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Abstract. In this paper the general solution of the functional equation f(z+
y) = g(z) + h(y) ((z,y) € D) is given with unknown functions f: Dgyy —
Y, g: D, - Y, h: Dy - Y where D C G? is a nonempty, open set,
(G,<) is an ordered, dense, Abelian group, the topology on G is gener-
ated by the open intervals of G, the sets D,, Dy, Dz, are defined by
Dy = {ueG|3weG:(uv)eD}, Dy = {veG|IueG: (uyv) € D},
Dyyy :={2€G|3(u,v) € D:2z=u+v}, and Y(+) is an Abelian group.

The main result of the article is a common generalization of similar results
by L. Székelyhidi and J. Rimédn. Analogous theorem concerning logarithmic
functions is also shown.
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1. Introduction

The main purpose of this article is to prove the generalization of J. Riman’s Exten-
sion Theorem [21]. Now, we give a non-exhaustive overview of the most important
steps of the theory of Extension and Uniqueness Theorems concerning restricted
Pexider additive functional equations.

In the sequel we will use the notations

D, :={ue X |JveG: (uv) € D},
Dy:={veY |JueG: (uyv) € D},
Dyyy:={z€X|3(uv,v) €D :z=u+v}

where D C G? := G x G and G(+) is a grupoid.
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The early results were grouped around the following problem. Let be D C R?,
f: Dy UD,UD,., — R be a function such that

fle+y) =fe)+fly) ((2,y) €D). (RestAdd)

The functional equation (RestAdd) is said to be restricted additive functional equa-
tion. The problem is to find a function F': R — R such that

Flz+y)=F)+Fy) (z,y€eR), (1.1)

and F(x) = f(z) for all x € Dy (see [14] Part IV. Geometry, Section Extension of
Functional equation p. 447-460). The function F is said to be additive extension
of the function f from the set D to the R2.

If a function F': R — R satisfies the equation (1.1), then the function F is
said to be Cauchy-additive function (see A. E. Legendre [18], C. F. Gauss [9]).
A. L. Cauchy first found the continuous solutions of equation (1.1) [5].

In [4] D = (Ry U{0})? (Ry := {z € Ry | 2> 0}). The solution of equation
(RestAdd) is f(x) = F(z) for all z € F, where the function F is a Cauchy-additive
function.

In [2] the concept of quasi-extension can be found. The situation is that D C R?
is a nonempty connected open set, and the functions f satisfies the functional
equation (RestAdd) for all (z,y) € D then there exists an additive function F' and
exist constants C1, Cy € R such that

fl2) =F(z)+Ci1+Cy (2 €Dyqy),
f(u) :F(U)+Cl (’LL GDz)v (1'2)
f(v) = F(v) + C (v D).

If the function f and the additive function F is in the form of (1.2), then the
function F' is said to be quasi extension of the function f.

In [6] D = R or D is circle neighbourhood of the point (0,0) € R?. In these
case f has additive extension.

In [23] D is an open subset of R?. The author of this paper has shown that the
set D is a countable disjoint union of connected open sets, that is D = J, D'. The
sets D; is said to be components of the set D. For all i there exists an additive
function F;: R — R and constants Ci, C% € R such that

f(2) = Fi(2) + C1 + C3 (2 €D,yy),
f(u) = Fi(u) + (u€Dy), (1.3)
fw) = Fi(v) + C; (v ED;).

If ¢ # j, then the obtained functions F;, and F}, as well as the obtained constants

Ci, and Cf, or C4, and Cg are not necessarily different depending on whether
D, ND}#0or DD} #0orD,,, ND,, ., #0.
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It is also worth mentioning that if DL ND%, # 0 then Cy = 0; if D} ND.,, # 0
then C| = 0; if DiND;, # () then Ciy = Ciy for all component D*. If the point (0, 0)
is an inner point of a component D then D}, N D} N D%, # 0 thus C} = C5 = 0.

In [21] J. Rimén studied restricted Pexider additive functional equations in the
form

fl@+y)=g(@)+hly) ((,y) D) (RestPexAdd)

where the set D is a connected open subset of the set R?, E = E(+) is an Abelian
group, and the unknown functions f: Dyyy, — F, g: D, — E, h: Dy, — E satisfy
the equation (RestPexAdd) for all (z,y) € D. The solution of equation (1.4) is

f(2) =F(2)+C1+Cy (2 €Dgyqy),
g(u) = F(u) 4+ C4 (u €Dy), (1.4)
h(v) = F(v)Cy (v €Dy),

where a: R — R is an additive function, C1, Cy € E are constants.
In [1] D = H(I) where I is a nonempty open interval of the real line and the
set H(I) is defined by

H(I):={(z,y) ER* | z,y,x +y € I}.

