}: \mathbb{F}\right]$ for each $1 \leq i \leq \pi$, after suitable ordering of the indices.

We remark that both the Theorems 2.1 and 2.2 will be very crucial for our main results. Next, we discuss a significant result that shows that in the WD of a finite group algebra $\mathbb{F} G / J(\mathbb{F} G), \mathbb{F}$ is always a Wedderburn component (see [17]).

Lemma 2.3. Let Σ_{1} and Σ_{2} be two algebras over \mathbb{F} having finite dimension. Let Σ_{2} be semisimple and let $\varphi: \Sigma_{1} \rightarrow \Sigma_{2}$ be a homomorphism that is also surjective. Then, there holds

$$
\Sigma_{1} / J\left(\Sigma_{1}\right) \cong \Sigma_{2}+\Sigma_{3}
$$

where Σ_{3} is an another semisimple \mathbb{F}-algebra.
Suppose that $J(\mathbb{F} G)=0$. Then Lemma 2.3 confirms that \mathbb{F} is always a simple component of $\mathbb{F} G$. Next, we recall a result from [10] that explicitly characterizes the set $I_{\mathbb{F}}$.

Theorem 2.4. Let $q=p^{r}$ for a positive integer r and a prime p and let \mathbb{F}_{q} be a finite field. Let e be such that $\operatorname{gcd}(e, q)=1$ and let ε be the primitive $e^{t h}$ root of unity. Let $o(q)$ be the order of q modulo e. Then we have

$$
I_{\mathbb{F}_{q}}=\left\{1, q, \ldots, q^{o(q)-1}\right\} \quad \bmod e
$$

Further, we recall two important theorems from [13].
Theorem 2.5. Let R be a commutative ring and let $R G$ be a semisimple group algebra. Then we have

$$
R G \cong R\left(G / G^{\prime}\right) \oplus \Delta\left(G, G^{\prime}\right)
$$

Here G^{\prime} is the derived subgroup of $G, R\left(G / G^{\prime}\right)$ is the sum of all commutative simple components and $\Delta\left(G, G^{\prime}\right)$ is the sum of all non-commutative simple components of $R G$.

Theorem 2.6. Let $R G$ be a semisimple group algebra and H be a normal subgroup of G. Then

$$
R G \cong R(G / H) \oplus \Delta(G, H)
$$

Here $\Delta(G, H)$ represents the left ideal of $R G$ and it is generated by the set $\{h-1$: $h \in H\}$.

We remark that through Theorem 2.5 one can obtain all the possible commutative simple components of the group algebra $\mathbb{F}_{q} G$. Further, Theorem 2.6 relates WD of the group algebra $\mathbb{F}_{q}(G / H)$ with that of $\mathbb{F}_{q} G$ for a normal subgroup H of G. Finally, we end this section by invoking an important result from [3]. This result will be very crucial in unique computation of the WD for any semisimple group algebra.

Theorem 2.7. Let \mathbb{F} be a finite field of characteristics p. Let $\Sigma=\oplus_{s=1}^{t} M_{n_{s}}\left(\mathbb{F}_{s}\right)$ be a summand of a semisimple group algebra $\mathbb{F} G$, where \mathbb{F}_{s} denotes a finite extension of \mathbb{F} for each s. Then $p \nmid n_{s}$ for every $1 \leq s \leq t$.

3. WDs of non-metabelian groups of order 96

In this section, we discuss all the non-metabelian groups of order 96 along with their WDs. Up to isomorphism, we note that there are 231 groups of order 96 and 26 of them are non-metabelian. Among these 26 groups, 11 have exponent 24 and rest all have exponent 12 .

3.1. Non-metabelian groups of order 96 having exponent 24

The non-metabelian groups of order 96 having exponent 24 are as follows:

1. $G_{1}=A_{4} \rtimes C_{8}$
2. $G_{2}=S L(2,3) \rtimes C_{4}$
3. $G_{7}=\left(S L(2,3) \cdot C_{2}\right) \rtimes C_{2}$
4. $G_{3}=S L(2,3) \rtimes C_{4}$
5. $G_{4}=C_{2} \times\left(S L(2,3) \cdot C_{2}\right)$
6. $G_{8}=\left(\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}\right) \rtimes C_{2}$
7. $G_{5}=C_{2} \times G L(2,3)$
8. $G_{6}=\left(C_{2} \times S L(2,3)\right) \rtimes C_{2}$

3.2. Wedderburn decomposition of $\mathbb{F}_{q} \boldsymbol{G}_{1}$ and some other group algebras

The presentation of $G_{1}=A_{4} \rtimes C_{8}$ is as follows:

$$
\begin{aligned}
& \langle x, y, z, w, t, u| x^{2} y^{-1},[y, x],[z, x],[w, x] w^{-1},[t, x] u^{-1} t^{-1}, \\
& \quad[u, x] u^{-1} t^{-1}, y^{2} z^{-1},[z, y],[w, y],[t, y],[u, y], z^{2},[w, z] \\
& \left.[t, z],[u, z], w^{3}, \quad[t, w] u^{-1} t^{-1},[u, w] t^{-1}, t^{2},[u, t], u^{2}\right\rangle .
\end{aligned}
$$

This group has 20 conjugacy classes as shown in the next table.

