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Abstract. There are many important tasks in a conventional software de-
velopment process which can be supported by different analysis techniques.
P4 is a high level domain-specific language for describing the data plane layer
of packet processing algorithms. It has several uncommon language elements
and concepts that often make the analysis of P4 programs a laborious task.
The paper presents P4Query, an analysis framework for the P4 language that
enables the specification of different P4-related analysis methods in a generic
and data-centric way. The framework uses an internal graph representation
which contains the results of applied analysis methods too. In this way, the
framework supports the rapid implementation of new analysis methods in a
way where the results will be also easily reusable by other methods.
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1. Introduction

Optimization, verification and refactoring are important tasks of a software devel-
opment process. All of them can be effectively supported by static functional and
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non-functional (e.g. execution time estimation) analysis. This analysis can be es-
pecially interesting in the case of languages having uncommon language constructs
or language structures e.g. in the case of some domain-specific languages.

P4 [2] is a high level, domain-specific programming language. It is developed
mainly for describing the data plane layer of packet processing algorithms of differ-
ent network devices (e.g. switches, routers) in a protocol and target-independent
way. Listing 1 illustrates a P4 program. The program first defines the applied
header structure (in rows 1–23), then the parser part (in rows 24–35) describes
how the fields of the defined headers will be set from the input bit stream (input
packet). Controller parts (see rows 39–62) can modify values of fields of headers
and metadata by applying lookup tables. During an application of a lookup table
the program finds the appropriate row based on the keys in the table. The keys
can be specific fields of the packets or some metadata. After the program finds
the right row it will execute the action (usually some modifications on the packet)
described by the row. It is important to note that the data plane program only de-
fines the possible actions and describes the structure of the lookup tables, namely
the keys of the table and the possible results of the lookups. However concrete data
of the tables (which actions will be executed with which parameters for which key
values) are defined by the control plane program, therefore it will not appear in
P4. Finally, the deparse part (see rows 64–70) defines how the output bit stream
(output packet) will be created from the headers.

Listing 1. P4 example.
1 // Definitions
2 typedef bit <9> egSpec_t ;
3 typedef bit <48 > macAddr_t ;
4 typedef bit <32 > ip4Addr_t ;
5
6 // Headers
7 header ethernet_t {
8 macAddr_t dstAddr ;
9 macAddr_t srcAddr ;

10 bit <16 > etherType ;
11 }
12
13 header ipv4_t {
14 bit <8> ttl;
15 ip4Addr_t srcAddr ;
16 ip4Addr_t dstAddr ;...
17 }
18
19 struct headers {
20 ethernet_t ethernet ;
21 ipv4_t ipv4;
22 }
23
24 // Parser
25 parser MyParser (...) {
26 state start { transition parse_ethernet ; }
27 state parse_ethernet {
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28 packet . extract (hdr. ethernet );
29 transition select (hdr. ethernet . etherType ) {
30 TYPE_IPV4 : parse_ipv4 ;
31 default : accept ; } }
32 state parse_ipv4 {
33 packet . extract (hdr.ipv4 );
34 transition accept ; }
35 }
36
37 // Control
38 control MyIngress (in headers hdr , ...) {
39 apply {
40 if (hdr.ipv4. isValid ()) {
41 ipv4_lpm . apply ();
42 }
43 }
44 action drop () {
45 mark_to_drop ( standard_metadata );
46 }
47
48 action ipv4_forward ( macAddr_t dstAddr ,
49 egSpec_t port) {
50 standard_metadata . egress_spec = port;
51 hdr. ethernet . srcAddr = hdr. ethernet . dstAddr ;
52 hdr. ethernet . dstAddr = dstAddr ;
53 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
54 }
55 table ipv4_lpm {
56 key = { hdr.ipv4. dstAddr : lpm; }
57 actions = {
58 ipv4_forward ;
59 drop;
60 NoAction ;}
61 ... }
62 }
63
64 // Deparser
65 control MyDeparser ( packet_out packet ,
66 in headers hdr) {
67 apply {
68 packet .emit(hdr. ethernet );
69 packet .emit(hdr.ipv4 );}
70 }

The paper describes an analysis framework for P41. The framework makes
possible development of different P4-related analysis methods in a generic and
modular way. It uses an internal graph representation where the results of the
methods are also represented as part of the graph (mainly by adding new edges
to the graph). In this way, the methods can use each other’s results as well. The
proposed tool also allows rapid prototyping of different analytical concepts using a
common toolset.