The set H(I) is a hexagon, sometimes a triangle or the emptyset.

M. Kuczma in his book [16] investigated both of Pexider type functional equa-
tions and additive functional equations, but did not consider restricted Pexider-
additive functional equations. He used Jensen functions for his Extension Theo-
rem and gave the solution of equation (RestAdd) (Theorem 13.6.1), where D is a
nonempty, connected, open subset of R?Y := RY x R and D, U DyUD;, CDy.
He showed that the solution of equation (RestAdd) is in the form of (1.2) where
F:RY - RY is an additive function, Cy, Cy € RY are constants. The extension
was brought back to the theory of Jensen functions.

An X = X(+) Abelian group is said to be uniquely 2-divisible, if for all z € X
there uniquely exists an y € X such that y + y := 2y = . This element y € X is
denoted by y = %x A nonempty set A C X is said to be midconvexe, if % €A
for all x,y € A. Let Y = Y(+) be also a uniquely 2-divisible Abelian group. A
function j: A — Y is said to be Jensen [7, 15, 16] if

(E) S0 (e

The way outlined by M. Kuczma is not suitable for us, since we do not want to deal
with either 2-divisible or p-divisible groups, and we do not think that the vector
space structure is necessary for an additive extension theorem.

In the article [20] an extension theorem for restricted Pexider additive functional
equation can be found, where D C (R™)? is a nonempty, connected, open set.

In the book [3] several functional equations can be found in more general ab-
stract algebraic settings .

Concerning the Extension Theorems see also [8, 13, 17].
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2. Some necessary concepts and results
Now, we review the concepts and results which will be used in the sequel.

o If G(+,<) is an ordered group, o, S € G such that a < (3 then the set
la, Bl :={z € G| & < x < 5} is said to be open interval.

o An ordered group G(+ <) is said to be dense (in itself) if Ja, 3] # 0 for all a,
B € G with a < §.

o An ordered group G(+, <) is said to be Archimedean ordered if for all x,
y € G4 there exists a positive integer n such that y < nx :==x +--- + .

o An ordered field F(+, -, <) is said to be Archimedean ordered if F(+, <) is an
Archimedean ordered group.

Now, we review some properties of open intervals ([10, 12]). The open intervals
are

o translation invariant, that is, if G(+, <) is an ordered, dense, Abelian group,
then v + |, B[ = |y + o,y + B[ for all o, 8, v € G such that o < 3.

« additive, that is, if G(+, <) is an ordered, dense, Abelian group, then ], 5[+
v, 0[=]a+v,8+ [ forall o, 8,7, § € G with a < § and v < 4.

o homothety invariant, that is, if F(+, -, <) is an ordered field, then v - |a, 8] =
Jva, 8] for all o, B, v € F with a < 8 and v > 0.

o multiplicative, that is, if F(+,-, <) is an ordered field, then |o, 8] - ]y,0[ =
Jary, Bé] for all o, B, v, 6 €F with 0 <« < S and 0 < v < §.

If G(+,<) is an ordered group, x € G, (or = := (z1,22) € G?), ¢ € G4, then
define the set B(z,¢) by B(z,¢) := v —e,z+¢[, (B(x,¢) :=]z1 —€, 21 +€[ X |r2 —
g,x2 + €[) respectively. The set B(z,¢) is said to be open neighbourhood of the
point x with radius €.

A function a: X — Y is said to be additive if X(+) and Y (4) are algebraic
structures, and

a(z +y) = a(x) +aly) (z,y € X).

A function {: X — Y is said to be logarithmic if X (-) and Y (+) are algebraic
structures, and

Ury) =1l(z) +1U(y) (z,y € X).

Concerning the additive and logarithmic functions see [3, 16].
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3. Extension Theorem for Pexider additive func-
tional equation

We shall use the Existence Theorem for additive functions [10] according to which
if G(+,<) is an Archimedean ordered, dense, Abelian group, Y (+) is a group,
e € G, and the function satisfy the equation (RestAdd) where D :=]0,e[* then
there exists an additive function a: G — Y which extends the function f from
]—2¢,2¢] to G.

