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Abstract. In this paper the general solution of the functional equation f(x+
y) = g(x) + h(y) ((x, y) ∈ D) is given with unknown functions f : Dx+y →
Y , g : Dx → Y , h : Dy → Y where D ⊆ G2 is a nonempty, open set,
(G,⩽) is an ordered, dense, Abelian group, the topology on G is gener-
ated by the open intervals of G, the sets Dx, Dy, Dx+y are defined by
Dx := {u ∈ G | ∃v ∈ G : (u, v) ∈ D}, Dy := {v ∈ G | ∃u ∈ G : (u, v) ∈ D},
Dx+y := {z ∈ G | ∃(u, v) ∈ D : z = u + v}, and Y (+) is an Abelian group.

The main result of the article is a common generalization of similar results
by L. Székelyhidi and J. Rimán. Analogous theorem concerning logarithmic
functions is also shown.
Keywords: additive functional equations, logarithmic functional equations,
Pexider generalizations, restricted functional equations, Archimedean ordered
Abelian groups, dense ordered groups, general solution of functional equations
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1. Introduction
The main purpose of this article is to prove the generalization of J. Rimán’s Exten-
sion Theorem [21]. Now, we give a non-exhaustive overview of the most important
steps of the theory of Extension and Uniqueness Theorems concerning restricted
Pexider additive functional equations.

In the sequel we will use the notations

Dx :={u ∈ X | ∃v ∈ G : (u, v) ∈ D},
Dy :={v ∈ Y | ∃u ∈ G : (u, v) ∈ D},

Dx+y :={z ∈ X | ∃(u, v) ∈ D : z = u + v}

where D ⊆ G2 := G×G and G(+) is a grupoid.
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The early results were grouped around the following problem. Let be D ⊆ R2,
f : Dx ∪Dy ∪Dx+y → R be a function such that

f(x + y) = f(x) + f(y) ((x, y) ∈ D). (RestAdd)

The functional equation (RestAdd) is said to be restricted additive functional equa-
tion. The problem is to find a function F : R→ R such that

F (x + y) = F (x) + F (y) (x, y ∈ R), (1.1)

and F (x) = f(x) for all x ∈ Df (see [14] Part IV. Geometry, Section Extension of
Functional equation p. 447–460). The function F is said to be additive extension
of the function f from the set D to the R2.

If a function F : R → R satisfies the equation (1.1), then the function F is
said to be Cauchy-additive function (see A. E. Legendre [18], C. F. Gauss [9]).
A. L. Cauchy first found the continuous solutions of equation (1.1) [5].

In [4] D = (R+ ∪ {0})2 (R+ := {x ∈ R+ | x > 0}). The solution of equation
(RestAdd) is f(x) = F (x) for all x ∈ F+ where the function F is a Cauchy-additive
function.

In [2] the concept of quasi-extension can be found. The situation is that D ⊆ R2

is a nonempty connected open set, and the functions f satisfies the functional
equation (RestAdd) for all (x, y) ∈ D then there exists an additive function F and
exist constants C1, C2 ∈ R such that

f(z) = F (z) + C1 + C2

f(u) = F (u) + C1

f(v) = F (v) + C2

(z ∈Dx+y),
(u ∈Dx),
(v ∈Dy).

(1.2)

If the function f and the additive function F is in the form of (1.2), then the
function F is said to be quasi extension of the function f .

In [6] D = R2
+ or D is circle neighbourhood of the point (0, 0) ∈ R2. In these

case f has additive extension.
In [23] D is an open subset of R2. The author of this paper has shown that the

set D is a countable disjoint union of connected open sets, that is D =
⋃

i Di. The
sets Di is said to be components of the set D. For all i there exists an additive
function Fi : R→ R and constants Ci

1, Ci
2 ∈ R such that

f(z) = Fi(z) + Ci
1 + Ci

2

f(u) = Fi(u) + Ci
1

f(v) = Fi(v) + Ci
2

(z ∈Di
x+y),

(u ∈Di
x),

(v ∈Di
y).