1The code is available from https://github.com/P4ELTE/P4Query.
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2. Related work

Considering related work there are much research applying specific analysis tech-
niques for P4. Most of them concentrate on error checking of P4 programs. For
example, Assert-P4 [6] and Vera [15] can check the correctness of predefined proper-
ties using annotated P4 source code and Vera can also detect some common errors
using custom source code without annotations. They use symbolic execution for
the analysis. P4V [7] creates a formula, which describes the proper behavior of
the program and checks the satisfiability of it with SMT solver. These three tools
are created for an earlier version of P4, namely P414. There are also verification
tools, which can manage the newer version (P416) too. BF4 [4] is created as a
P4C backend, which can not only detect error possibilities, but it is able to repair
them by adding new keys to the lookup tables of the program and modify the table
contents. Another tool p4-data-flow [1] uses data flow analysis to detect potential
bugs in P4 switch codes.

Some other tools use analytical methods for different purposes. For exam-
ple, p4pktgen [11] uses symbolic execution for automatically generating test cases.
Flightplan [16] can split a P4 program into a set of cooperating P4 programs and
maps them to run as a distributed system formed of several, possibly heteroge-
neous, data planes. During this process they use several analysis techniques, to
collect variables whose values need to be transferred between different data planes.
SafeP4 [5] is a language which has precise semantics and a static type system that
can be used to obtain guarantees about the validity of all headers which are used
or modified by the program. The type checker of the language (P4Check) can also
check P4 programs executing some static analysis on them.

Comparing these approaches this paper presents a generic framework that al-
lows the implementation of several analyses methods which can use each other’s
results as well.

A major inspiration for this work was RefactorErl [3], a static analysis tool for
Erlang. RefactorErl stores program information in a graph called the Semantic
Program Graph using relation databases, and provides its own query language for
exploring the stored information. Many features in our work – such as using graph
databases and their built-in query languages instead of in-house solutions – can be
considered to be the streamlining of best practices found in RefactorErl.

As Section 4.1 introduces, P4Query uses a Gremlin graph database as a storage
backend. Recently, other works also leveraged graph databases for static analysis
purposes. ProgQuery [14] is a similar static analysis tool for Java, built on Neo4j
and its Cypher query language. The authors emphasize that using Neo4j yielded
substantial improvements in analysis time and memory usage.

The expressive power of Gremlin is proved in another recent work [18]: the
authors store C code information in Neo4j, and define recurring vulnerability pat-
terns as Gremlin queries. Using this approach, the authors discovered 18 previously
unknown vulnerabilities in the Linux kernel.
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3. Motivation

P4 is a relatively new, domain-specific language having some uncommon language
elements (for example match-action tables). The language makes possible the de-
scription of the data plane layer of packet processing algorithms. For a real imple-
mentation, however, in addition to the program part described in P4, a suitable
control plane layer is needed. This part is more or less a black hole while we con-
sider only the P4 source code. For these reasons, testing, verification, and generally
functional and non-functional analysis of P4 programs are non-trivial tasks that
sometimes require language-specific techniques.

Section 2 introduces several applications using different analysis methods for P4.
The authors also have some earlier results for determining potentially erroneous
code parts [17] and for predicting execution cost [9] of P4 programs. These methods
usually require different analysis techniques, however these techniques often can
have very similar subtasks (for example creating an abstract syntax tree or a control
flow graph).

This paper presents a framework that allows the implementation of different
analysis methods using a common basis. The framework applies an extensible
integral graph representation where the results of the different analysis methods
are represented also as part of the graph. This makes possible execution of different
methods in a hierarchical order where methods can use the results (or some part
of the results) of previously applied methods.

The framework supports the rapid implementation of new analysis methods
applicable for P4 language in a way where results of the methods will be easily
reusable.

4. Analysis framework

Traditional compilers are designed around passes: the frontend passes parse source
code into an intermediate representation (IR), midend passes transform and add
new information to the IR, and the backend passes create target-specific object code
from the IR. Modular compilers like the P4 reference compiler P4C [12] improve this
design by structuring the passes into a library: backends assemble their own fron-
tends and midends from a catalogue of passes provided by the compiler. Moreover,
P4C allows getting information from older states of the IR, as each transformation
pass returns an immutable IR instance. Even here, the three-fold separation of
frontend-midend-backend have to remain: in order satisfy midend-dependencies,
and subsequently, backend-dependencies, the backend must sequentially execute
the frontend, the midend, and finally its own passes.