R	e	x	y	z	w	t	$x y$	$x z$	$x t$	$y z$	$y w$	$y t$	$z w$	$z t$	$x y z$
S	1	6	1	1	8	3	6	6	6	1	8	3	8	3	6
O	1	8	4	2	3	2	8	8	8	4	12	4	6	2	8

$x y t$	$x z t$	$y z w$	$y z t$	$x y z t$
6	6	8	3	6
8	8	12	4	8

where R, S and O represent representative, size and order of conjugacy classes, respectively. From the above discussion, we conclude that the exponent of G_{1} is 24. Also $G_{1}^{\prime} \cong A_{4}$ with $G_{1} / G_{1}^{\prime} \cong C_{8}$. Since $p>3$, we have $\operatorname{gcd}\left(\left|G_{1}\right|, p\right)=1$, and so $J\left(\mathbb{F}_{q} G_{1}\right)=0$.
Theorem 3.1. The Wedderburn decomposition of $\mathbb{F}_{q} G_{1}$ for $q=p^{k}, p>3$ is as follows:

values of p and k	Wedderburn decomposition
k even or $p \equiv\{1,17\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{8}$
$p^{k} \equiv\{5,13\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$
$p^{k} \equiv\{7,23\} \bmod 24$ and k odd or	$\mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus$
$p^{k} \equiv\{11,19\} \bmod 24$ and k odd	$M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{3}$

Proof. As $\mathbb{F}_{q} G_{1}$ is semisimple, we have $\mathbb{F}_{q} G_{1} \cong \oplus_{r=1}^{t} M_{n_{r}}\left(\mathbb{F}_{r}\right), t \in \mathbb{Z}$, where for each r, \mathbb{F}_{r} is a finite extension of $\mathbb{F}_{q}, n_{r} \geq 1$. Incorporating Lemma 2.3 in above to obtain

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \oplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.1}
\end{equation*}
$$

For k even and any prime $p>3, p^{k} \equiv 1 \bmod 24$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$ as $I_{\mathbb{F}}=\{1\}$ (see Theorem 2.4). Hence, (3.1) and Theorems 2.1, 2.2 imply that $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \oplus_{r=1}^{19} M_{n_{r}}\left(\mathbb{F}_{r}\right)$. This with $G_{1} / G_{1}^{\prime} \cong C_{8}$ and Theorem 2.5 leads to (with suitable rearrangement of indexes) $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{8} \oplus_{r=1}^{12} M_{n_{r}}\left(\mathbb{F}_{r}\right)$ with $88=\sum_{r=1}^{12} n_{r}^{2}, n_{r} \geq 2$, which gives the only possible choice $\left(2^{4}, 3^{8}\right)$ (here a^{b} means (a, a, \ldots, b times)) for values of n_{r}^{\prime} s. Therefore, the required WD is

$$
\begin{equation*}
\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{8} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{8} \tag{3.2}
\end{equation*}
$$

Now, we assume that k is odd. We discuss this possibility in the following 4 cases:
Case 1. $p \equiv 1 \bmod 24$ or $p^{k} \equiv 17 \bmod 24$. In this case, we have $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{1}$ as $I_{\mathbb{F}}=\{1\}$ or $I_{\mathbb{F}}=\{1,17\}$. Hence, WD is given by (3.2).
Case 2. $p^{k} \equiv 5 \bmod 24$ or $p^{k} \equiv 13 \bmod 24$. In this case, we have $S\left(\gamma_{x}\right)=$ $\left\{\gamma_{x}, \gamma_{x z}\right\}, S\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x y z}\right\}, S\left(\gamma_{x t}\right)=\left\{\gamma_{x t}, \gamma_{x z t}\right\}, S\left(\gamma_{x y t}\right)=\left\{\gamma_{x y t}, \gamma_{x y z t}\right\}$, and $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of conjugacy classes. Using Theorems 2.1 and 2.2 and (3.1), we get $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \oplus_{r=1}^{11} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=12}^{15} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying Theorem 2.5 with $G_{1} / G_{1}^{\prime} \cong C_{8}$ and $\mathbb{F}_{q} C_{8} \cong \mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2}$ to obtain

$$
\begin{align*}
& \mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=9}^{10} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \\
& \text { with } 88=\sum_{r=1}^{8} n_{r}^{2}+2 \sum_{r=9}^{10} n_{r}^{2}, n_{r} \geq 2, \tag{3.3}
\end{align*}
$$

which gives 3 possibilities for values of n_{r}^{\prime} namely $\left(3^{8}, 2^{2}\right),\left(2^{2}, 3^{6}, 2,3\right)$ and $\left(2^{4}, 3^{6}\right)$. For uniqueness, consider a normal subgroup $H_{1}=\langle t, u\rangle$ of G_{1} with $K_{1}=G_{1} / H_{1} \cong$ $C_{3} \rtimes C_{8}$. It can be verified that K_{1} has 12 conjugacy classes as shown in the table below.

R	e	x	y	z	w	$x y$	$x z$	$y z$	$y w$	$z w$	$x y z$	$y z w$
S	1	3	1	1	2	3	3	1	2	2	3	2
O	1	8	4	2	3	8	8	4	12	6	8	12

Also $K_{1}^{\prime} \cong C_{3}$ with $K_{1} / K_{1}^{\prime} \cong C_{8}$. For the representatives k of K_{1}, we have $S\left(\gamma_{x}\right)=$ $\left\{\gamma_{x}, \gamma_{x z}\right\}, S\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x y z}\right\}, S\left(\gamma_{k}\right)=\left\{\gamma_{k}\right\}$ for the remaining representatives. Therefore, employ Theorems 2.1, 2.2 and 2.5 to obtain $\mathbb{F}_{q} K_{1} \cong \mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus_{r=1}^{4}$ $M_{t_{r}}\left(\mathbb{F}_{q}\right)$ with $16=\sum_{r=1}^{4} t_{r}^{2}$. This gives us the only possibility $\left(2^{4}\right)$ for value of $t_{r}^{\prime} \mathrm{s}$. Next, incorporate Theorem 2.6 in (3.3) to deduce that $\left(2^{4}, 3^{6}\right)$ is the correct choice for $n_{r}^{\prime} \mathrm{S}$ and therefore, we have $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$.

