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1. Introduction
Let G be a finite group and Fp be a finite field for a prime p having characteristics
p. Let p be such that p ∤ |G|. This means that the group algebra FpG is semisimple
(see [13]). Due to various applications of units of group algebras (for example,
in cryptography [6, 14], in coding theory [7], in isomorphism problems and explo-
ration of Lie properties of group algebras [2] etc.), the problem of computing the
Wedderburn decompositions (or unit groups) of finite semisimple group algebras is
an extensively studied problem (see [1, 3, 5, 9, 11, 12, 15, 19, 21] and the references
therein).

One of the major steps in the direction of computation of Wedderburn decom-
positions (WDs) of finite semisimple group algebras was taken in [1]. The paper [1]
gave an algorithm to compute the WDs of the semisimple group algebras of all
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metabelian groups. We recall that a finite group G is metabelian if its derived
subgroup is abelian. Consequently, the entire research in this direction is shifted
on to the computation of WDs of semisimple group algebras of non-metabelian
groups. Mittal et al. [17] computed the WDs of semisimple group algebras of all
non-metabelian groups up to order 72. Furthermore, Mittal et al. [16, 18, 22] also
computed the WDs of all semisimple group algebras of all non-metabelian groups
of order 108 and some non-metabelian groups of order 120. Since, the WDs of
semisimple group algebras of the symmetric groups Sn can be easily computed
by employing the representation theory (see [8]), the papers [18, 22] completed
the task of computation of WDs of group algebras of non-metabelian groups of
order 120.

Using [20] we note that the only non-metabelian groups of order less than 120
that are not yet studied in the literature are those of order 96. Hence, the main
objective of this paper is to complete the task of computation of WDs of group
algebras of 26 non-metabelian groups of order 96. Consequently, with this paper,
the computation of the WDs of semisimple group algebras of all groups up to order
120 will be complete. From the WD, the unit group can be computed straight-
forwardly.

Organization of the paper. Section 2 contains certain preliminaries that play
an important role in the computation of WDs. Our main results related to WDs of
semisimple group algebras are discussed in Section 3. We give the complete details
of computation of WDs only for a few groups among the 26 groups. This is because
for the remaining groups, the details can be generated analogously. We conclude
the paper in the last section.

2. Preliminaries

Let the exponent of the group G be denoted by e and let the primitive eth root of
unity be denoted by ε. In our work, we use the notations of [4]. Let F denote a
finite field. Let us define

IF = {ω | ε 7→ εω is an automorphism of F(ε) over F}.

It can be noted that the Galois group Gal
(
F(ε),F

)
is a cyclic group. This guarantees

the existence of an s ∈ Z∗
e fulfilling λ(ε) = εs for any λ ∈ Gal

(
F(ε),F

)
. More

specifically, IF is a subgroup of the group Z∗
e (multiplicative). Let g be a p-regular

element of the group G. Let us define

γg =
∑

h∈C(g)

h,

where C(g) denotes the set of all those elements of G that are conjugate to the
p-regular element g. For γg, let the cyclotomic F-class of be represented by

S(γg) = {γgω | ω ∈ IF}.
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Let J(FG) represent the Jacobson radical of the group algebra FG.
Next, we discuss two important results of [4].

Theorem 2.1. The number of cyclotomic F-classes in G is equal to the number
of simple components of FG/J(FG).

Theorem 2.2. Let the number of cyclotomic F-classes in G be π and let ε be
primitive eth root of unity, where e is the exponent of G. Let S1, . . . , Sπ be the
simple components of the center of FG/J(FG) and let Y1, . . . , Yπ be the cyclotomic
F-classes in G. Then, |Yi| = [Si : F] for each 1 ≤ i ≤ π, after suitable ordering of
the indices.

We remark that both the Theorems 2.1 and 2.2 will be very crucial for our main
results. Next, we discuss a significant result that shows that in the WD of a finite
group algebra FG/J(FG), F is always a Wedderburn component (see [17]).

Lemma 2.3. Let Σ1 and Σ2 be two algebras over F having finite dimension. Let
Σ2 be semisimple and let φ : Σ1 → Σ2 be a homomorphism that is also surjective.
Then, there holds

Σ1/J(Σ1) ∼= Σ2 + Σ3,

where Σ3 is an another semisimple F-algebra.

Suppose that J(FG) = 0. Then Lemma 2.3 confirms that F is always a simple
component of FG. Next, we recall a result from [10] that explicitly characterizes
the set IF.

Theorem 2.4. Let q = pr for a positive integer r and a prime p and let Fq be a
finite field. Let e be such that gcd(e, q) = 1 and let ε be the primitive eth root of
unity. Let o(q) be the order of q modulo e. Then we have

IFq
= {1, q, . . . , qo(q)−1} mod e.