One goal of the experiment we present here is to relax the three-fold struc-
ture and allow passes to reuse (depend on) each other’s functionally arbitrarily,
and without burdening the compiler programmer with manually finding the right
sequence in which to execute the different passes.
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4.1. Tool architecture
4.1.1. Description

Figure 1 depicts the four-fold design we propose as a solution for relaxing tradi-
tional compiler architecture. In principle, the components called end-user appli-
cations constitute the backend, i.e. the part that provides useful services to users.
(See Section 5 for a few examples of applications built on top of the P4Query.)
Superficially, applications provide their services by using the services provided by
the infrastructure (see Section 4.2), also known as the frontend. In reality, both
the infrastructure and applications operate on a large shared graph that collects
all our knowledge about the program code.
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Figure 1. Architectural design of P4Query.

The infrastructure consists of a set of interdependent analyser components (or
passes): higher-level analysers can only be executed when lower-level analysers
already inserted the necessary knowledge into the graph. Similarly to analysers,
applications also depend on a subset of the analysers in the infrastructure. But un-
like analysers, applications are expected to only read (never modify) the graph, and
consequently there are no application-dependent parts in the infrastructure. Ap-
plications must also provide a user interface (e.g. command line interface) through
which their services can be accessed.

In the middle, the controller component ensures (via dependency injection)
that all dependencies are satisfied without collisions. To achieve this, components
register their provided services and their requirements to the control component,
and the controller figures out in which topological order to start the analysers. The
controller also guarantees that when the user executes a work-intensive application,
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only the minimally necessary components will be performed.
The graph is also exposed to the user (not depicted) to enable custom features

(e.g. to attach external loggers, visualisers, and validators).

4.1.2. Design goals

Besides proposing a more relaxed structure of analysis passes, we had three addi-
tional goals in sight: support for different applications through uniform APIs, ease
of extensibility, and data-driven programming.

In systems with uniform APIs, programmers have to learn only one paradigm
to maintain, extend or otherwise alter the system (e.g. in the case of P4C, visitors
and passes are the main concepts of such a uniform API). By supporting different
applications (or backends), we mean providing a comfortable way to implement
different end-user services, by reusing the same static code analysis operations.
P4Query realizes uniform APIs by relying on a graph database. The information
in the knowledge graph is accessed using graph queries written in the Gremlin (see
4.1.3) query language. The implication is that users, application developers, and
infrastructure developers are using one, uniform data structure (the graph), and
are accessing it using the same mechanism (graph queries).

Our second design goal, ease of extensibility is also illustrated by Figure 1. The
four-fold arrangement was inspired by declarative build systems and the blackboard
pattern used in distributed MI. When developers introduce new features, this ar-
rangement enables them to think declaratively: instead of thinking about where to
insert their feature inside a sequence of operations, they only have to think about
their dependencies, i.e. what kind of analysers could help them.

Finally, our third design goal is data-driven programming. Thanks to the uni-
form graph API and the controller-managed dependency resolution, programmers
are forced to think in terms of data instead of code: they have to look at what
code knowledge is in the graph already, figure out what data they want to insert,
and possibly find existing analysers that make writing queries easier for them. The
information in the graph is regulated by a well-defined graph schema, and the
graph topology is regulated by the well-defined requirements and services of the
analysers. Moreover, since the graph instance is detached from the code analysis
framework, the programmers can access it by external tools for visualising, mon-
itoring and validating purposes. Like this, programmers can almost completely
avoid understanding the existing code base, and only have to look at and interact
with the data in the graph.

4.1.3. Gremlin API

In the tool architecture described in this section, we use a Gremlin graph database
as a storage backend (knowledge graph). Gremlin is a compositional query lan-
guage and API that is implemented by many large-scale graph databases. This
makes it possible to change graph implementations with almost no modification
to the P4Query code base. In earlier work [8], we also profiled a few graph back-
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ends for control flow traversals, and verified that – apart from the initial overhead
– in-memory graph databases have comparable performance to built-in memory
manipulation.

Another consequence is that analysers have to be implemented as graph query
workflows. Since Gremlin is Turing-complete [13], theoretically all of the work can
be delegated to the database, and with this, the choice of the workflow language
(e.g. Java) can become negligible. Still, in our experience, coarsely granularised
queries can hinder code maintainability, as these are often more difficult to read
and modify (due to their of lack of common convenience features, e.g. exception
handling). For this reason, we still decided to split the workload between the
controller and the database.