Theorem 3.1. If G(+, <) is an Archimedean ordered, dense, Abelian group, Y (+)
is an Abelian group, xo, yo € G, € € G4, and the functions f: B(xo+yo,2¢) = Y,
g: B(zo,e) = Y, h: B(yo,e) = Y satisfies the functional equation (RestPexAdd)
then there exists an additive function a: G — Y and exist constants C1, Cy € Y
such that the functions f, g, h are in the form of (1.4).

Proof. By the translation invariant property of the open intervals we have that

B(xg,e) =20 + B(0,¢),
B(yo, ) = yo + B(0,¢),
B(zo + yo,2¢) = xg + yo + B(0, 2¢).

Define the functions F': B(0,2¢) =Y, G: B(0,e) =Y, H: B(0,e) = Y by

F(w) = f(xzo+yo +w) (w € B(0,2)),
G(u) = g(zo +u) (u € B(0,¢)), (3.1)
H(v) = h(yo +v) (v e B(0,¢)).

(
Then F(0) = f(zo + o), G(0) = g(x0), H(0) = h(yo) and
F(u+v) = Gu) + Hv) (u,ve B(0,e)).
Thus we obtain that
F(u) = G(u) + H(0) = G(u) + h(yo) (u € B(0,e)),

F(v) = G(0) + H(v) = g(zo) + H(v) (v € B(0,e)), (3:2)
whence we obtain that
F(u) + F(v) = G(u) + H(v) + g(x0) + h(y0)
= F(u+v) +g(z0) + h(yo) (u,v € B(0,¢)).
Define the function ¢: B(0,e) — Y by
(z) = F(z) = (9(zo) + h(yo)) (z € B(0,2¢)) (3.3)

Then
ox+y) =9@)+ely) (v,y€ B(0,¢)),
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whence by the Extension Theorem [10] we obtain that there exists an additive
function a: G — Y such that

o(x) =a(z) (z€ B(0,2)). (3.4)
Then by equations (3.1), (3.3), and (3.4) we have that

Flao+yo+w) L Fw) "2 ow) + (g(z0) + h(wo)) 55
Y a(w) + (g(ao) + hiyo)) (w € B(0,2¢)).
By equations (3.1), (3.2), (3.3) and (3.4) we have that
glzo +u) = Gw) " Flu) - hlyo) E o(w) + g(wo) 50
Y a(w) + g(wo) (w e B(0,¢)).
By equations (3.1), (3.2), (3.3) and (3.4) we have that
o +v) = HEw) E F(w) = gao) = p(v) + h(w) .
(3.4) ‘

a(u) + h(ye) (w € B(0,¢)).

Take the substitutions: w <— w — (zg + yo) in (3.5), u +— u — zy in (3.6),
v <— v —yo in (3.7), and define the constants ¢ d € Y by ¢ := g(z¢) — a(zo),
d := h(yo) — a(yo) thus the translation invariant property of the intervals we obtain
equation (1.4) which was to be prooved. O

We shall use the Existence Theorem for logarithmic functions in [10] according
to which if F(+, -, <) is an Archimedean ordered field, Y (+) is a group, € € F such
that € > 1, and the function f:]e=2,&2[ — Y satisfies the equation

fxy) = f@)+ fly) (zyele e,

then there exists a logarithmic function [: F, — Y which extends the function f
from Je™2, 2| to the F?.

Theorem 3.2. If F(+,-,<) is an Archimedean ordered field, Y (+) is an Abelian
group, To, yo € Fy, e € Fy, and f: |zoyoe 2, woyoc?[ = Y, g: Jvoe ™1, moe[ = Y,
h:)yoe Y, yoe| = Y are functions such that

flay) = g(@) + h(y) (x €Jwoe™" 2ol y € Jyoe™" yoel),

then there exists a logarithmic function l: Fi — 'Y and exist constants C1, Cy € Y
such that

fw) =1(w) +Cy + Co (w € Jzoyoe 2, zoyoe’]),
g(u) =l(u) + Cq (u e ]xoe_l,xog[),
h(v) = 1(v) + C2 (v € Jyoe ™1, yoe ).
Proof. The proof is analogues to the proof of the Theorem 3.1. O

18
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4. Topology generated by the open intervals of an
Archimedean ordered Abelian group

Let G = G(+, <) be an ordered group, X € {G,G?} and D C X. The set D is said
to be open if for every point  in D there exists an € € G such that B(z,e) C D.