Further, we recall two important theorems from [13].

Theorem 2.5. Let R be a commutative ring and let RG be a semisimple group
algebra. Then we have

RG ∼= R
(
G/G′) ⊕ ∆(G, G′).

Here G′ is the derived subgroup of G, R
(
G/G′) is the sum of all commutative simple

components and ∆(G, G′) is the sum of all non-commutative simple components of
RG.

Theorem 2.6. Let RG be a semisimple group algebra and H be a normal subgroup
of G. Then

RG ∼= R
(
G/H

)
⊕ ∆(G, H).

Here ∆(G, H) represents the left ideal of RG and it is generated by the set {h − 1 :
h ∈ H}.
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We remark that through Theorem 2.5 one can obtain all the possible commu-
tative simple components of the group algebra FqG. Further, Theorem 2.6 relates
WD of the group algebra Fq(G/H) with that of FqG for a normal subgroup H of
G. Finally, we end this section by invoking an important result from [3]. This
result will be very crucial in unique computation of the WD for any semisimple
group algebra.

Theorem 2.7. Let F be a finite field of characteristics p. Let Σ = ⊕t
s=1Mns

(Fs) be
a summand of a semisimple group algebra FG, where Fs denotes a finite extension
of F for each s. Then p ∤ ns for every 1 ≤ s ≤ t.

3. WDs of non-metabelian groups of order 96
In this section, we discuss all the non-metabelian groups of order 96 along with
their WDs. Up to isomorphism, we note that there are 231 groups of order 96 and
26 of them are non-metabelian. Among these 26 groups, 11 have exponent 24 and
rest all have exponent 12.

3.1. Non-metabelian groups of order 96 having exponent 24
The non-metabelian groups of order 96 having exponent 24 are as follows:

1. G1 = A4 ⋊ C8
2. G2 = SL(2, 3) ⋊ C4
3. G3 = SL(2, 3) ⋊ C4
4. G4 = C2 × (SL(2, 3) · C2)
5. G5 = C2 × GL(2, 3)
6. G6 = (C2 × SL(2, 3)) ⋊ C2

7. G7 = (SL(2, 3) · C2) ⋊ C2
8. G8 = (((C4 × C2)⋊C2)⋊C3)⋊C2
9. G9 = (((C4 × C2)⋊C2)⋊C3)⋊C2

10. G10 = ((C8 × C2) ⋊ C2) ⋊ C3
11. G11 = ((C4 × C4) ⋊ C3) ⋊ C2).

3.2. Wedderburn decomposition of FqG1 and some other
group algebras

The presentation of G1 = A4 ⋊ C8 is as follows:

⟨ x, y, z, w, t, u | x2y−1, [y, x], [z, x], [w, x]w−1, [t, x]u−1t−1,

[u, x]u−1t−1, y2z−1, [z, y], [w, y], [t, y], [u, y], z2, [w, z],
[t, z], [u, z], w3, [t, w]u−1t−1, [u, w]t−1, t2, [u, t], u2 ⟩.

This group has 20 conjugacy classes as shown in the next table.

R e x y z w t xy xz xt yz yw yt zw zt xyz

S 1 6 1 1 8 3 6 6 6 1 8 3 8 3 6
O 1 8 4 2 3 2 8 8 8 4 12 4 6 2 8
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xyt xzt yzw yzt xyzt

6 6 8 3 6
8 8 12 4 8

where R, S and O represent representative, size and order of conjugacy classes,
respectively. From the above discussion, we conclude that the exponent of G1 is
24. Also G′

1
∼= A4 with G1/G′

1
∼= C8. Since p > 3, we have gcd(|G1|, p) = 1, and

so J(FqG1) = 0.

Theorem 3.1. The Wedderburn decomposition of FqG1 for q = pk, p > 3 is as
follows:

values of p and k Wedderburn decomposition
k even or p ≡ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ≡ {5, 13} mod 24 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M3(Fq2)2

pk ≡ {7, 23} mod 24 and k odd or F2
q ⊕ F3

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2⊕
pk ≡ {11, 19} mod 24 and k odd M2(Fq2) ⊕ M3(Fq2)3

Proof. As FqG1 is semisimple, we have FqG1 ∼= ⊕t
r=1Mnr (Fr), t ∈ Z, where for

each r, Fr is a finite extension of Fq, nr ≥ 1. Incorporating Lemma 2.3 in above
to obtain