4.2. Infrastructure
As we see earlier in Figure 1, the heavy-lifting in P4Query is done by various
code analyser components, each adding new information about the P4 code to the
knowledge graph using what is already there. We now introduce a few analyser
modules using an example: Figure 2 depicts a small subset of the knowledge graph
taken after we executed control flow analysis, call analysis, and call sites analysis on
the P4 code in Listing 1 (specifically the MyIngress control). First, the controller
finds the topological order of their dependencies, and then starts executing them
in order. In this case, the first dependency executed is the parser, parsing the P4
code and filling the knowledge graph with the syntax tree nodes and edges.

Each analyser components adds new edges as an overlay graph. These overlays
(domains) are separated by the dom edge-attributes: for example CFG is the domain
introduced by the control flow analysis, and CALL is the domain of the call analysis,
SITES is that of call site analysis. The role edge-attribute describes edge seman-
tics inside their domain. For example, calls in CALL links a procedure to those
procedures that it calls, such as MyIngress control (node 1) calling the ipv4_lpm
table lookup (node 8). On the other hand, calls in SITES links call statements
to the called procedure, such as the direct application of table ipv4_lpm (node 7)
calling table ipv4_lpm (node 8).

At the same time, the CFG domain contains flow, entry, and return edges
(among others) to denote the flow of control between various nodes of the syntax
tree, and to identify entry and exit nodes. For example, by following these edges,
you can see how control flows from MyIngress entry point (node 1) through the
conditional (node 4), terminating on the call of ipv4_lpm (node 8). The figure also
partially includes domains of other analysers, such as SYMBOL. This analyser creates
the graph-equivalent of a symbol table by identifying which declaration declares
which name, and links usages of this name in the scope of the declaration to the
declaration.

We should note that topological order is, in general, not unique: the controller
is free to start independent analysers in any order (even in parallel). This is not a
concern as long as analysers can correctly declare their exact dependencies. Still,
since all analysers work on the same shared graph, it may happen that – due to
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class = ControlDecl
line = 38 1

class = Term
line = 38

val = MyIngress 2

dom=SYMBOL
role=declares

class = BlockStmt
line = 39 3

dom=CFG
role=entry

class = TableDecl
line = 54 8

dom=CALL
role=calls

class = CondStmt
line = 40 4

dom=CFG
role=flow

class = Expr
line = 40 5

dom=AST
role=head

class = BlockStmt
line = 40 6

dom=CFG
role=true-flow

dom=CFG
role=return

class = DirectApp
line = 41 7

dom=CFG
role=flow

dom=SITES
role=calls

class = Term
line = 54

val = ipv4_lpm 9

dom=SYMBOL
role=declares

class = ActionDecl
line = 47 10

dom=CALL
role=calls

class = ActionDecl
line = 44 11

dom=CALL
role=calls

Figure 2. Knowledge graph excerpt of the Listing 1 code.

faulty implementation – an analyser have a “hidden” (unclaimed) dependency. In
our experience with the aforementioned analysers, these occurrences are uncom-
mon. Still, to avoid such bugs, we emphasize proper testing (Section 4.3) and
recommend implementors to avoid writing general queries (such as selecting all
elements) and always specify completely the elements to be selected.

4.3. Testing
Testing framework of the tool aims to achieve two main objectives: to provide the
correct behaviour of the analysers and to detect possible spoils of the analysers
during the development phase. To achieve these goals the tool applies unit tests
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and integration tests.
Unit tests need to be fast, so they work with the smallest part of the analysers,

their functions. One function usually defines one query of the graph, which insert
new edges into it, therefore in these cases, the tests check if the right edges are
added to the graph. Using an actual P4 source to test these functions would be
too costly, therefore we define the most simple graphs to check the function.

While unit tests need to be fast, integration tests can be slower, so we can use
P4 files as the inputs to test the analysers. When one analyser needs to be tested,
it uses the P4 file and executes every analyser, that it depends on and the tests
will check the result of this running.

These tests are important for the P4Query developers, who would like to modify
the predefined analysers or supplement the tool with new analysers. After the
development of an analyser, the developer can insert the unit tests of the new
functions and the correctness of them can be checked by these tests. For unit
tests, the developer needs to define the smallest graph, which can cover most of
the behaviours of the functions. If the functions are well tested, the developer can
continue with integration tests and checks the correct behaviour with real P4 files.

The architecture gives the opportunity to insert this test framework as an ap-
plication, which depends on all of the tested analysers. As an application, it fits
into the tool as a component, which can be easily executed.