A subset D C X is said to be well-chained, if for all z,y € D there exists a
finite sequence B; := B(z;,¢;) (1 =0,1,...,n) such that

e B,CDforalli=0,1,...,n,
® ZL'EBQ,yEBn,
e B 1NB;#(Pforalli=1,...,n.

A subset C of a nonempty, open set D C X is a component of D if C is a
maximal (with respect the inclusion) well-chained, open subset of D.

A topological space X (7) is said to be separable if there exists a subset ¥ C X
which is countable, infinite, and dense (in X).

Theorem 4.1. If G = G(+, <) is an ordered group, X € {G,G?*} and D C X is
a nonempty, well-chained, open set, then

1. D is a disjoint union of its components;

2. If X is separable then D has countable components.

Proof. 1. Define the family B by
B:={B(z,e) CD|z€D,ecGi}:={B,|aeTl}.

Define the equivalence relation on B by B, ~ Bg if and only if there exists a finite
sequence By, (i =0,1,...,n) such that By, = By, Ba, = Bg and B,, , N By, # 0
for all i = 1,2,...,n. The set B is a disjoint union of its equivalence classes. The
components of the set D are the union of all balls B, that belong to the same
equivalence class.

2. Let Y be a countable, dense subset of the set X, and let B C X be a
nonempty, open subset with components {D?};c;. Then for all i € I there exists
a ball B; := B(x;,¢;) such that B; C D If i # j then B; N B; = 0. Since Y is
dense in G thus for all ¢ € I there exists an y; € Y such that y; € B;. Define the
function ¢: {D'},c; — Y by ¢(D?) := y;. Since the function ¢ is injective thus
the set {D%};c; is countable. O

Example 4.2. If G(+, <) is a p- divisible, Archimedean ordered, Abelean group
for a prime number p, then G is separable.

Example 4.3. Let a: R — R is a noncontinuous additive function. As it is well-
known that the graph of a is dense in R? (with respect to usual topology on R?),
but the restriction of the function a to the set Q@ (where Q denotes the set of all
rationals) is continuous with respect to the topology on the set Q(+) defined above,
and the usual topology on the real line [11].
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5. The generalization of Riman’s Extension Theo-
rem

We shall use the Uniqueness Theorem for additive functions [10], according to which
if G(+, <) is an Archimedean ordered, Abelian group, a: G — Y is an additive
function, C' € Y, and Ja, B[ C Y is a nonempty interval such that a(z) = C for all
x € |a, [ then a(z) =0 for all x € G (and thus C' = 0).

Now, we give the generalization of Rimén’s Extension Theorem:

Theorem 5.1. If G(+, <) be an Archimedean ordered, dense, Abelian group, and
D C G? is an open set with components {D* | i € I} and Y is an Abelian group
then the functions f: Dyyy — Y, g: Dy — Y, h: Dy — Y if and only if are
solutions of the functional equation (RestPexAdd) then there exists a family of
additive functions a;: G —'Y (i € I) and exist families of constants Ct, Ci € Y
(i € I) such that

f(z) = ai(2) + C1 + Gy (2 € Dpy,),

g9(u) = ai(u) + Cj (u € Dy), (5.1)
h(v) = a;(v) + C} (ve D)
with
1. if DL ,ND.,  #0, then a; = a;, and Ci + C} = C} + C5;

2. if DN DI #0, then a; = a;, and Ci = CJ;
3. ifD;ﬂDg # 0, then a; = aj, and Cj :Cg
foralli, jel,i#j.

Proof. Let us assume that the functions f, g, h satisfy the functional equation
(RestPexAdd). By Theorem 3.1 we obtain that they are in the form of (5.1), and
by Uniqueness Theorem [10] properties 1., 2., and 3. are fulfilled.