FqG1 ∼= Fq ⊕t−1
r=1 Mnr

(Fr). (3.1)
For k even and any prime p > 3, pk ≡ 1 mod 24. This means |S(γg)| = 1 for
each g ∈ G1 as IF = {1} (see Theorem 2.4). Hence, (3.1) and Theorems 2.1, 2.2
imply that FqG1 ∼= Fq ⊕19

r=1 Mnr
(Fr). This with G1/G′

1
∼= C8 and Theorem 2.5

leads to (with suitable rearrangement of indexes) FqG1 ∼= F8
q ⊕12

r=1 Mnr
(Fr) with

88 =
∑12

r=1 n2
r, nr ≥ 2, which gives the only possible choice (24, 38) (here ab means

(a, a, . . . , b times)) for values of n′
rs. Therefore, the required WD is

FqG1 ∼= F8
q ⊕ M2(Fq)4 ⊕ M3(Fq)8. (3.2)

Now, we assume that k is odd. We discuss this possibility in the following 4 cases:
Case 1. p ≡ 1 mod 24 or pk ≡ 17 mod 24. In this case, we have |S(γg)| = 1 for
each g ∈ G1 as IF = {1} or IF = {1, 17}. Hence, WD is given by (3.2).
Case 2. pk ≡ 5 mod 24 or pk ≡ 13 mod 24. In this case, we have S(γx) =
{γx, γxz}, S(γxy) = {γxy, γxyz}, S(γxt) = {γxt, γxzt}, S(γxyt) = {γxyt, γxyzt},
and S(γg) = {γg} for the remaining representatives g of conjugacy classes. Using
Theorems 2.1 and 2.2 and (3.1), we get FqG1 ∼= Fq ⊕11

r=1 Mnr
(Fq) ⊕15

r=12 Mnr
(Fq2).

Applying Theorem 2.5 with G1/G′
1

∼= C8 and FqC8 ∼= F4
q ⊕ F2

q2 to obtain

FqG1 ∼= F4
q ⊕ F2

q2 ⊕8
r=1 Mnr (Fq) ⊕10

r=9 Mnr (Fq2)

with 88 =
8∑

r=1
n2

r + 2
10∑

r=9
n2

r, nr ≥ 2,
(3.3)
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which gives 3 possibilities for values of n′
r namely (38, 22), (22, 36, 2, 3) and (24, 36).

For uniqueness, consider a normal subgroup H1 = ⟨t, u⟩ of G1 with K1 = G1/H1 ∼=
C3 ⋊C8. It can be verified that K1 has 12 conjugacy classes as shown in the table
below.

R e x y z w xy xz yz yw zw xyz yzw

S 1 3 1 1 2 3 3 1 2 2 3 2
O 1 8 4 2 3 8 8 4 12 6 8 12

Also K ′
1

∼= C3 with K1/K ′
1

∼= C8. For the representatives k of K1, we have S(γx) =
{γx, γxz}, S(γxy) = {γxy, γxyz}, S(γk) = {γk} for the remaining representatives.
Therefore, employ Theorems 2.1, 2.2 and 2.5 to obtain FqK1 ∼= F4

q ⊕ F2
q2 ⊕4

r=1

Mtr (Fq) with 16 =
∑4

r=1 t2
r. This gives us the only possibility (24) for value of t′

rs.
Next, incorporate Theorem 2.6 in (3.3) to deduce that (24, 36) is the correct choice
for n′

rs and therefore, we have FqG1 ∼= F4
q ⊕F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4 ⊕ M3(Fq2)2.

Case 3. pk ≡ 7 mod 24 or pk ≡ 23 mod 24. In this case, we have
S(γx) = {γx, γxyz}, S(γy) = {γy, γyz}, S(γxy) = {γxy, γxz}, S(γxt) = {γxt, γxyzt},
S(γxyt) = {γxyt, γxzt}, S(γyw) = {γyw, γyzw}, S(γyt) = {γyt, γyzt}, S(γg) = {γg}
for the remaining representatives g of conjugacy classes. Using Theorems 2.1, 2.2
and (3.1), we get FqG1 ∼= Fq ⊕5

r=1 Mnr
(Fq) ⊕12

r=6 Mnr
(Fq2). Applying Theorem 2.5

with G1/G′
1

∼= C8 and FqC8 ∼= F2
q ⊕ F3

q2 in this to obtain

FqG1 ∼= F2
q ⊕ F3

q2 ⊕4
r=1 Mnr

(Fq) ⊕8
r=5 Mnr

(Fq2)

with 88 =
4∑

r=1
n2

r + 2
8∑

r=5
n2

r, nr ≥ 2
(3.4)

which gives three possibilities for values of n′
rs namely (34, 22, 32), (22, 32, 2, 33)