5. Case studies
In this section, we illustrate the viability of the platform by showcasing a few
applications we are currently building on top of P4Query in related research.

5.1. Visualisation
Since it is the easiest to understand, the first application we introduce is graph
visualisation. This application expects a list of analyser component names, executes
them, and then, prints a subgraph of the knowledge graph containing only the
domains of the analysers in the list. For example, to print the full version of the
graph in Figure 2, we should execute P4Query with the following arguments:
p4query draw example . p4 −A CFG SYMBOL CALL SITES AST

The subcommand draw tells P4Query to run the visualiser on the file example.p4,
while -A is a flag (defined by the visualiser UI) expects the analyser names that
will be passed to the visualiser application.

A possibly interesting implementation detail here is that the visualiser techni-
cally depends on all the analysers defined in P4Query, since it must be able to
visualise anything the user may pass. Yet, we still managed to avoid executing
those that are not requested by the user (and not dependencies of the requested
ones): we implemented dependency resolution in the controller using Java depen-
dency injection (DI), and DI offers lazy initialization of the dependencies. This
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way we can filter the analysers and only initialize those that were requested by the
user.

5.2. Verification
Verification is a possible extension of the tool, which is added to it as an application.
The main focus is to detect errors and suspicious cases, which can be caused by the
use of invalid header or uninitialized fields. The goal of this detection is to report
these uses for the developer to avoid undefined behaviour in the programs.

The approach of the checking is defined in our previous paper [17], but in short,
it calculates the pre-and post-conditions of the different blocks (i.e the control apply
functions, the tables and actions), the parser and the deparser of the program, and
based on these condition pairs it can detect improper use of the fields and headers.
Three cases can be detected: when there are some errors in a block; when there
is any inconsistency between the blocks; and when the post-/precondition of the
parser/deparser is inconsistent with the pre-/postcondition of the control function.

Listing 2. Conditions of MyIngress.
MyIngress :
[
// true condition and ipv4_forward

(Pre:
valid : [ipv4 , ipv4.dstAddr , ipv4.ttl ,

ethernet , ethernet . dstAddr ],
invalid : [drop],

Post:
valid : [ipv4 , ipv4.dstAddr , ipv4.ttl ,

ethernet , ethernet . dstAddr ],
invalid : [drop ]),

// true condition and drop
(Pre:

valid : [ipv4 , ipv4. dstAddr ],
invalid : [drop],

Post:
valid : [drop , ipv4 , ipv4. dstAddr ],
invalid : []) ,

// true condition and NoAction
(Pre:

valid : [ipv4 , ipv4. dstAddr ],
invalid : [ipv4 , ipv4.dstAddr , drop],

Post:
valid : [ipv4 , ipv4. dstAddr ],
invalid : [ipv4 , ipv4.dstAddr , drop ]),

// false condition
(Pre:

valid : [ipv4 , ipv4. dstAddr ],
invalid : [ipv4 , ipv4.dstAddr , drop],

Post:
valid : [ipv4 , ipv4. dstAddr ],
invalid : [ipv4 , ipv4.dstAddr , drop ]),

]
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Listing 2 illustrates conditions calculated for control MyIngress in Listing 1. We
can see 4 pairs of conditions because it has 4 possible execution paths – there are
three where the condition of the branch is true, and the table executes one of the
possible actions i.e. ipv4_forward, drop or NoAction, and one where the condition
of the branch is false.

This calculation is built into the tool as an application. It uses two experts:
the call graph and the control-flow graph. While traversing backwards in the call
graph it can reach the applied (“called”) actions and tables. Whenever it reaches a
vertex like these, it starts to traverse through the proper subgraph of the control-
flow graph and calculates the conditions of the actual block. Every condition is
stored in the graph as a property of the called vertex of the call graph, therefore
when the method reaches the actual call in the control-flow graph – for example a
table is called in a control function – it can use the conditions of the called block,
which have already been calculated.

5.3. Compiler
In related research [9, 10], we work on a static cost analysis tool for P4: the tool
expects as input a P4 program source code together with execution environment
parameters, and outputs various metrics (e.g. execution time, energy efficiency)
without actually running the P4 program.

In the current paper, we will not go into details on how the cost analysis tool
calculates these metrics, but the principle is that we decompose the P4 program
into primitive instructions whose expected cost is constant and already known.
Implementations of P4 externals such as extern calls (e.g. packet.extract in List-
ing 1) and lookup tables (e.g. ipv4_lpm in Listing 1) can also be passed to the tool
in the form of these primitive instructions with known costs.