Case 3. $p^{k} \equiv 7 \bmod 24$ or $p^{k} \equiv 23 \bmod 24$. In this case, we have $S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x y z}\right\}, S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y z}\right\}, S\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x z}\right\}, S\left(\gamma_{x t}\right)=\left\{\gamma_{x t}, \gamma_{x y z t}\right\}$, $S\left(\gamma_{x y t}\right)=\left\{\gamma_{x y t}, \gamma_{x z t}\right\}, S\left(\gamma_{y w}\right)=\left\{\gamma_{y w}, \gamma_{y z w}\right\}, S\left(\gamma_{y t}\right)=\left\{\gamma_{y t}, \gamma_{y z t}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2 and (3.1), we get $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \oplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=6}^{12} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying Theorem 2.5 with $G_{1} / G_{1}^{\prime} \cong C_{8}$ and $\mathbb{F}_{q} C_{8} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{3}$ in this to obtain

$$
\begin{align*}
& \mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{3} \oplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=5}^{8} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \\
& \text { with } 88=\sum_{r=1}^{4} n_{r}^{2}+2 \sum_{r=5}^{8} n_{r}^{2}, n_{r} \geq 2 \tag{3.4}
\end{align*}
$$

which gives three possibilities for values of n_{r}^{\prime} s namely $\left(3^{4}, 2^{2}, 3^{2}\right),\left(2^{2}, 3^{2}, 2,3^{3}\right)$ and $\left(2^{4}, 3^{4}\right)$. Further, we can verify that for the representatives k of K_{1}, we have $S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x y z}\right\}, S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y z}\right\}, S\left(\gamma_{x y}\right)=\left\{\gamma_{x y}, \gamma_{x z}\right\}, S\left(\gamma_{y w}\right)=\left\{\gamma_{y w}, \gamma_{y z w}\right\}$ and $S\left(\gamma_{k}\right)=\left\{\gamma_{k}\right\}$ for the remaining representatives. This with Theorems 2.1, 2.2 and 2.5 leads to $\mathbb{F}_{q} K_{1} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{3} \oplus_{t=1}^{2} M_{t_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{t_{3}}\left(\mathbb{F}_{q^{2}}\right), t_{r} \geq 2$, $t_{r} \in$ \mathbb{Z} with $16=\sum_{r=1}^{2} t_{r}^{2}+2 t_{3}^{2}$, which gives the only choice $\left(2^{3}\right)$ for $t_{r}^{\prime} \mathrm{s}$. Therefore, (3.4) and Theorem 2.6 imply that $\left(2^{2}, 3^{2}, 2,3^{3}\right)$ is the correct choice for $n_{r}^{\prime} \mathrm{s}$. So, we get $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{3}$.
Case 4. $p^{k} \equiv 11 \bmod 24$ or $p^{k} \equiv 19 \bmod 24$. In this case, we have $S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x y}\right\}, S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y z}\right\}, S\left(\gamma_{x z}\right)=\left\{\gamma_{x z}, \gamma_{x y z}\right\}, S\left(\gamma_{x t}\right)=\left\{\gamma_{x t}, \gamma_{x y t}\right\}$, $S\left(\gamma_{x z t}\right)=\left\{\gamma_{x z t}, \gamma_{x y z t}\right\}, S\left(\gamma_{y w}\right)=\left\{\gamma_{y w}, \gamma_{y z w}\right\}, S\left(\gamma_{y t}\right)=\left\{\gamma_{y t}, \gamma_{y z t}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g. Using Theorems 2.1 and 2.2 and (3.1), we get $\mathbb{F}_{q} G_{1} \cong \mathbb{F}_{q} \oplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=6}^{12} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Further, we can easily see that rest part of this case is similar to Case 3.

Next, we remark that for the groups G_{i}, where $2 \leq i \leq 8$ and $i=10$, the Wedderburn decomposition of their group algebras can be computed by following
the steps of Theorem 3.1 (see Tables 1-8). Hence, we are omitting their proofs from the paper.

Table 1. Wedderburn decomposition of $\mathbb{F}_{q} G_{2}$.

values of p and k	Wedderburn decomposition
k even or $p \equiv\{1,17\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
$p^{k} \equiv\{5,13\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$
$p^{k} \equiv\{7,23\} \bmod 24$ and k odd or	$\mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus$
$p^{k} \equiv\{11,19\} \bmod 24$ and k odd	$M_{4}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)$

Table 2. Wedderburn decomposition of $\mathbb{F}_{q} G_{3}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,5,13,17\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
$p^{k} \equiv\{7,11,19,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus$
	$M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

Table 3. Wedderburn decomposition of $\mathbb{F}_{q} G_{4}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,7,17,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
$p^{k} \equiv\{5,11,13,19\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus$
	$M_{4}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$

Table 4. Wedderburn decomposition of $\mathbb{F}_{q} G_{5}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,11,17,19\}$ mod 24 and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
$p^{k} \equiv\{5,7,13,23\}$ mod 24 and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus$
	$M_{4}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$

Table 5. Wedderburn decomposition of $\mathbb{F}_{q} G_{6}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,7,13,19\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \equiv\{5,7,13,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus$
	$M_{4}\left(\mathbb{F}_{q}\right) \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

Table 6. Wedderburn decomposition of $\mathbb{F}_{q} G_{7}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,11,13,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \equiv\{5,7,13,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus$
	$M_{4}\left(\mathbb{F}_{q}\right) \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