and (24, 34). Further, we can verify that for the representatives k of K1, we have
S(γx) = {γx, γxyz}, S(γy) = {γy, γyz}, S(γxy) = {γxy, γxz}, S(γyw) = {γyw, γyzw}
and S(γk) = {γk} for the remaining representatives. This with Theorems 2.1,
2.2 and 2.5 leads to FqK1 ∼= F2

q ⊕ F3
q2 ⊕2

t=1 Mtr
(Fq) ⊕ Mt3(Fq2), tr ≥ 2, tr ∈

Z with 16 =
∑2

r=1 t2
r + 2t2

3, which gives the only choice (23) for t′
rs. Therefore,

(3.4) and Theorem 2.6 imply that (22, 32, 2, 33) is the correct choice for n′
rs. So,

we get FqG1 ∼= F2
q ⊕ F3

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2 ⊕ M2(Fq2) ⊕ M3(Fq2)3.

Case 4. pk ≡ 11 mod 24 or pk ≡ 19 mod 24. In this case, we have
S(γx) = {γx, γxy}, S(γy) = {γy, γyz}, S(γxz) = {γxz, γxyz}, S(γxt) = {γxt, γxyt},
S(γxzt) = {γxzt, γxyzt}, S(γyw) = {γyw, γyzw}, S(γyt) = {γyt, γyzt}, S(γg) = {γg}
for the remaining representatives g. Using Theorems 2.1 and 2.2 and (3.1), we get
FqG1 ∼= Fq ⊕5

r=1 Mnr
(Fq) ⊕12

r=6 Mnr
(Fq2). Further, we can easily see that rest part

of this case is similar to Case 3.

Next, we remark that for the groups Gi, where 2 ≤ i ≤ 8 and i = 10, the
Wedderburn decomposition of their group algebras can be computed by following
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the steps of Theorem 3.1 (see Tables 1–8). Hence, we are omitting their proofs
from the paper.

Table 1. Wedderburn decomposition of FqG2.

values of p and k Wedderburn decomposition
k even or p ≡ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4 ⊕ M4(Fq)2

pk ≡ {5, 13} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M4(Fq)2

⊕M2(Fq2)2

pk ≡ {7, 23} mod 24 and k odd or F2
q ⊕ Fq2 ⊕ M2(Fq)4 ⊕ M3(Fq)2⊕

pk ≡ {11, 19} mod 24 and k odd M4(Fq)2 ⊕ M2(Fq2) ⊕ M3(Fq2)

Table 2. Wedderburn decomposition of FqG3.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 5, 13, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {7, 11, 19, 23} mod 24 and k odd F2
q ⊕ Fq2 ⊕ M2(Fq)2 ⊕ M3(Fq)2⊕

M2(Fq2)2 ⊕ M3(Fq2) ⊕ M4(Fq2)

Table 3. Wedderburn decomposition of FqG4.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 7, 17, 23} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {5, 11, 13, 19} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq)2 ⊕ M2(Fq2)2

Table 4. Wedderburn decomposition of FqG5.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 17, 19} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4

⊕M4(Fq)2

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq)2 ⊕ M2(Fq2)2
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Table 5. Wedderburn decomposition of FqG6.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 7, 13, 19} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 6. Wedderburn decomposition of FqG7.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 13, 23} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 13, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 7. Wedderburn decomposition of FqG8.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 11, 13, 23} mod 24 and k odd F4

q ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M4(Fq)3

pk ≡ {5, 7, 17, 19} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4⊕

M4(Fq) ⊕ M4(Fq2)

Table 8. Wedderburn decomposition of FqG10.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 24 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ∈ {7, 19} mod 24 and k odd F6
q ⊕ F3

q2 ⊕ M3(Fq)2 ⊕ M3(Fq2) ⊕ M2(Fq2)6

pk ≡ 13 mod 24 and k odd F12
q ⊕ M3(Fq)4 ⊕ M2(Fq2)6

pk ≡ 17 mod 24 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq)4 ⊕ M2(Fq2)4

pk ∈ {11, 23} mod 24 and k odd F2
q ⊕ F5

q2 ⊕ M3(Fq)2 ⊕ M3(Fq2) ⊕ M2(Fq2)6

pk ≡ 5 mod 24 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq2)6

3.3. Wedderburn decomposition of FqG11

It is to be noted that for the group algebra FqG11, WD can not be uniquely
characterize only by using Theorems 2.5 and 2.6. We also need Theorem 2.7 for
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its unique characterization. Consequently, we separately discuss the WD of FqG11
in the following theorem. We have G11 = ((C4 × C4) ⋊ C3) ⋊ C2). This group has
10 conjugacy classes.