(1.3)

If i ̸= j, then the obtained functions Fi, and Fj , as well as the obtained constants
Ci

1, and Cj
1 , or Ci

2, and Cj
2 are not necessarily different depending on whether

Di
x ∩Dj

x ̸= ∅ or Di
y ∩Dj

y ̸= ∅ or Di
x+y ∩Dj

x+y ̸= ∅.
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It is also worth mentioning that if Di
x∩Di

x+y ̸= ∅ then Ci
2 = 0; if Di

y∩Di
x+y ̸= ∅

then Ci
1 = 0; if Di

x∩Di
y ̸= ∅ then Ci1 = Ci2 for all component Di. If the point (0, 0)

is an inner point of a component Di then Di
x ∩Di

y ∩Di
x+y ̸= ∅ thus Ci

1 = Ci
2 = 0.

In [21] J. Rimán studied restricted Pexider additive functional equations in the
form

f(x + y) = g(x) + h(y) ((x, y) ∈ D) (RestPexAdd)
where the set D is a connected open subset of the set R2, E = E(+) is an Abelian
group, and the unknown functions f : Dx+y → E, g : Dx → E, h : Dy → E satisfy
the equation (RestPexAdd) for all (x, y) ∈ D. The solution of equation (1.4) is

f(z) = F (z) + C1 + C2

g(u) = F (u) + C1

h(v) = F (v)C2

(z ∈Dx+y),
(u ∈Dx),
(v ∈Dy),

(1.4)

where a : R→ R is an additive function, C1, C2 ∈ E are constants.
In [1] D = H(I) where I is a nonempty open interval of the real line and the

set H(I) is defined by

H(I) :=
{

(x, y) ∈ R2 | x, y, x + y ∈ I
}

.

The set H(I) is a hexagon, sometimes a triangle or the emptyset.
M. Kuczma in his book [16] investigated both of Pexider type functional equa-

tions and additive functional equations, but did not consider restricted Pexider-
additive functional equations. He used Jensen functions for his Extension Theo-
rem and gave the solution of equation (RestAdd) (Theorem 13.6.1), where D is a
nonempty, connected, open subset of R2N := RN ×RN and Dx ∪Dy ∪Dx+y ⊆ Df .
He showed that the solution of equation (RestAdd) is in the form of (1.2) where
F : RN → RN is an additive function, C1, C2 ∈ RN are constants. The extension
was brought back to the theory of Jensen functions.

An X = X(+) Abelian group is said to be uniquely 2-divisible, if for all x ∈ X
there uniquely exists an y ∈ X such that y + y := 2y = x. This element y ∈ X is
denoted by y = 1

2 x. A nonempty set A ⊆ X is said to be midconvexe, if x+y
2 ∈ A

for all x, y ∈ A. Let Y = Y (+) be also a uniquely 2-divisible Abelian group. A
function j : A→ Y is said to be Jensen [7, 15, 16] if

j

(
x + y

2

)
= j(x) + j(y)

2 (x, y ∈ A).

The way outlined by M. Kuczma is not suitable for us, since we do not want to deal
with either 2-divisible or p-divisible groups, and we do not think that the vector
space structure is necessary for an additive extension theorem.

In the article [20] an extension theorem for restricted Pexider additive functional
equation can be found, where D ⊆ (RN )2 is a nonempty, connected, open set.

In the book [3] several functional equations can be found in more general ab-
stract algebraic settings .

Concerning the Extension Theorems see also [8, 13, 17].
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2. Some necessary concepts and results

Now, we review the concepts and results which will be used in the sequel.

• If G(+,⩽) is an ordered group, α, β ∈ G such that α < β then the set
]α, β[ := {x ∈ G | α < x < β} is said to be open interval.

• An ordered group G(+ ⩽) is said to be dense (in itself) if ]α, β[ ̸= ∅ for all α,
β ∈ G with α < β.

• An ordered group G(+,⩽) is said to be Archimedean ordered if for all x,
y ∈ G+ there exists a positive integer n such that y < nx := x + · · ·+ x.

• An ordered field F(+, ·,⩽) is said to be Archimedean ordered if F(+,⩽) is an
Archimedean ordered group.

Now, we review some properties of open intervals ([10, 12]). The open intervals
are

• translation invariant, that is, if G(+,⩽) is an ordered, dense, Abelian group,
then γ + ]α, β[ = ]γ + α, γ + β[ for all α, β, γ ∈ G such that α < β.

• additive, that is, if G(+,⩽) is an ordered, dense, Abelian group, then ]α, β[+
]γ, δ[ = ]α + γ, β + δ[ for all α, β, γ, δ ∈ G with α < β and γ < δ.

• homothety invariant, that is, if F(+, ·,⩽) is an ordered field, then γ · ]α, β[ =
]γα, γβ[ for all α, β, γ ∈ F with α < β and γ > 0.