Table 7. Wedderburn decomposition of $\mathbb{F}_{q} G_{8}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,11,13,23\}$ mod 24 and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \equiv\{5,7,17,19\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus$
	$M_{4}\left(\mathbb{F}_{q}\right) \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

Table 8. Wedderburn decomposition of $\mathbb{F}_{q} G_{10}$.

values of p and k	Wedderburn decomposition
k even or $p \equiv 1 \bmod 24$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$p^{k} \in\{7,19\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{6} \oplus \mathbb{F}_{q^{2}}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$
$p^{k} \equiv 13 \bmod 24$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$
$p^{k} \equiv 17 \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{4}$
$p^{k} \in\{11,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{5} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$
$p^{k} \equiv 5 \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$

3.3. Wedderburn decomposition of $\mathbb{F}_{q} \boldsymbol{G}_{11}$

It is to be noted that for the group algebra $\mathbb{F}_{q} G_{11}$, WD can not be uniquely characterize only by using Theorems 2.5 and 2.6. We also need Theorem 2.7 for
its unique characterization. Consequently, we separately discuss the WD of $\mathbb{F}_{q} G_{11}$ in the following theorem. We have $\left.G_{11}=\left(\left(C_{4} \times C_{4}\right) \rtimes C_{3}\right) \rtimes C_{2}\right)$. This group has 10 conjugacy classes.

R	e	x	y	z	t	$x z$	$x t$	$z w$	$z t$	$x z t$
S	1	12	32	3	3	12	12	3	6	12
O	1	2	3	4	2	8	4	4	4	8

Clearly, the exponent of G_{11} is 24 and $G_{11}^{\prime} \cong\left(C_{4} \times C_{4}\right) \rtimes C_{3}$ with $G_{11} / G_{11}^{\prime} \cong C_{2}$.
Theorem 3.2. The Wedderburn decomposition of $\mathbb{F}_{q} G_{11}$ for $q=p^{k}, p>3$ is

values of p and k	Wedderburn decomposition
k even or $p \in\{1,5,13,17\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \equiv\{7,11,19,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$

Proof. For k even and any prime $p>3, p^{k} \equiv 1 \bmod 24$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{11}$ and hence, (3.1) and Theorems 2.1, 2.2 imply that $\mathbb{F}_{q} G_{11} \cong$ $\mathbb{F}_{q} \oplus_{r=1}^{9} M_{n_{r}}\left(\mathbb{F}_{r}\right)$. This with $G_{11} / G_{11}^{\prime} \cong C_{2}$ and Theorem 2.5 leads to $\mathbb{F}_{q} G_{11} \cong$ $\mathbb{F}_{q}^{2} \oplus_{r=1}^{8} M_{n_{r}}\left(\mathbb{F}_{r}\right)$ with $94=\sum_{r=1}^{8} n_{r}^{2}, n_{r} \geq 2$ which gives four possible choices for $n_{r}^{\prime} \mathrm{S}$ as $\left(2^{5}, 3,4,7\right),\left(2^{3}, 3,4^{3}, 5\right),\left(2^{2}, 3^{4}, 5^{2}\right)$ and $\left(2,3^{6}, 6\right)$. In order to seek uniqueness, consider a normal subgroup $H_{11,1}=\langle t, u\rangle$ of G_{11} with $K_{11,1}=G_{11} / H_{11,1} \cong$ S_{4}. From [9] and Theorem 2.6, we conclude that $\left(2^{2}, 3^{4}, 5^{2}\right)$ and $\left(2,3^{6}, 6\right)$ are the only required possibility for $n_{r}^{\prime} \mathrm{s}$. Further, using Theorem 2.7, we derive that the required choice for n_{r} 's is $\left(2,3^{6}, 6\right)$. Therefore, we have the result. Next, we assume that k is odd. We discuss this possibility in the following 2 cases:
Case 1. $p^{k} \equiv\{1,5,13,17\} \bmod 24$. In this case, WD is same as in the case of k even as $\left|S\left(\gamma_{g}\right)\right|=1$ for each representative g of conjugacy classes.
Case 2. $p^{k} \equiv\{7,11,19,23\} \bmod 24$. In this case, we have $S\left(\gamma_{z}\right)=\left\{\gamma_{z}, \gamma_{z w}\right\}$, $S\left(\gamma_{x z}\right)=\left\{\gamma_{x z}, \gamma_{x z t}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$, for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2 and (3.1), we reach to $\mathbb{F}_{q} G_{11} \cong \mathbb{F}_{q} \oplus_{r=1}^{5}$ $M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=6}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Now incorporate Theorem 2.4 to obtain $\mathbb{F}_{q} G_{11} \cong \mathbb{F}_{q}^{2} \oplus_{r=1}^{4}$ $M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=5}^{6} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$ with $94=\sum_{r=1}^{4} n_{r}^{2}+2 \sum_{r=5}^{6} n_{r}^{2}, n_{r} \geq 2$. Further, again consider the normal subgroup $H_{11,1}$. This with Theorem 2.6 yields $\mathbb{F}_{q} G_{11} \cong$ $\mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{n_{1}}\left(\mathbb{F}_{q}\right) \oplus_{r=2}^{3} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right), 72=n_{1}^{2}+2 \sum_{r=2}^{3} n_{r}^{2}, n_{r} \geq 2$. The possible choices for $n_{r}^{\prime} \mathrm{s}$ satisfying this are $(2,3,5)$ and $(6,3,3)$. By the same logic given for the case when k is even, we derive that $(6,3,3)$ is the required choice.

