
Submitted: July 14, 2022
Accepted: April 20, 2023
Published online: July 17, 2023

Annales Mathematicae et Informaticae
57 (2023) pp. 36–48
DOI: https://doi.org/10.33039/ami.2023.04.003
URL: https://ami.uni-eszterhazy.hu

Formal verification for quantized neural
networks

Gergely Kovásznai, Dorina Hedvig Kiss, Péter Mlinkó

Department of Computational Science, Eszterházy Károly Catholic University
kovasznai.gergely@uni-eszterhazy.hu

k.dorina33@gmail.com
Pázmány Péter Catholic University

peter.mlinko@gmail.com

Abstract. Despite of deep neural networks are being successfully used in
many fields of computing, it is still challenging to verify their trustiness.
Previously it has been shown that binarized neural networks can be verified
by being encoded into Boolean constraints. In this paper, we generalize this
encoding to quantized neural networks (QNNs). We demonstrate how to
implement QNNs in Python, using the Tensorflow and Keras libraries. Also,
we demonstrate how to implement a Boolean encoding of QNNs, as part of
our tool that is able to run a variety of solvers to verify QNNs.

Keywords: Artificial Intelligence, Deep Learning, Neural Network, Formal
Verification, SAT, SMT, Constraint Programming, Python, Keras

AMS Subject Classification: 68T07, 68T27, 68Q60

1. Introduction
Deep learning is a very successful AI technology that makes impact in a variety
of practical applications ranging from vision to speech recognition and natural
language [7]. However, many concerns have been raised about the decision-making
process behind deep learning technology, in particular, deep neural networks [4,
8]. To address this problem, one can define properties and then verify whether the
given neural network satisfies these properties [1, 13, 19, 21, 23].

There exist approaches that formulate the verification of neural networks to
Satisfiability Modulo Theories (SMT) [3, 9, 13], while others do the same to Mixed-
Integer Programming (MIP) [2, 5, 22].

https://doi.org/10.33039/ami.2023.04.003
https://ami.uni-eszterhazy.hu
mailto:kovasznai.gergely@uni-eszterhazy.hu
mailto:k.dorina33@gmail.com
mailto:peter.mlinko@gmail.com

Annal. Math. et Inf. Formal verification for quantized neural networks

One important family of deep neural networks is the class of Binarized Neural
Networks (BNNs) [10]. Since these networks are memory efficient and computa-
tionally efficient, as their parameters and activations are predominantly binary,
BNNs are useful in resource-constrained environments, like embedded devices or
mobile phones [15, 17]. Moreover, BNNs allow a compact representation in Boolean
logic, enabling verification approaches based on SAT or SMT solving, or 0-1 Integer
Linear Programming [1, 14, 19].

Some approaches [10, 14, 19] describe the structure of a BNN in terms of se-
quential composition of blocks of layers rather than individual layers. While the
blocks can produce real-typed intermediate values, each of them takes a binary
input vector and outputs a binary vector, except for the output block. Figure 1
shows a common construction of a BNN [10, 14, 19]. Each internal block is com-
posed of three layers: linear transformation with binarized weights (BLin), batch
normalization (BN), and binarization (Bin). The output block produces the classi-
fication decision for a given binary input vector. It consists of two layers: a BLin
that outputs a vector of integers, one for each output label class, followed by an
ArgMax layer.

Figure 1. A schematic view of a binarized neural network.

In this paper, we propose a very similar, generalized structure of a Quantized
Neural Network (QNN), which applies quantization instead of binarization. Since
BNNs are often not that robust, therefore it has a great potential to apply QNNs
instead of binarized ones in order to achieve higher robustness [11], while keeping
the possibility of applying logic-based verification in an efficient way. Figure 2
shows the proposed structure where the linear transformation layer (QLin) applies
quantization to the weights, and so does the activation layer (Qnt).

The focus of this paper is on what is necessary for applying logic-based verifi-
cation to QNNs. In Section 2, we define the proposed QNN structure in an exact
way, together with all the necessary concepts for the verification task based on
Boolean logic. Section 3 gives some ideas how to implement QNNs, using the Ten-
sorflow and Keras libraries. Section 4 proposes an encodings of internal blocks of
QNNs into a set of Boolean constraints, for the sake of formal verification. Finally,
in Section 5, we show some aspects of how to implement a tool for verifying the
encoded QNNs.

37

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

Figure 2. A schematic view of a quantized neural network.

2. Preliminaries

A literal is a Boolean variable x or its negation ¬x. A Boolean cardinality con-
straint is defined as an expression

∑n
i=1 li ◦rel c, where l1, . . . , ln are literals, ◦rel ∈

{≥, ≤, >, <, =}, and c ∈ N is a constant where 0 ≤ c ≤ n.
Reifying a constraint C creates a new constraint l ⇔ C where l is a Boolean

literal. An indicator constraint means almost the same, except for that it applies
implication instead of equivalence, in the form of l ⇒ C. Note that a reified
constraint can always be translated to a conjunction of two indicator constraints,
namely (l ⇒ C) ∧ (¬l ⇒ ¬C).