R e x y z t xz xt zw zt xzt

S 1 12 32 3 3 12 12 3 6 12
O 1 2 3 4 2 8 4 4 4 8

Clearly, the exponent of G11 is 24 and G′
11

∼= (C4 × C4) ⋊ C3 with G11/G′
11

∼= C2.

Theorem 3.2. The Wedderburn decomposition of FqG11 for q = pk, p > 3 is

values of p and k Wedderburn decomposition
k even or p ∈ {1, 5, 13, 17} mod 24 and k odd F2

q ⊕ M2(Fq) ⊕ M3(Fq)6 ⊕ M6(Fq)
pk ≡ {7, 11, 19, 23} mod 24 and k odd F2

q ⊕ M2(Fq) ⊕ M3(Fq)2 ⊕ M6(Fq)
⊕M3(Fq2)2

Proof. For k even and any prime p > 3, pk ≡ 1 mod 24. This means |S(γg)| = 1
for each g ∈ G11 and hence, (3.1) and Theorems 2.1, 2.2 imply that FqG11 ∼=
Fq ⊕9

r=1 Mnr
(Fr). This with G11/G′

11
∼= C2 and Theorem 2.5 leads to FqG11 ∼=

F2
q ⊕8

r=1 Mnr
(Fr) with 94 =

∑8
r=1 n2

r, nr ≥ 2 which gives four possible choices for
n′

rs as (25, 3, 4, 7), (23, 3, 43, 5), (22, 34, 52) and (2, 36, 6). In order to seek unique-
ness, consider a normal subgroup H11,1 = ⟨t, u⟩ of G11 with K11,1 = G11/H11,1 ∼=
S4. From [9] and Theorem 2.6, we conclude that (22, 34, 52) and (2, 36, 6) are the
only required possibility for n′

rs. Further, using Theorem 2.7, we derive that the
required choice for nr’s is (2, 36, 6). Therefore, we have the result. Next, we assume
that k is odd. We discuss this possibility in the following 2 cases:

Case 1. pk ≡ {1, 5, 13, 17} mod 24. In this case, WD is same as in the case of k
even as |S(γg)| = 1 for each representative g of conjugacy classes.

Case 2. pk ≡ {7, 11, 19, 23} mod 24. In this case, we have S(γz) = {γz, γzw},
S(γxz) = {γxz, γxzt}, S(γg) = {γg}, for the remaining representatives g of con-
jugacy classes. Using Theorems 2.1, 2.2 and (3.1), we reach to FqG11 ∼= Fq ⊕5

r=1
Mnr

(Fq)⊕7
r=6 Mnr

(Fq2). Now incorporate Theorem 2.4 to obtain FqG11 ∼= F2
q ⊕4

r=1
Mnr

(Fq) ⊕6
r=5 Mnr

(Fq2) with 94 =
∑4

r=1 n2
r + 2

∑6
r=5 n2

r, nr ≥ 2. Further, again
consider the normal subgroup H11,1. This with Theorem 2.6 yields FqG11 ∼=
F2

q ⊕ M2(Fq) ⊕ M3(Fq)2 ⊕ Mn1(Fq) ⊕3
r=2 Mnr

(Fq2), 72 = n2
1 + 2

∑3
r=2 n2

r, nr ≥ 2.
The possible choices for n′

rs satisfying this are (2, 3, 5) and (6, 3, 3). By the same
logic given for the case when k is even, we derive that (6, 3, 3) is the required
choice.

3.4. Wedderburn decomposition of FqG9

Next, we discuss the WD of FqG9 (see Table 9). We mention that, unfortunately for
this particular group, our theory is not enough to uniquely characterize the WD of
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its corresponding group algebra when pk ∈ {5, 13} mod 24. We obtain that WD is
one of the following two possibilities: F4

q⊕M2(Fq)2⊕M3(Fq)4⊕M4(Fq2)⊕M2(Fq2)2;
F4

q ⊕ M2(Fq)4 ⊕ M3(Fq)4 ⊕ M2(Fq2) ⊕ M4(Fq2). Consequently, we make use of
computer package GAP in this case for uniquely determine WD.

Table 9. Wedderburn decomposition of FqG9.

values of p and k Wedderburn decomposition
k even or p ∈ {1, 17} mod 24 and k odd F4

q ⊕ M2(Fq)6 ⊕ M3(Fq)4 ⊕ M4(Fq)2

pk ∈ {5, 13} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M4(Fq2)

⊕M2(Fq2)2

pk ∈ {7, 11, 19, 23} mod 24 and k odd F4
q ⊕ M2(Fq)2 ⊕ M3(Fq)4 ⊕ M2(Fq2)2

⊕M4(Fq2)

This completes the computation of WDs of semisimple group algebras of non-
metabelian groups of order 96 having exponent 24. Next, we proceed to compute
the WDs of semisimple group algebras of non-metabelian groups of order 96 having
exponent 12.