Listing 3. Stack machine code of MyIngress.
data:

...
headers = 149
headers . ethernet = 149 // size 114
...
headers .ipv4 = 263
headers .ipv4. valid = 263
headers .ipv4.size = 264
headers .ipv4. srcAddr = 265
headers .ipv4. dstAddr = 297
...

code:
...
// call isValid (hdr.ipv4) on line 144
214: load 0 // 0: local address of hdr
215: const 114 // 114: size of hdr. ethernet
216: add // address of hdr.ipv4
217: invoke 144 1
// test isValid return value
218: ifeq 224
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// call ipv4_lpm (hdr) on line 38
219: load 0 // 0: local address of hdr
222: invoke 38 1
223: pop
// terminate with status OK
224: const 0
225: return

From this, it follows that part of the static cost analysis problem reduces to a
compilation-and-linking problem. As an experiment, we implemented a compiler
to solve this problem as an application in P4Query. The main reason we chose
P4Query, instead of the much more mature P4C compiler framework was that at
first we did not know what kind of representation or code we will need to output:
the control and extensibility provided by P4Query and Gremlin queries gave us
tools to experiment and create quick, recyclable prototypes to help us arrive at a
final vision. While P4C’s safety mechanisms (e.g. C++ static type system) support
developing stable software, in the case of prototyping and experimentation these
same mechanisms are unused, or possibly even slowing down development.

Our current target representation for cost analysis is a sequential stack machine
with an instruction set similar to JVM bytecode. Listing 3 depicts the compiler
output of MyIngress in Listing 1. In the figure all values (bits and sizes) are
represented as integers (this is a requirement by our cost analysis approach). Both
isValid and ipv4_lpm have external implementation that had to be linked with
the calls. While most P4 targets will not support stack machines, we chose this
representation as it is relatively easy to generate, and relatively straightforward to
implement. We also believe that as long as we do not count the cost of maintaining
the stack, we can still make good cost estimations.

The compiler is built on top of the control flow analyser in P4Query: we traverse
the CFG, and process each node by traversing the syntax tree under the node. We
also use the call graph to find which label to jump to when a function is called.
Thus, much of the compiler state can be delegated to the persistent knowledge
graph, and only very specific data (e.g. instruction labels) and linking requires
program state outside the graph.

6. Evaluation
Scalability is a very important aspect in the case of analyser tools. For investi-
gating scalability of P4Query we have created dummy P4 programs in which the
complexity of the program structure and program logic are increased continuously.
In the basic case, two header type were used with one header instances each. The
program first parses the two headers, then applies a table which can modify some
fields of the headers, and finally it deparses them. In the second program the same
structure is applied twice. The four headers are parsed (and finally deparsed) one
after the other and two tables are applied sequentially. The first table uses the first
header pair, and the second one the second header pair. And so on if the complexity
of one test program said to be x then there are x header instances of both header
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types and x tables in the program. As a result if we increase the complexity of
a test program, its syntax tree will be more complicated and time-consuming to
process during different analysis.

Figure 3 illustrates the runtime of P4Query if we execute the CFG analyser (and
its dependencies, including the syntax tree and other analysers). We highlighted
the results, where the complexity of the program is 1, 2, 4, 8 and 16, with a
fitted linear regression curve. The diagram shows that the runtime increases in
linear time, so we expect P4Query to easily handle even more complex programs.
Additionally, we can also inspect the runtime of individual analyses: looking at the
corresponding components in each column, we see they are increasing linearly as
well, which implies that it is possible to give efficient implementations of the static
analysis algorithms in Gremlin.

Figure 3. P4Query execution time for different program sizes.

7. Conclusion and future work
Our major purpose was to create a tool, which can facilitate and support the work
of P4 developers while making the possibility to experiment with these programs.
Its modular structure gives the opportunity for the user to avoid the usage of
several tools for different analyses, although it makes the possibility to have all
information in one place.

The framework uses a graph representation of the investigated program. All
of the analysers are based on the syntax tree of the examined P4 source and they
extend it with new edges while creating new subgraphs – like control-flow or call
graph – or new labels to store the calculated information.

In the future, we would like to extend the tool with new analyses to give some
other useful information for the developers about their P4 source. Our nearest
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idea is to supplement it with the dependency graph and def-use graph with which
we will be able to give report, which are based on the connection between the
statements.
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