Conversely, let us assume that the functions f, g, h are defined by equation (5.1),
and the properties 1., 2., and 3. are fulfilled. These functions are well-defined, and
they satisfy the functional equation (RestPexAdd). O

Theorem 5.2. If G(+, <) be an Archimedean ordered, dense, Abelian group, and
D C G? is an open set with components {D' | i € I} and Y is an Abelian group.
Define the set Dy := Dy U Dy U Dyyy. The function f: Do — Y is satisfies
functional equation (RestAdd) if and only if then there exists a family of additive
functions a;: G — Y (i € I) and exist families of constants Ci, C3 € Y for all
1 € I such that _ _ _

f(z)=ai(2) + C1+C; (2 € Dpyy),

g =alw+C  (we D), (52)

h(v) = a;(v) + C} (ve D;)

with
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# 0, then a; = aj, and C} + Cy = C + C%;

i C{,‘

= Cg;

1. IwaerﬂD;_H/
2. If Di N DI # 0, then a; = a;, and C}
3. If Dy, N Dj # 0, then a; = a;, and C}
foralli, j € 1,1 j, moreover,
4. If D, N DL #0, then C5 =0
5. If DL, N D, #0, then C} = 0;
6. If D, N D #0, Cs = c)
foralliel.
Proof. The proof can be easily obtained by Theorem 5.1 and the Uniqueness
O

Theorem [10].

6. An application
Now we show a version of the well-known Rado-Baker functional equation [20]

It is worth mentioning that if F(+,-, <) is an ordered field then F? is a two-
dimensional vector space over the ordered field F with the usual point-wise defini-

tion of vector operations. The set C' C F? is said to be

o convex if \x + (1 — Ay € C for all z,y € C, and X €]0,1]
e coneif v eCforall A\ eF;,andz e C
« convex cone if Az + py € C for all 2,y € C, and A\, > 0 with A% + p2 > 0,

see Leonard Lewis [19], Rockafellar [22].
Let F(+, -, <) be an Archimedean ordered field, o € FL U {0}, 8 € Fy U {+o0}
a < 8 < 4o00. Define the set C' := C, g by

if €F+U{O}, 6 G]F+,

such that 0 <
{(2y) € F2Jax <y < B}
if = 4o0.

Cap = )
{(z,y) e Filax <y},
Co.p 15 a nonempty, open, well-chained set

Proposition 6.1. The set C

chained, open set.
y

[
[
1
[
L
[
[
[
E
[
[
[
[
L
[
[
[
[

Proof. Since C, g is a nonempty, open, convex cone thus it is a nonempty, well-
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Proposition 6.2. IfF(+,<) is an Archimedean ordered field, Y (+4) is an abelian
group, the functions P,Q,R: F+ — Y are solutions of functional equation

Plr+y)=Qx)+ R(y) (2,y € Cla,p)) (6.1)

then there exists an additive function a: F — Y and constants C1, Co € Y such
that

P(z)=a(z)+C1+Cy (zx€Fy),
Q(z) =a(z)+ C4 (z €Fy), (6.2)
R(z)=a(@)+C:  (v€Fy).
Proof. Let D := Cqg. Since D, = D, = Dy, = F, thus by Theorem 5.1 we
obtain the statement. O

The following Theorem is a generalization of Rado-Baker Theorem [4], and if
can be obtained from Proposition 6.2 as a simple consequence.

Theorem 6.3. Let F(+,-,<) be an Archimedean ordered field, Y (+) be an Abelian
group, o, 3,7, € F such that ad — By # 0. The functions P,Q,R: Fy — Y if and
only if satisfy the functional equation

P((a+y)z+ (B+08)y) = Q(ax + By) + R(yx +dy), (v,y € Fy) (6.3)

if they are of the form of (6.2) where a: F — Y is an additive function, C1,Cy € Y
are constants.

Proof. Let us assume that the functions P,Q, R: F, — Y satisfy the functional
equation (6.3) where az «, 8,7,6 € F such that ad — 8y # 0. Take the following
substitution in (6.3):

P((a+7y)z+ (B4 0)y) = Q(ax + By) + R(yx + 0y),

u v (6.4)
L - S el N
af=fy " T ai—py T

Thus we obtain that the functions P, @, R satisfy the equation (6.1) where the
constants o € Fy U {0} and 8 € Fy U {+oo} are defined by

. a:z%,ﬂ::%ifaéfﬂ'y>0and57é0;

L]
Q
Il

1 p:=+4occif ad — fy>0and = 0;
. a::%,ﬁ::%ifa5—67<0anda7é0;
. a::%,ﬁ:=+ooifa6—5'y<0anda:0.

By Proposition 6.1 we obtain the statement. The converse statement is evident. [J
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7. Examples and problems

Example 7.1. Let D := {(z,y) € R? | |z — 0.5| + |y — 0.5| < 0.5}.