3.5. Non-metabelian groups of order 96 having exponent 12
1. G12 = ((C4 × C2) ⋊ C4) ⋊ C3
2. G13 = A4 ⋊ Q8
3. G14 = C4 × S4
4. G15 = (C4 × A4) ⋊ C2
5. G16 = (C2 × C2 × A4) ⋊ C2
6. G17 = (C2 × C2 × Q8) ⋊ C3
7. G18 = ((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3
8. G19 = ((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3
9. G20 = ((C2 × Q8) ⋊ C2) ⋊ C3

10. G21 = C2 × (A4 ⋊ C4)
11. G22 = C2 × C2 × S4
12. G23 = ((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2
13. G24 = C4 × SL(2, 3)
14. G25 = C2 × C2 × SL(2, 3)
15. G26 = C2 × (((C4 × C2) ⋊ C2) ⋊ C3).

3.6. Wedderburn decomposition of FqG12 and some other
group algebras

The presentation of G12 = ((C4 × C2) ⋊ C4) ⋊ C3 is

⟨ x, y, z, w, t, u | x3, [y, x]t−1w−1z−1y−1, [z, x]u−1t−1y−1, [w, x]u−1t−1w−1,

[t, x]u−1w−1, [u, x], y2t−1w−1, [z, y]u−1, [w, y], [t, y], [u, y], z2w−1,
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[w, z], [t, z], [u, z], w2, [t, w], [u, w], t2, [u, t], u2 ⟩.

This group has 12 conjugacy classes as shown in the table below.

R e x y w t u x2 xw yz yw yt x2y

S 1 16 6 3 3 1 16 16 6 6 6 16
O 1 3 4 2 2 2 3 6 4 4 4 6

From above discussion, we see that exponent of G12 is 12. Also G′
12

∼= (C4×C2)⋊C4
with G12/G′

12
∼= C3. Since p > 3, we have gcd(|G12|, p) = 1, and so J(FqG12) = 0.

We are now ready to give the WD and unit group of FqG12 for p > 3.

Theorem 3.3. The WD with unit group of FqG12 for q = pk, p > 3 is as follows:

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq)
pk ≡ 5 mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)5

⊕M6(Fq) ⊕ M2(Fq2)
pk ≡ 7 mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)
⊕M6(Fq) ⊕ M3(Fq2)2

pk ≡ 11 mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)
⊕M6(Fq) ⊕ M2(Fq2) ⊕ M3(Fq2)2

Proof. As FqG12 is semisimple, we have FqG12 ∼= ⊕t
r=1Mnr

(Fr), t ∈ Z, where for
each r, Fr is a finite extension of Fq, nr ≥ 1. As in Theorem 3.1, we can write

FqG12 ∼= Fq ⊕t−1
r=1 Mnr (Fr). (3.5)

For k even and any prime p > 3, pk ≡ 1 mod 12. This means |S(γg)| = 1 for
each g ∈ G12 as IF = {1}. Hence, (3.5) and Theorems 2.1 and 2.2 imply that
FqG12 ∼= Fq ⊕11

r=1 Mnr
(Fr). This with G12/G′

12
∼= C3 and Theorem 2.5 leads to

(with suitable rearrangement of indexes)

FqG12 ∼= F3
q ⊕9

r=1 Mnr
(Fr) with 93 =

9∑
r=1

n2
r, nr ≥ 2 (3.6)

which gives four possible choices for n′
rs namely (2, 2, 2, 2, 2, 2, 2, 4, 7), (2, 2, 2, 2, 2, 4,

4, 4, 5), (2, 2, 2, 2, 3, 3, 3, 5, 5), and (2, 2, 2, 3, 3, 3, 3, 3, 6). We consider the normal
subgroup H1 = ⟨wu, t⟩ ∼= C2 × C2 with G12/H1 ∼= SL(2, 3). From [17], we know
that WD of FqG12/H1 contains M2(Fq) as well as M3(Fq). So, Theorem 2.6 implies
that the choices (2, 2, 2, 2, 2, 2, 2, 4, 7) and (2, 2, 2, 2, 2, 4, 4, 4, 5) are no longer in
race. For uniqueness, we consider another normal subgroup H2 = ⟨u⟩ with K2 =
G12/H2 ∼= (C4 × C4) ⋊ C3. Using [1], we note that FqK2 ∼= F3

q ⊕ M3(Fq)5. This
with Theorem 2.6 imply that (2, 2, 2, 3, 3, 3, 3, 3, 6) is the only possibility for n′

rs.
Therefore, we have

FqG12 ∼= F3
q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq). (3.7)
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Next, we assume that k is odd. We discuss this possibility in the following 4 cases:

Case 1. p ≡ 1 mod 12. In this case, we have |S(γg)| = 1 for each g ∈ G12 as
IF = {1}. Hence, Wedderburn decomposition is given by (3.7).