• multiplicative, that is, if F(+, ·,⩽) is an ordered field, then ]α, β[ · ]γ, δ[ =
]αγ, βδ[ for all α, β, γ, δ ∈ F with 0 < α < β and 0 < γ < δ.

If G(+,⩽) is an ordered group, x ∈ G, (or x := (x1, x2) ∈ G2), ε ∈ G+, then
define the set B(x, ε) by B(x, ε) := ]x− ε, x + ε[, (B(x, ε) := ]x1− ε, x1 + ε[× ]x2−
ε, x2 + ε[) respectively. The set B(x, ε) is said to be open neighbourhood of the
point x with radius ε.

A function a : X → Y is said to be additive if X(+) and Y (+) are algebraic
structures, and

a(x + y) = a(x) + a(y) (x, y ∈ X).

A function l : X → Y is said to be logarithmic if X(·) and Y (+) are algebraic
structures, and

l(xy) = l(x) + l(y) (x, y ∈ X).

Concerning the additive and logarithmic functions see [3, 16].
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3. Extension Theorem for Pexider additive func-
tional equation

We shall use the Existence Theorem for additive functions [10] according to which
if G(+,⩽) is an Archimedean ordered, dense, Abelian group, Y (+) is a group,
ε ∈ G+, and the function satisfy the equation (RestAdd) where D :=]0, ε[2 then
there exists an additive function a : G → Y which extends the function f from
]−2ε, 2ε[ to G.

Theorem 3.1. If G(+,⩽) is an Archimedean ordered, dense, Abelian group, Y (+)
is an Abelian group, x0, y0 ∈ G, ε ∈ G+, and the functions f : B(x0 + y0, 2ε)→ Y ,
g : B(x0, ε) → Y , h : B(y0, ε) → Y satisfies the functional equation (RestPexAdd)
then there exists an additive function a : G → Y and exist constants C1, C2 ∈ Y
such that the functions f , g, h are in the form of (1.4).

Proof. By the translation invariant property of the open intervals we have that

B(x0, ε) = x0 + B(0, ε),
B(y0, ε) = y0 + B(0, ε),

B(x0 + y0, 2ε) = x0 + y0 + B(0, 2ε).

Define the functions F : B(0, 2ε)→ Y , G : B(0, ε)→ Y , H : B(0, ε)→ Y by

F (w) = f(x0 + y0 + w)
G(u) = g(x0 + u)
H(v) = h(y0 + v)

(w ∈ B(0, 2ε)),
(u ∈ B(0, ε)),
(v ∈ B(0, ε)).

(3.1)

Then F (0) = f(x0 + y0), G(0) = g(x0), H(0) = h(y0) and

F (u + v) = G(u) + H(v) (u, v ∈ B(0, ε)).

Thus we obtain that

F (u) = G(u) + H(0) = G(u) + h(y0) (u ∈ B(0, ε)),
F (v) = G(0) + H(v) = g(x0) + H(v) (v ∈ B(0, ε)),

(3.2)

whence we obtain that

F (u) + F (v) = G(u) + H(v) + g(x0) + h(y0)
= F (u + v) + g(x0) + h(y0) (u, v ∈ B(0, ε)).

Define the function φ : B(0, ε)→ Y by

φ(x) := F (x)− (g(x0) + h(y0)) (x ∈ B(0, 2ε)) (3.3)

Then
φ(x + y) = φ(x) + φ(y) (x, y ∈ B(0, ε)),
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whence by the Extension Theorem [10] we obtain that there exists an additive
function a : G→ Y such that

φ(x) = a(x) (x ∈ B(0, 2ε)). (3.4)

Then by equations (3.1), (3.3), and (3.4) we have that

f(x0 + y0 + w) (3.1)= F (w) (3.3)= φ(w) + (g(x0) + h(y0))
(3.4)= a(w) + (g(x0) + h(y0)) (w ∈ B(0, 2ε)).

(3.5)

By equations (3.1), (3.2), (3.3) and (3.4) we have that

g(x0 + u) (3.1)= G(u) (3.2)= F (u)− h(y0) (3.3)= φ(u) + g(x0)
(3.4)= a(w) + g(x0) (w ∈ B(0, ε)).