3.4. Wedderburn decomposition of $\mathbb{F}_{\boldsymbol{q}} \boldsymbol{G}_{\mathbf{9}}$

Next, we discuss the WD of $\mathbb{F}_{q} G_{9}$ (see Table 9). We mention that, unfortunately for this particular group, our theory is not enough to uniquely characterize the WD of
its corresponding group algebra when $p^{k} \in\{5,13\} \bmod 24$. We obtain that WD is one of the following two possibilities: $\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$; $\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$. Consequently, we make use of computer package GAP in this case for uniquely determine WD.

Table 9. Wedderburn decomposition of $\mathbb{F}_{q} G_{9}$.

values of p and k	Wedderburn decomposition
k even or $p \in\{1,17\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{2}$
$p^{k} \in\{5,13\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$
$p^{k} \in\{7,11,19,23\} \bmod 24$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{2}$
	$\oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

This completes the computation of WDs of semisimple group algebras of nonmetabelian groups of order 96 having exponent 24 . Next, we proceed to compute the WDs of semisimple group algebras of non-metabelian groups of order 96 having exponent 12 .

3.5. Non-metabelian groups of order 96 having exponent 12

1. $G_{12}=\left(\left(C_{4} \times C_{2}\right) \rtimes C_{4}\right) \rtimes C_{3}$
2. $G_{13}=A_{4} \rtimes Q_{8}$
3. $G_{14}=C_{4} \times S_{4}$
4. $G_{15}=\left(C_{4} \times A_{4}\right) \rtimes C_{2}$
5. $G_{16}=\left(C_{2} \times C_{2} \times A_{4}\right) \rtimes C_{2}$
6. $G_{17}=\left(C_{2} \times C_{2} \times Q_{8}\right) \rtimes C_{3}$
7. $G_{18}=\left(\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes\left(C_{2} \times C_{2}\right)\right) \rtimes C_{3}$
8. $G_{19}=\left(\left(C_{2} \times C_{2} \times C_{2}\right) \rtimes\left(C_{2} \times C_{2}\right)\right) \rtimes C_{3}$
9. $G_{20}=\left(\left(C_{2} \times Q_{8}\right) \rtimes C_{2}\right) \rtimes C_{3}$
10. $G_{21}=C_{2} \times\left(A_{4} \rtimes C_{4}\right)$
11. $G_{22}=C_{2} \times C_{2} \times S_{4}$
12. $G_{23}=\left(\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right) \rtimes C_{3}\right) \rtimes C_{2}$
13. $G_{24}=C_{4} \times S L(2,3)$
14. $G_{25}=C_{2} \times C_{2} \times S L(2,3)$
15. $G_{26}=C_{2} \times\left(\left(\left(C_{4} \times C_{2}\right) \rtimes C_{2}\right) \rtimes C_{3}\right)$.

3.6. Wedderburn decomposition of $\mathbb{F}_{q} \boldsymbol{G}_{12}$ and some other group algebras

The presentation of $G_{12}=\left(\left(C_{4} \times C_{2}\right) \rtimes C_{4}\right) \rtimes C_{3}$ is

$$
\begin{aligned}
& \langle x, y, z, w, t, u| x^{3},[y, x] t^{-1} w^{-1} z^{-1} y^{-1},[z, x] u^{-1} t^{-1} y^{-1},[w, x] u^{-1} t^{-1} w^{-1} \\
& \quad[t, x] u^{-1} w^{-1},[u, x], y^{2} t^{-1} w^{-1},[z, y] u^{-1},[w, y],[t, y],[u, y], z^{2} w^{-1}
\end{aligned}
$$

$\left.[w, z],[t, z],[u, z], w^{2},[t, w],[u, w], t^{2},[u, t], u^{2}\right\rangle$.
This group has 12 conjugacy classes as shown in the table below.

R	e	x	y	w	t	u	x^{2}	$x w$	$y z$	$y w$	$y t$	$x^{2} y$
S	1	16	6	3	3	1	16	16	6	6	6	16
O	1	3	4	2	2	2	3	6	4	4	4	6

From above discussion, we see that exponent of G_{12} is 12 . Also $G_{12}^{\prime} \cong\left(C_{4} \times C_{2}\right) \rtimes C_{4}$ with $G_{12} / G_{12}^{\prime} \cong C_{3}$. Since $p>3$, we have $\operatorname{gcd}\left(\left|G_{12}\right|, p\right)=1$, and so $J\left(\mathbb{F}_{q} G_{12}\right)=0$. We are now ready to give the WD and unit group of $\mathbb{F}_{q} G_{12}$ for $p>3$.
Theorem 3.3. The WD with unit group of $\mathbb{F}_{q} G_{12}$ for $q=p^{k}, p>3$ is as follows:

values of p and k	Wedderburn decomposition
k even or $p \equiv 1$ mod 12 and k odd	$\mathbb{F}_{q}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \equiv 5 \bmod 12$ and k odd	$\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5}$
	$\oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)$
$p^{k} \equiv 7$ mod 12 and k odd	$\mathbb{F}_{q}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$
$p^{k} \equiv 11 \bmod 12$ and k odd	$\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$

Proof. As $\mathbb{F}_{q} G_{12}$ is semisimple, we have $\mathbb{F}_{q} G_{12} \cong \oplus_{r=1}^{t} M_{n_{r}}\left(\mathbb{F}_{r}\right), t \in \mathbb{Z}$, where for each r, \mathbb{F}_{r} is a finite extension of $\mathbb{F}_{q}, n_{r} \geq 1$. As in Theorem 3.1, we can write

$$
\begin{equation*}
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus_{r=1}^{t-1} M_{n_{r}}\left(\mathbb{F}_{r}\right) \tag{3.5}
\end{equation*}
$$