Case 2. pk ≡ 5 mod 12. In this case, we have S(γx) = {γx, γx2}, S(γxw) =
{γxw, γx2y}, S(γg) = {γg} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get FqG12 ∼= Fq⊕7

r=1Mnr
(Fq)⊕9

r=8Mnr
(Fq2).

Applying Theorem 2.5 with G12/G′
12

∼= C3 and FqC3 ∼= Fq ⊕ Fq2 to obtain that

FqG12 ∼= Fq ⊕Fq2 ⊕7
r=1Mnr

(Fq)⊕Mn8(Fq2) with 93 =
7∑

r=1
n2

r +2n2
8, nr ≥ 2. (3.8)

Further, we note using [1] that FqK2 ∼= Fq ⊕ Fq2 ⊕ M3(Fq)5. Therefore, (3.8) and
Theorem 2.6 imply that FqG12 ∼= Fq ⊕Fq2 ⊕M3(Fq)5 ⊕2

r=1 Mnr (Fq)⊕M3(Fq2) with
48 =

∑2
r=1 n2

r + 2n2
3, nr ≥ 2. This gives the only possibility (2, 6, 2) for n′

rs which
means the required WD is

FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq)5 ⊕ M2(Fq) ⊕ M6(Fq) ⊕ M2(Fq2).

Case 3. pk ≡ 7 mod 12. In this case, we have S(γy) = {γy, γyz}, S(γyw) =
{γyw, γyt}, S(γg) = {γg} for the remaining representatives g of conjugacy classes.
Using Theorems 2.1, 2.2 and (3.5), we get FqG12 ∼= Fq⊕7

r=1Mnr
(Fq)⊕9

r=8Mnr
(Fq2).

Applying Theorem 2.5 with G12/G′
12

∼= C3 and FqC3 ∼= F3
q in above to obtain

FqG12 ∼= F3
q ⊕5

r=1 Mnr (Fq) ⊕7
r=6 Mnr (Fq2)

with 93 =
5∑

r=1
n2

r + 2
7∑

r=6
n2

r, nr ≥ 2.
(3.9)

Further, we observe that FqK2 ∼= F3
q ⊕ M3(Fq) ⊕ Mtr (Fq2)2. Therefore, (3.9) and

Theorem 2.6 imply that FqG12 ∼= F3
q ⊕M3(Fq)⊕4

r=1Mnr
(Fq)⊕M3(Fq2)2 with 48 =∑4

r=1 n2
r, nr ≥ 2. This gives the only possibility (2, 2, 2, 6) for n′

rs which means
that the WD is

FqG12 ∼= F3
q ⊕ M3(Fq) ⊕ M2(Fq)3 ⊕ M6(Fq) ⊕ M3(Fq2)2.

Case 4. pk ≡ 11 mod 12. In this case, we can verify that S(γy) = {γy, γyz},
S(γyw) = {γyw, γyt}, S(γx) = {γx, γx2}, S(γxw) = {γxw, γx2y}, and S(γg) = {γg}
for the representatives e, w, t and u. Using Theorems 2.1, 2.2 and (3.5), we get
FqG12 ∼= Fq ⊕3

r=1 Mnr
(Fq) ⊕7

r=4 Mnr
(Fq2). Applying Theorem 2.5 with FqC3 ∼=

Fq ⊕ Fq2 in above to obtain

FqG12 ∼= Fq ⊕ Fq2 ⊕3
r=1 Mnr

(Fq) ⊕6
r=4 Mnr

(Fq2)

with 93 =
3∑

r=1
n2

r + 2
6∑

r=4
n2

r, nr ≥ 2.
(3.10)
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Further, we see that FqK2 ∼= Fq ⊕Fq2 ⊕M3(Fq)⊕Mtr (Fq2)2. Therefore, (3.10) and
Theorem 2.6 imply that FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq) ⊕ M3(Fq2)2 ⊕2

r=1 Mnr
(Fq) ⊕

Mn3(Fq2) with 48 =
∑2

r=1 n2
r + 2n2

3, which means the only possibility for n′
rs is

(2, 6, 2). Thus, the required WD is

FqG12 ∼= Fq ⊕ Fq2 ⊕ M3(Fq) ⊕ M3(Fq2)2 ⊕ M2(Fq) ⊕ M6(Fq) ⊕ M2(Fq2).