(3.6)

By equations (3.1), (3.2), (3.3) and (3.4) we have that

h(y0 + v) (3.1)= H(v) (3.2)= F (u)− g(x0) (3.3)= φ(v) + h(y0)
(3.4)= a(u) + h(y0) (w ∈ B(0, ε)).

(3.7)

Take the substitutions: w ←− w − (x0 + y0) in (3.5), u ←− u − x0 in (3.6),
v ←− v − y0 in (3.7), and define the constants c d ∈ Y by c := g(x0) − a(x0),
d := h(y0)−a(y0) thus the translation invariant property of the intervals we obtain
equation (1.4) which was to be prooved.

We shall use the Existence Theorem for logarithmic functions in [10] according
to which if F(+, ·,⩽) is an Archimedean ordered field, Y (+) is a group, ε ∈ F such
that ε > 1, and the function f : ]ε−2, ε2[→ Y satisfies the equation

f(xy) = f(x) + f(y) (x, y ∈ ]ε−1, ε[),

then there exists a logarithmic function l : F+ → Y which extends the function f
from ]ε−2, ε2[ to the F2

+.

Theorem 3.2. If F(+, ·,⩽) is an Archimedean ordered field, Y (+) is an Abelian
group, x0, y0 ∈ F+, ε ∈ F+, and f : ]x0y0ε−2, x0y0ε2[ → Y , g : ]x0ε−1, x0ε[ → Y ,
h : ]y0ε−1, y0ε[→ Y are functions such that

f(xy) = g(x) + h(y) (x ∈ ]x0ε−1, x0ε[, y ∈ ]y0ε−1, y0ε[),

then there exists a logarithmic function l : F+ → Y and exist constants C1, C2 ∈ Y
such that

f(w) = l(w) + C1 + C2

g(u) = l(u) + C1

h(v) = l(v) + C2

(w ∈ ]x0y0ε−2, x0y0ε2[),
(u ∈ ]x0ε−1, x0ε[),
(v ∈ ]y0ε−1, y0ε[).

Proof. The proof is analogues to the proof of the Theorem 3.1.
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4. Topology generated by the open intervals of an
Archimedean ordered Abelian group

Let G = G(+,⩽) be an ordered group, X ∈ {G,G2} and D ⊆ X. The set D is said
to be open if for every point x in D there exists an ε ∈ G+ such that B(x, ε) ⊆ D.

A subset D ⊆ X is said to be well-chained, if for all x, y ∈ D there exists a
finite sequence Bi := B(xi, εi) (i = 0, 1, . . . , n) such that

• Bi ⊆ D for all i = 0, 1, . . . , n,

• x ∈ B0, y ∈ Bn,

• Bi−1 ∩Bi ̸= ∅ for all i = 1, . . . , n.
A subset C of a nonempty, open set D ⊆ X is a component of D if C is a

maximal (with respect the inclusion) well-chained, open subset of D.
A topological space X(T ) is said to be separable if there exists a subset Y ⊆ X

which is countable, infinite, and dense (in X).
Theorem 4.1. If G = G(+,⩽) is an ordered group, X ∈ {G,G2} and D ⊆ X is
a nonempty, well-chained, open set, then

1. D is a disjoint union of its components;

2. If X is separable then D has countable components.

Proof. 1. Define the family B by

B := {B(x, ε) ⊆ D | x ∈ D, ε ∈ G+} := {Bα | α ∈ Γ}.

Define the equivalence relation on B by Bα ∼ Bβ if and only if there exists a finite
sequence Bαi

(i = 0, 1, . . . , n) such that Bα0 = Bα, Bαn
= Bβ and Bαi−1 ∩Bαi

̸= ∅
for all i = 1, 2, . . . , n. The set B is a disjoint union of its equivalence classes. The
components of the set D are the union of all balls Bα that belong to the same
equivalence class.

2. Let Y be a countable, dense subset of the set X, and let B ⊆ X be a
nonempty, open subset with components {Di}i∈I . Then for all i ∈ I there exists
a ball Bi := B(xi, εi) such that Bi ⊆ Di. If i ̸= j then Bi ∩ Bj = ∅. Since Y is
dense in G thus for all i ∈ I there exists an yi ∈ Y such that yi ∈ Bi. Define the
function φ : {Di}i∈I → Y by φ(Di) := yi. Since the function φ is injective thus
the set {Di}i∈I is countable.