For k even and any prime $p>3, p^{k} \equiv 1 \bmod 12$. This means $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{12}$ as $I_{\mathbb{F}}=\{1\}$. Hence, (3.5) and Theorems 2.1 and 2.2 imply that $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus_{r=1}^{11} M_{n_{r}}\left(\mathbb{F}_{r}\right)$. This with $G_{12} / G_{12}^{\prime} \cong C_{3}$ and Theorem 2.5 leads to (with suitable rearrangement of indexes)

$$
\begin{equation*}
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q}^{3} \oplus_{r=1}^{9} M_{n_{r}}\left(\mathbb{F}_{r}\right) \text { with } 93=\sum_{r=1}^{9} n_{r}^{2}, n_{r} \geq 2 \tag{3.6}
\end{equation*}
$$

which gives four possible choices for n_{r}^{\prime} s namely $(2,2,2,2,2,2,2,4,7),(2,2,2,2,2,4$, $4,4,5)$, $(2,2,2,2,3,3,3,5,5)$, and ($2,2,2,3,3,3,3,3,6$). We consider the normal subgroup $H_{1}=\langle w u, t\rangle \cong C_{2} \times C_{2}$ with $G_{12} / H_{1} \cong S L(2,3)$. From [17], we know that WD of $\mathbb{F}_{q} G_{12} / H_{1}$ contains $M_{2}\left(\mathbb{F}_{q}\right)$ as well as $M_{3}\left(\mathbb{F}_{q}\right)$. So, Theorem 2.6 implies that the choices $(2,2,2,2,2,2,2,4,7)$ and $(2,2,2,2,2,4,4,4,5)$ are no longer in race. For uniqueness, we consider another normal subgroup $H_{2}=\langle u\rangle$ with $K_{2}=$ $G_{12} / H_{2} \cong\left(C_{4} \times C_{4}\right) \rtimes C_{3}$. Using [1], we note that $\mathbb{F}_{q} K_{2} \cong \mathbb{F}_{q}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5}$. This with Theorem 2.6 imply that $(2,2,2,3,3,3,3,3,6)$ is the only possibility for $n_{r}^{\prime} \mathrm{s}$. Therefore, we have

$$
\begin{equation*}
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{6}\left(\mathbb{F}_{q}\right) \tag{3.7}
\end{equation*}
$$

Next, we assume that k is odd. We discuss this possibility in the following 4 cases:
Case 1. $p \equiv 1 \bmod 12$. In this case, we have $\left|S\left(\gamma_{g}\right)\right|=1$ for each $g \in G_{12}$ as $I_{\mathbb{F}}=\{1\}$. Hence, Wedderburn decomposition is given by (3.7).

Case 2. $p^{k} \equiv 5 \bmod$ 12. In this case, we have $S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x^{2}}\right\}, S\left(\gamma_{x w}\right)=$ $\left\{\gamma_{x w}, \gamma_{x^{2} y}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2 and (3.5), we get $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=8}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying Theorem 2.5 with $G_{12} / G_{12}^{\prime} \cong C_{3}$ and $\mathbb{F}_{q} C_{3} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}$ to obtain that

$$
\begin{equation*}
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{n_{8}}\left(\mathbb{F}_{q^{2}}\right) \text { with } 93=\sum_{r=1}^{7} n_{r}^{2}+2 n_{8}^{2}, n_{r} \geq 2 \tag{3.8}
\end{equation*}
$$

Further, we note using [1] that $\mathbb{F}_{q} K_{2} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5}$. Therefore, (3.8) and Theorem 2.6 imply that $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)$ with $48=\sum_{r=1}^{2} n_{r}^{2}+2 n_{3}^{2}, n_{r} \geq 2$. This gives the only possibility $(2,6,2)$ for $n_{r}^{\prime} \mathrm{s}$ which means the required WD is

$$
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)
$$

Case 3. $p^{k} \equiv 7 \bmod 12$. In this case, we have $S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y z}\right\}, S\left(\gamma_{y w}\right)=$ $\left\{\gamma_{y w}, \gamma_{y t}\right\}, S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2 and (3.5), we get $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus_{r=1}^{7} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=8}^{9} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying Theorem 2.5 with $G_{12} / G_{12}^{\prime} \cong C_{3}$ and $\mathbb{F}_{q} C_{3} \cong \mathbb{F}_{q}^{3}$ in above to obtain

$$
\begin{align*}
& \mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q}^{3} \oplus_{r=1}^{5} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=6}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \\
& \text { with } 93=\sum_{r=1}^{5} n_{r}^{2}+2 \sum_{r=6}^{7} n_{r}^{2}, n_{r} \geq 2 \tag{3.9}
\end{align*}
$$

Further, we observe that $\mathbb{F}_{q} K_{2} \cong \mathbb{F}_{q}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{t_{r}}\left(\mathbb{F}_{q^{2}}\right)^{2}$. Therefore, (3.9) and Theorem 2.6 imply that $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus_{r=1}^{4} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$ with $48=$ $\sum_{r=1}^{4} n_{r}^{2}, n_{r} \geq 2$. This gives the only possibility ($2,2,2,6$) for $n_{r}^{\prime} \mathrm{s}$ which means that the WD is

$$
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}
$$

Case 4. $p^{k} \equiv 11 \bmod 12$. In this case, we can verify that $S\left(\gamma_{y}\right)=\left\{\gamma_{y}, \gamma_{y z}\right\}$, $S\left(\gamma_{y w}\right)=\left\{\gamma_{y w}, \gamma_{y t}\right\}, S\left(\gamma_{x}\right)=\left\{\gamma_{x}, \gamma_{x^{2}}\right\}, S\left(\gamma_{x w}\right)=\left\{\gamma_{x w}, \gamma_{x^{2} y}\right\}$, and $S\left(\gamma_{g}\right)=\left\{\gamma_{g}\right\}$ for the representatives e, w, t and u. Using Theorems 2.1, 2.2 and (3.5), we get $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus_{r=1}^{3} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=4}^{7} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right)$. Applying Theorem 2.5 with $\mathbb{F}_{q} C_{3} \cong$ $\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}}$ in above to obtain

$$
\begin{align*}
& \mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus_{r=1}^{3} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus_{r=4}^{6} M_{n_{r}}\left(\mathbb{F}_{q^{2}}\right) \\
& \text { with } 93=\sum_{r=1}^{3} n_{r}^{2}+2 \sum_{r=4}^{6} n_{r}^{2}, n_{r} \geq 2 \tag{3.10}
\end{align*}
$$