Next, we remark that for the groups Gi, where 13 ≤ i ≤ 26, the WD of
their group algebras can be computed by following the steps of Theorem 3.2 and
Theorem 3.3 (see Tables 10–23). Hence, we are omitting their proofs from the
paper.

Table 10. Wedderburn decomposition of FqG13.

values of p and k Wedderburn decomposition
k even or pk ≡ ±1 mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ≡ ±5 mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)

Table 11. Wedderburn decomposition of FqG14.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 5} mod 12 and k odd F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ∈ {7, 11} mod 12 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)2 ⊕ M3(Fq)4

⊕M2(Fq2) ⊕ M3(Fq2)

Table 12. Wedderburn decomposition of FqG15.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 5} mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ∈ {7, 11} mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)

Table 13. Wedderburn decomposition of FqG16.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F4

q ⊕ M2(Fq)5 ⊕ M3(Fq)4 ⊕ M6(Fq)
pk ∈ {5, 11} mod 12 and k odd F4

q ⊕ M2(Fq)3 ⊕ M3(Fq)4 ⊕ M6(Fq)
⊕M2(Fq2)
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Table 14. Wedderburn decomposition of FqG17.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F3

q ⊕ M2(Fq)3 ⊕ M3(Fq)5 ⊕ M6(Fq)
pk ∈ {5, 11} mod 12 and k odd Fq ⊕ Fq2 ⊕ M2(Fq) ⊕ M3(Fq)5

⊕M6(Fq) ⊕ M2(Fq2)

Table 15. Wedderburn decomposition of FqG18.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F3

q ⊕ M3(Fq)5 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd Fq ⊕ Fq2 ⊕ M3(Fq)5 ⊕ M4(Fq)
⊕M4(Fq2)

Table 16. Wedderburn decomposition of FqG19.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F12

q ⊕ M3(Fq)4 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M4(Fq)
⊕M4(Fq2)

Table 17. Wedderburn decomposition of FqG20.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F12

q ⊕ M3(Fq)4 ⊕ M4(Fq)3

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M4(Fq)
⊕M4(Fq2)

Table 18. Wedderburn decomposition of FqG21.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 7} mod 12 and k odd F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

pk ∈ {5, 11} mod 12 and k odd F4
q ⊕ F2

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M3(Fq2)2
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Table 19. Wedderburn decomposition of FqG22.

values of p and k Wedderburn decomposition
for any k and p F8

q ⊕ M2(Fq)4 ⊕ M3(Fq)8

Table 20. Wedderburn decomposition of FqG23.

values of p and k Wedderburn decomposition
for any k and p F2

q ⊕ M2(Fq) ⊕ M3(Fq)6 ⊕ M6(Fq)

Table 21. Wedderburn decomposition of FqG24.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ≡ 5 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

pk ≡ 7 mod 12 and k odd F6
q ⊕ F3

q2 ⊕ M2(Fq)6 ⊕ M3(Fq)2

⊕M2(Fq2)3 ⊕ M3(Fq2)
pk ≡ 11 mod 12 and k odd F2

q ⊕ F5
q2 ⊕ M2(Fq)2 ⊕ M3(Fq)2

⊕M2(Fq2)5 ⊕ M3(Fq2)

Table 22. Wedderburn decomposition of FqG25.

values of p and k Wedderburn decomposition
k even or pk ∈ {1, 11} mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ∈ {5, 7} mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

Table 23. Wedderburn decomposition of FqG26.

values of p and k Wedderburn decomposition
k even or p ≡ 1 mod 12 and k odd F12

q ⊕ M2(Fq)12 ⊕ M3(Fq)4

pk ≡ 5 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M2(Fq)4 ⊕ M3(Fq)4

⊕M2(Fq2)4

pk ≡ 7 mod 12 and k odd F12
q ⊕ M3(Fq)4 ⊕ M2(Fq2)6

pk ≡ 11 mod 12 and k odd F4
q ⊕ F4

q2 ⊕ M3(Fq)4 ⊕ M2(Fq2)6

68



Annal. Math. et Inf. Computation of the Wedderburn decomposition . . .

4. Conclusion
We have computed the WDs of semisimple group algebras of non-metabelian groups
of order 96. Hence, this study completes the computation of WDs of semisimple
group algebras of all groups up to order 120. In future, this paper motivates the
study of unit groups of the group algebras of non-metabelian groups having order
greater than 120.
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