1

D, =D, =]0,1],
Dyyy =]0.5,1.5].

0 1 35
Define the set Dg by Dy := D, U D, U D;,,. By Theorem 5.1 we obtain that the

general solution of the functional equation is
f(z) =a(z) (x € Dy=]0,1.5])
where a: R — R is a Cauchy additive function.

Let D C R? be a well-chained open set with components D', D?. By Theo-
rem 5.1 we obtain that the general solution of functional equation (RestPexAdd)
is in the form of (1.3).

£2) a1(z) +C1 +Cy, if ze€ Dy, 3
z
az(z) +CF + C3, if z€ D2, ;

az(u) + C%, if u € D?;

)
(2)
ai(u) + C1, if u € DL;
g(u) = { () >
1 1.
h(v) = ar (v) + 022, %fv € Dg,
az(v) +C3, if v e Dy,
where a; is an additive function, C%, C} are constants for all i = 1, 2.
The following two examples show how the structure of the general solution
depends on the geometry of the sets D! and D?.

Example 7.2. Let
D' :={(z,y) €R*| |z —0.5] + |y — 0.5| < 0.5},
D? :={(z,y) € R*| [z +0.5| + |y + 0.5| < 0.5},
and let D := Dy U Ds.

3
é D;:D;:]O,l[,
D;., =10.5,15],
-3. -1 0 1 3.
N N D} =Dy =]-1,0],
/’1 D2, =]-15-0.5
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By Theorem 5.2 we have that since D},, N D} # 0 thus C3 = 0. Since
D, ,,ND, # 0 thus C{ = 0. Since D2 ,,ND3 # 0 thus C3 = 0. Since D7, ,ND. # 0
thus C? = 0. Whence we obtain that the general solution of equation (RestAdd)

in this case is

: 1.
£(2) {al(Z,IfZEDIer,

agz,iszDier;

, if u € DZ;
,ifvEDzl];
,ifvéDg,

g(u) =

h(v) {Z;

where a; is additive function for all ¢ = 1, 2.

)
(2)
{al(u), if ue D};
(u)
(v)
(v)

Example 7.3. Define the sets

Dy = {(z,y) € R* | |z + 0.5 + |y — 0.5| < 0.5},
Dy = {(z,y) € R* ||z — 0.5 + |y + 0.5| < 0.5},
D:=DyUD,

Dy, =D, =]-050.5]

A o =1 D, = Dj =1-1,0],

D, = D2 =]0,1].
A %’

Since D}, = D2,, thus a; = ag and C{ + C3 = Cf + (3. Since D} = D}
thus C} = C3, and C3 = C}. Since D},, N D} # 0 thus Cf + C? = C{. Since
D},,ND; # 0 thus C! + C3 = C3. Consequently C{ = C§ =0 for all i = 1,2.

Whence we obtain that the general solution of equation (RestAdd) in this case

is
f(z)=ual(z), if z € D}H_y = D§+y;

g(u) = a(u), if u € D} = D?;
_ . 1_ 12
h(v) = a(v), ifv € D, = D,.

where a: R — R is an additive function.

Example 7.4. If G := (R% +,<) where the addition is defined by the usual
componentwise addition, and the ordering is the usual lexicographic ordering, that
is, (a1,a2) < (by1,b9) if and only if that either a; < by or a; = by and b; < bs.
Thus the group G(+, <) is an ordered Abelian group, but it is not an Archimedean
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ordered, because, for example, (0,1) < (1,0), but there is no positive integer n
with n(0,1) > (1,0).

This is the open interval ](0,1), (1,0)[ in G.

Problem A. Preserve the notations of Example 7.4, and let Y (4) be an Abelian
group. We want to know the general solution of functional equation (RestAdd)
where D :=](0,1), (1,0)[*.

Problem B. Preserve the notations of Example 7.4, and Y (+) be an Abelian
group. We also want to know the general solution of functional equation (RestPex-
Add) where D :=1(0,1), (1,0)[>.

Problem C. In general, we also want to know the general solution of equa-
tion (RestAdd), or equation (RestPexAdd) in the case when G(+, <) is a nonar-
chimedean ordered Abelian group, Y (+) be an Abelian group, D C G2 is a
nonempty, well-chained, open set. The topology on G (or on G?) is generated
by the open interval of G (or by the open rectangles of G?).
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