Example 4.2. If G(+,⩽) is a p- divisible, Archimedean ordered, Abelean group
for a prime number p, then G is separable.
Example 4.3. Let a : R → R is a noncontinuous additive function. As it is well-
known that the graph of a is dense in R2 (with respect to usual topology on R2),
but the restriction of the function a to the set Q (where Q denotes the set of all
rationals) is continuous with respect to the topology on the set Q(+) defined above,
and the usual topology on the real line [11].
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5. The generalization of Rimán’s Extension Theo-
rem

We shall use the Uniqueness Theorem for additive functions [10], according to which
if G(+,⩽) is an Archimedean ordered, Abelian group, a : G → Y is an additive
function, C ∈ Y , and ]α, β[ ⊆ Y is a nonempty interval such that a(x) = C for all
x ∈ ]α, β[ then a(x) = 0 for all x ∈ G (and thus C = 0).

Now, we give the generalization of Rimán’s Extension Theorem:

Theorem 5.1. If G(+,⩽) be an Archimedean ordered, dense, Abelian group, and
D ⊆ G2 is an open set with components {Di | i ∈ I} and Y is an Abelian group
then the functions f : Dx+y → Y , g : Dx → Y , h : Dy → Y if and only if are
solutions of the functional equation (RestPexAdd) then there exists a family of
additive functions ai : G → Y (i ∈ I) and exist families of constants Ci

1, Ci
2 ∈ Y

(i ∈ I) such that
f(z) = ai(z) + Ci

1 + Ci
2

g(u) = ai(u) + Ci
1

h(v) = ai(v) + Ci
2

(z ∈ Di
x+y),

(u ∈ Di
x),

(v ∈ Di
y)

(5.1)

with

1. if Di
x+y ∩Dj

x+y ̸= ∅, then ai = aj, and Ci
1 + Ci

2 = Ci
1 + Ci

2;

2. if Di
x ∩Dj

x ̸= ∅, then ai = aj, and Ci
1 = Cj

1 ;

3. if Di
y ∩Dj

y ̸= ∅, then ai = aj, and Ci
2 = Cj

2

for all i, j ∈ I, i ̸= j.

Proof. Let us assume that the functions f , g, h satisfy the functional equation
(RestPexAdd). By Theorem 3.1 we obtain that they are in the form of (5.1), and
by Uniqueness Theorem [10] properties 1., 2., and 3. are fulfilled.

Conversely, let us assume that the functions f , g, h are defined by equation (5.1),
and the properties 1., 2., and 3. are fulfilled. These functions are well-defined, and
they satisfy the functional equation (RestPexAdd).

Theorem 5.2. If G(+,⩽) be an Archimedean ordered, dense, Abelian group, and
D ⊆ G2 is an open set with components {Di | i ∈ I} and Y is an Abelian group.
Define the set D0 := Dx ∪ Dy ∪ Dx+x. The function f : D0 → Y is satisfies
functional equation (RestAdd) if and only if then there exists a family of additive
functions ai : G → Y (i ∈ I) and exist families of constants Ci

1, Ci
2 ∈ Y for all

i ∈ I such that
f(z) = ai(z) + Ci

1 + Ci
2

g(u) = ai(u) + Ci
1

h(v) = ai(v) + Ci
2

(z ∈ Di
x+y),

(u ∈ Di
x),

(v ∈ Di
y)

(5.2)

with
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1. If Di
x+y ∩Dj

x+y ̸= ∅, then ai = aj, and Ci
1 + Ci

2 = Ci
1 + Ci

2;

2. If Di
x ∩Dj

x ̸= ∅, then ai = aj, and Ci
1 = Cj

1 ;

3. If Di
y ∩Dj

y ̸= ∅, then ai = aj, and Ci
2 = Cj

2 ;
for all i, j ∈ I, i ̸= j, moreover,

4. If Di
x+y ∩Di

x ̸= ∅, then Ci
2 = 0;

5. If Di
x+y ∩Di

y ̸= ∅, then Ci
1 = 0;

6. If Di
y ∩Di

y ̸= ∅, Ci
2 = Cj

2

for all i ∈ I.
Proof. The proof can be easily obtained by Theorem 5.1 and the Uniqueness
Theorem [10].