Further, we see that $\mathbb{F}_{q} K_{2} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{t_{r}}\left(\mathbb{F}_{q^{2}}\right)^{2}$. Therefore, (3.10) and Theorem 2.6 imply that $\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2} \oplus_{r=1}^{2} M_{n_{r}}\left(\mathbb{F}_{q}\right) \oplus$ $M_{n_{3}}\left(\mathbb{F}_{q^{2}}\right)$ with $48=\sum_{r=1}^{2} n_{r}^{2}+2 n_{3}^{2}$, which means the only possibility for $n_{r}^{\prime} \mathrm{s}$ is $(2,6,2)$. Thus, the required WD is

$$
\mathbb{F}_{q} G_{12} \cong \mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)
$$

Next, we remark that for the groups G_{i}, where $13 \leq i \leq 26$, the WD of their group algebras can be computed by following the steps of Theorem 3.2 and Theorem 3.3 (see Tables $10-23$). Hence, we are omitting their proofs from the paper.

Table 10. Wedderburn decomposition of $\mathbb{F}_{q} G_{13}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \equiv \pm 1$ mod 12 and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \equiv \pm 5$ mod 12 and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)$

Table 11. Wedderburn decomposition of $\mathbb{F}_{q} G_{14}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,5\}$ mod 12 and k odd	$\mathbb{F}_{q}^{8} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{8}$
$p^{k} \in\{7,11\}$ mod 12 and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right) \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)$

Table 12. Wedderburn decomposition of $\mathbb{F}_{q} G_{15}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,5\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \in\{7,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)$

Table 13. Wedderburn decomposition of $\mathbb{F}_{q} G_{16}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)$

Table 14. Wedderburn decomposition of $\mathbb{F}_{q} G_{17}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{6}\left(\mathbb{F}_{q}\right)$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5}$
	$\oplus M_{6}\left(\mathbb{F}_{q}\right) \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)$

Table 15. Wedderburn decomposition of $\mathbb{F}_{q} G_{18}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{3} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q} \oplus \mathbb{F}_{q^{2}} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{5} \oplus M_{4}\left(\mathbb{F}_{q}\right)$
$\oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$	

Table 16. Wedderburn decomposition of $\mathbb{F}_{q} G_{19}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)$
$\oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$	

Table 17. Wedderburn decomposition of $\mathbb{F}_{q} G_{20}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)^{3}$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{4}\left(\mathbb{F}_{q}\right)$
	$\oplus M_{4}\left(\mathbb{F}_{q^{2}}\right)$

Table 18. Wedderburn decomposition of $\mathbb{F}_{q} G_{21}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{8} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{8}$
$p^{k} \in\{5,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$\oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)^{2}$	

Table 19. Wedderburn decomposition of $\mathbb{F}_{q} G_{22}$.

values of p and k	Wedderburn decomposition
for any k and p	$\mathbb{F}_{q}^{8} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{8}$

Table 20. Wedderburn decomposition of $\mathbb{F}_{q} G_{23}$.

values of p and k	Wedderburn decomposition
for any k and p	$\mathbb{F}_{q}^{2} \oplus M_{2}\left(\mathbb{F}_{q}\right) \oplus M_{3}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{6}\left(\mathbb{F}_{q}\right)$

Table 21. Wedderburn decomposition of $\mathbb{F}_{q} G_{24}$.

values of p and k	Wedderburn decomposition
k even or $p \equiv 1 \bmod 12$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$p^{k} \equiv 5 \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{4}$
$p^{k} \equiv 7$ mod 12 and k odd	$\mathbb{F}_{q}^{6} \oplus \mathbb{F}_{q^{2}}^{3} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{6} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2}$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{3} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)$
$p^{k} \equiv 11 \bmod 12$ and k odd	$\mathbb{F}_{q}^{2} \oplus \mathbb{F}_{q^{2}}^{5} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{2} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{2}$
	$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{5} \oplus M_{3}\left(\mathbb{F}_{q^{2}}\right)$

Table 22. Wedderburn decomposition of $\mathbb{F}_{q} G_{25}$.

values of p and k	Wedderburn decomposition
k even or $p^{k} \in\{1,11\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$p^{k} \in\{5,7\} \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{4}$	

Table 23. Wedderburn decomposition of $\mathbb{F}_{q} G_{26}$.

values of p and k	Wedderburn decomposition
k even or $p \equiv 1 \bmod 12$ and k odd	$\mathbb{F}_{q}^{11} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$p^{k} \equiv 5 \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{2}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4}$
$\oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{4}$	
$p^{k} \equiv 7 \bmod 12$ and k odd	$\mathbb{F}_{q}^{12} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$
$p^{k} \equiv 11 \bmod 12$ and k odd	$\mathbb{F}_{q}^{4} \oplus \mathbb{F}_{q^{2}}^{4} \oplus M_{3}\left(\mathbb{F}_{q}\right)^{4} \oplus M_{2}\left(\mathbb{F}_{q^{2}}\right)^{6}$

4. Conclusion

We have computed the WDs of semisimple group algebras of non-metabelian groups of order 96 . Hence, this study completes the computation of WDs of semisimple group algebras of all groups up to order 120. In future, this paper motivates the study of unit groups of the group algebras of non-metabelian groups having order greater than 120 .