6. An application
Now we show a version of the well-known Rado-Baker functional equation [20].

It is worth mentioning that if F(+, ·,⩽) is an ordered field then F2 is a two-
dimensional vector space over the ordered field F with the usual point-wise defini-
tion of vector operations. The set C ⊆ F2 is said to be

• convex if λx + (1− λ)y ∈ C for all x, y ∈ C, and λ ∈]0, 1[;

• cone if λx ∈ C for all λ ∈ F+, and x ∈ C;

• convex cone if λx + µy ∈ C for all x, y ∈ C, and λ, µ ⩾ 0 with λ2 + µ2 > 0,
see Leonard Lewis [19], Rockafellar [22].

Let F(+, ·,⩽) be an Archimedean ordered field, α ∈ F+ ∪ {0}, β ∈ F+ ∪ {+∞}
such that 0 ⩽ α < β ⩽ +∞. Define the set C := Cα,β by

Cα,β
.=

{(x, y) ∈ F2
+|αx < y < βx}, if α ∈ F+ ∪ {0}, β ∈ F+;

{(x, y) ∈ F2
+|αx < y}, if β = +∞.

.

Proposition 6.1. The set C = Cα,β is a nonempty, open, well-chained set.
Proof. Since Cα,β is a nonempty, open, convex cone thus it is a nonempty, well-
chained, open set.
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Proposition 6.2. If F(+,⩽) is an Archimedean ordered field, Y (+) is an abelian
group, the functions P, Q, R : F+ → Y are solutions of functional equation

P (x + y) = Q(x) + R(y) (x, y ∈ C(α, β)) (6.1)

then there exists an additive function a : F → Y and constants C1, C2 ∈ Y such
that

P (x) = a(x) + C1 + C2

Q(x) = a(x) + C1

R(x) = a(x) + C2

(x ∈F+),
(x ∈F+),
(x ∈F+).

(6.2)

Proof. Let D := Cα,β . Since Dx = Dy = Dx+y = F+ thus by Theorem 5.1 we
obtain the statement.

The following Theorem is a generalization of Rado–Baker Theorem [4], and if
can be obtained from Proposition 6.2 as a simple consequence.

Theorem 6.3. Let F(+, ·,⩽) be an Archimedean ordered field, Y (+) be an Abelian
group, α, β, γ, δ ∈ F such that αδ− βγ ̸= 0. The functions P, Q, R : F+ → Y if and
only if satisfy the functional equation

P ((α + γ)x + (β + δ)y) = Q(αx + βy) + R(γx + δy), (x, y ∈ F+) (6.3)

if they are of the form of (6.2) where a : F→ Y is an additive function, C1, C2 ∈ Y
are constants.

Proof. Let us assume that the functions P, Q, R : F+ → Y satisfy the functional
equation (6.3) where az α, β, γ, δ ∈ F such that αδ − βγ ̸= 0. Take the following
substitution in (6.3):

P ((α + γ)x + (β + δ)y) = Q(αx + βy︸ ︷︷ ︸
u

) + R(γx + δy︸ ︷︷ ︸
v

),

x← δu− βv

αβ − βγ
> 0 y ← αv − γu

αδ − βγ
> 0.

(6.4)

Thus we obtain that the functions P, Q, R satisfy the equation (6.1) where the
constants α ∈ F+ ∪ {0} and β ∈ F+ ∪ {+∞} are defined by

• α := γ
α , β := δ

β if αδ − βγ > 0 and β ̸= 0;

• α := γ
α , β := +∞ if αδ − βγ > 0 and β = 0;

• α := δ
β , β := γ

α if αδ − βγ < 0 and α ̸= 0;

• α := δ
β , β := +∞ if αδ − βγ < 0 and α = 0.

By Proposition 6.1 we obtain the statement. The converse statement is evident.
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7. Examples and problems

Example 7.1. Let D :=
{

(x, y) ∈ R2 | |x− 0.5|+ |y − 0.5| < 0.5
}

.

Dx = Dy = ]0, 1[,
Dx+y = ]0.5, 1.5[.

Define the set D0 by D0 := Dx ∪Dy ∪Dx+y. By Theorem 5.1 we obtain that the
general solution of the functional equation is

f(x) = a(x) (x ∈ D0 = ]0, 1.5[)
where a : R→ R is a Cauchy additive function.