References

[1] G. K. Bakshi, S. Gupta, I. B. S. Passi: The Algebraic Structure of Finite Metabelian Group Algebras, Communications in Algebra 43.1 (2015), pp. 2240-2257, DOI: 10.1080/00927872.2 014.888566.
[2] A. Bovdi, J. Kurdics: Lie Properties of the Group Algebra and the Nilpotency Class of the Group of Units, Journal of Algebra 212.1 (1999), pp. 28-64, DOI: 10.1006/jabr.1998.7617.
[3] C. Dietzel, G. Mittal: Summands of Finite Group Algebras, Czechoslovak Mathematical Journal 71.4 (2021), pp. 1011-1014, DOI: 10.21136/CMJ. 2020.0171-20.
[4] R. A. Ferraz: Simple Components of the Center of $F G / J(F G)$, Communications in Algebra 36.9 (2008), pp. 3191-3199, DOI: 10.1080/00927870802103503.
[5] S. Gupta, S. Maheshwary: Finite Semisimple Group Algebra of a Normally Monomial Group, International Journal of Algebra and Computation 29.1 (2019), pp. 159-177, Doi: 10.1142/S0218196718500674.
[6] B. Hurley, T. Hurley: Group ring cryptography, International Journal of Pure and Applied Mathematics 69.1 (2011), pp. 67-86, URL: https://www.ijpam.eu/contents/2011-69-1/8/i ndex.html.
[7] P. Hurley, T. Hurley: Codes from Zero-Divisors and Units in Group Rings, International Journal of Information and Coding Theory 1.1 (2009), pp. 57-87, DOI: 10.1504/IJICOT. 200 9.024047.
[8] G. D. James: The Representation Theory of the Symmetric Groups, Berlin, Heidelberg: Springer, 1978, DOI: 10.1007/BFb0067708.
[9] M. Khan, R. K. Sharma, J. B. Srivastava: The Unit Group of $F S_{4}$, Acta Mathematica Hungarica 118.1-2 (2008), pp. 105-113, DOI: 10.1007/s10474-007-6169-4.
[10] R. Lidl: Introduction to Finite Fields and Their Applications, United Kingdom: Cambridge University Press, 2000, DOI: 10.1017/CB09781139172769.
[11] N. Makhijani, R. K. Sharma, J. B. Srivastava: A Note on the Structure of $F_{p^{k}} A_{5} / J\left(F_{p^{k}} A_{5}\right)$, Acta Scientiarum Mathematicarum 82.2-3 (2016), pp. 29-43, DOI: 10.14232/actasm-014-31 1-2.
[12] N. Makhijani, R. K. Sharma, J. B. Srivastava: The Unit Group of $\boldsymbol{F}_{q}\left[D_{30}\right]$, Serdica Mathematical Journal 41.2-3 (2015), pp. 185-198, URL: http://www.math.bas.bg/serdica /n23_15.html.
[13] C. P. Milies, S. K. Sehgal: An Introduction to Group Rings, Netherlands: Springer Dordrecht, 2002, URL: https://link.springer.com/book/9781402002380.
[14] G. Mittal, S. Kumar, S. Kumar: A Quantum Secure ID-Based Cryptographic Encryption Based on Group Rings, Sadhana 47.35 (2022), DOI: 10.1007/s12046-022-01806-5.
[15] G. Mittal, R. K. Sharma: Computation of Wedderburn Decomposition of Groups Algebras from their Subalgebra, Bulletin of the Korean Mathematical Society 59.3 (2022), pp. 781-787, DOI: 10.4134/BKMS.b210478.
[16] G. Mittal, R. K. Sharma: On Unit Group of Finite Group Algebras of Non-Metabelian Groups of Order 108, Journal of Algebra Combinatorics Discrete Structures and Applications 8.2 (2021), pp. 59-71, URL: https://jacodesmath.com/index.php/jacodesmath/article/vi ew/158.
[17] G. Mittal, R. K. Sharma: On Unit Group of Finite Group Algebras of Non-Metabelian Groups Upto Order 72, Mathematica Bohemica 146.4 (2021), pp. 429-455, Doi: 10.21136 /MB.2021.0116-19.
[18] G. Mittal, R. K. Sharma: Unit Group of Semisimple Group Algebras of Some NonMetabelian Groups of Order 120, Asian-European Journal of Mathematics 15.3 (2022), p. 2250059, DOI: 10.1142/S1793557122500590.
[19] G. Mittal, R. K. Sharma: Wedderburn Decomposition of a Semisimple Group Algebra FqG from a Subalgebra of Factor Group of G, International Electronic Journal of Algebra 32 (2022), pp. 91-100, DOI: 10.24330/ieja. 1077582.
[20] G. Pazderski: The orders to which only belong metabelian groups, Mathematische Nachrichten 95.1 (1980), pp. 7-16, DOI: $10.1002 /$ mana. 19800950102.
[21] S. Perlis, G. L. Walker: Abelian Group Algebras of Finite Order, Transactions of the American Mathematical Society 68.3 (1950), pp. 420-426, DOI: 10.2307/1990406.
[22] R. K. Sharma, G. Mittal: Unit Group of Semisimple Group Algebra $F_{q} S L(2,5)$, Mathematica Bohemica 147.1 (2022), pp. 1-10, DOI: 10.21136/MB.2021.0104-20.

[^0]: Submitted: September 18, 2022
 Accepted: July 4, 2023
 Published online: July 17, 2023