Let D ⊆ R2 be a well-chained open set with components D1, D2. By Theo-
rem 5.1 we obtain that the general solution of functional equation (RestPexAdd)
is in the form of (1.3).

f(z) =
{

a1(z) + C1
1 + C1

2 , if z ∈ D1
x+y;

a2(z) + C2
1 + C2

2 , if z ∈ D2
x+y;

g(u) =
{

a1(u) + C1
1 , if u ∈ D1

x;
a2(u) + C2

1 , if u ∈ D2
x;

h(v) =
{

a1(v) + C1
2 , if v ∈ D1

y;
a2(v) + C2

2 , if v ∈ D2
y,

where ai is an additive function, Ci
1, Ci

2 are constants for all i = 1, 2.
The following two examples show how the structure of the general solution

depends on the geometry of the sets D1 and D2.
Example 7.2. Let

D1 :=
{

(x, y) ∈ R2 | |x− 0.5|+ |y − 0.5| < 0.5
}

,

D2 :=
{

(x, y) ∈ R2 | |x + 0.5|+ |y + 0.5| < 0.5
}

,

and let D := D1 ∪D2.

D1
x = D1

y = ]0, 1[,
D1

x+y = ]0.5, 1.5[,
D2

x = D2
y = ]−1, 0[,

D2
x+y = ]−1.5,−0.5[.
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By Theorem 5.2 we have that since D1
x+y ∩ D1

x ̸= ∅ thus C1
2 = 0. Since

D1
x+y∩D1

y ̸= ∅ thus C1
1 = 0. Since D2

x+y∩D2
x ̸= ∅ thus C2

2 = 0. Since D2
x+y∩D2

y ̸= ∅
thus C2

1 = 0. Whence we obtain that the general solution of equation (RestAdd)
in this case is

f(z) =
{

a1(z), if z ∈ D1
x+y;

a2(z), if z ∈ D2
x+y;

g(u) =
{

a1(u), if u ∈ D1
x;

a2(u), if u ∈ D2
x;

h(v) =
{

a1(v), if v ∈ D1
y;

a2(v), if v ∈ D2
y,

where ai is additive function for all i = 1, 2.

Example 7.3. Define the sets

D1 :=
{

(x, y) ∈ R2 | |x + 0.5|+ |y − 0.5| < 0.5
}

,

D2 :=
{

(x, y) ∈ R2 | |x− 0.5|+ |y + 0.5| < 0.5
}

,

D := D1 ∪D2

D1
x+y = D2

x+y = ]−0.5, 0.5[,
D1

x = D2
y = ]−1, 0[,

D1
y = D2

x = ]0, 1[.

Since D1
x+y = D2

x+y thus a1 = a2 and C1
1 + C1

2 = C2
1 + C2

2 . Since D1
x = D2

y

thus C1
1 = C2

2 , and C1
2 = C2

1 . Since D1
x+y ∩ D1

x ̸= ∅ thus C1
1 + C2

1 = C1
1 . Since

D1
x+y ∩D1

y ̸= ∅ thus C1
1 + C1

2 = C1
2 . Consequently Ci

1 = Ci
2 = 0 for all i = 1, 2.

Whence we obtain that the general solution of equation (RestAdd) in this case
is

f(z) = a(z), if z ∈ D1
x+y = D2

x+y;
g(u) = a(u), if u ∈ D1

x = D2
x;

h(v) = a(v), if v ∈ D1
y = D2

y.

where a : R→ R is an additive function.

Example 7.4. If G := (R2, +,⩽) where the addition is defined by the usual
componentwise addition, and the ordering is the usual lexicographic ordering, that
is, (a1, a2) ⩽ (b1, b2) if and only if that either a1 < b1 or a1 = b1 and b1 ⩽ b2.
Thus the group G(+,⩽) is an ordered Abelian group, but it is not an Archimedean
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ordered, because, for example, (0, 1) < (1, 0), but there is no positive integer n
with n(0, 1) > (1, 0).

This is the open interval ](0, 1), (1, 0)[ in G.

Problem A. Preserve the notations of Example 7.4, and let Y (+) be an Abelian
group. We want to know the general solution of functional equation (RestAdd)
where D := ](0, 1), (1, 0)[2.

Problem B. Preserve the notations of Example 7.4, and Y (+) be an Abelian
group. We also want to know the general solution of functional equation (RestPex-
Add) where D := ](0, 1), (1, 0)[2.

Problem C. In general, we also want to know the general solution of equa-
tion (RestAdd), or equation (RestPexAdd) in the case when G(+,⩽) is a nonar-
chimedean ordered Abelian group, Y (+) be an Abelian group, D ⊆ G2 is a
nonempty, well-chained, open set. The topology on G (or on G2) is generated
by the open interval of G (or by the open rectangles of G2).
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