According to the visualization of a BNN in Figure 1, Table 1 presents the
formal definition of a BNN structure [14, 19]. We have m − 1 internal blocks,
Block1, . . . , Blockm−1 that are placed consecutively. Let nk denote the number
of input values to Blockk. The output of the last internal block, xm, is passed to
the output block Output to obtain one of the s labels.

Table 1. BNN structure. Aj and bj are parameters of the BLin
layer, whereas βj , γj , µj , σj are parameters of the BN layer, where
µj and σj correspond to mean and standard deviation, respectively.

Structure of kth internal block, Blockk : {−1, 1}nk → {−1, 1}nk+1 on xk ∈ {−1, 1}nk

BLin y = Akxk + bk, where Ak ∈ {−1, 1}nk+1×nk and bk, y ∈ Rnk+1

BN zi = γki

(
yi−µki

σki

)
+ βki

, where βk, γk, µk, σk, z ∈ Rnk+1 . Assume σki
> 0.

Bin xk+1 = sign(z) where xk+1 ∈ {−1, 1}nk+1

Structure of output block, Output : {−1, 1}nm → [1, s] on input xm ∈ {−1, 1}nm

BLin w = Amxm + bm, where Am ∈ {−1, 1}s×nm and bm, w ∈ Rs

ArgMax o = argmax(w), where o ∈ [1, s]

In this paper, we propose a generalization of the above structure, in order to
come up with a similar QNN structure. For this, we first have to define what
we mean by quantization, similar to the DoReFa-Net method in [24]. Given a

38

Annal. Math. et Inf. Formal verification for quantized neural networks

quantization bit-width bw ∈ N, we quantize R into the finite set

Vbw =
{

Vbw(q)
∣∣∣ q = 0, . . . , 2bw

}
, where Vbw(q) = q

2bw−1 − 1,

along the threshold values

Tbw(q) = Vbw(q) − 1
2bw , where q = 1, . . . , 2bw.

For instance, bw = 1 results in a ternary quantization into Vbw = {−1, 0, 1}
along the threshold values −0.5, 0.5. As another example, bw = 2 quantizes into
Vbw = {−1, −0.5, 0, 0.5, 1} along the threshold values −0.75, −0.25, 0.25, 0.75. Note
furthermore that binarization is a special case of quantization, where bw = 0.

A value x ∈ R is quantized by the function [11]

quantbw(x) = clip
(

round(x2bw−1)
2bw−1 , −1, 1

)
,

where clip(y, a, b) clips the value of y into [a, b], and round(·) applies rounding half
up.

The proposed QNN structure uses quantization (Qnt) instead of binarization.
Furthermore, the weights in the linear transformation layers (QLin) can take quan-
tized values. In our approach, we propose to use ternary weights −1, 0, 1, to strive
for sparse weight matrices and a more straightforward encoding into Boolean con-
straints. The format definition of this QNN structure is shown in Table 2.

Table 2. QNN structure for quantization bit-width bw ∈ N. The
QLin layer applies ternary quantization. The Qnt layer uses quan-

tization as activation with respect to the bit-width bw.

Structure of kth internal block, Blockk : Vnk

bw → Vnk+1
bw on xk ∈ Vnk

bw
QLin y = Akxk + bk, where Ak ∈ Vnk+1×nk

1 and bk, y ∈ Rnk+1

BN zi = γki

(
yi−µki

σki

)
+ βki

, where βk, γk, µk, σk, z ∈ Rnk+1 . Assume σki
> 0.

Qnt xk+1 = quantbw(z) where xk+1 ∈ Vnk+1
bw

Structure of output block, Output : Vnm

bw → [1, s] on input xm ∈ Vnm

bw
QLin w = Amxm + bm, where Am ∈ Vs×nm

1 and bm, w ∈ Rs

ArgMax o = argmax(w), where o ∈ [1, s]

3. Implementing quantized neural networks
Our Python implementation of a QNN is based on a publicly available BNN im-
plementation1, using the Tensorflow and Keras libraries.

1https://github.com/Haosam/Binary-Neural-Network-Keras

39

https://github.com/Haosam/Binary-Neural-Network-Keras

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

First, a method needs to be implemented to quantize not just a single number,
but even a matrix of real numbers. Additionally, the method takes the quantization
bit-width bw as parameter. The source code of this function can be seen in Listing 1.

1 def round_quantize(x, bw):
2 q_pow = 2**(bw-1)
3 numerator = q_pow * x
4 numerator = numerator + K.stop_gradient(K.round(numerator) - numerator)
5 return numerator / q_pow

Listing 1. Quantization function.

Quantization is a mathematical function that has several points of discontinu-
ity. Although this seems an unimportant detail, that should be taken into con-
sideration since no gradient can be computed in such points. Due to TensorFlow,
stop_gradient can be used to handle a function of this kind, as it disables gradient
calculation.

The round_quantize function is called inside the QDense layer, which is derived
from the Dense class of Keras. In addition to the properties inherited from its base
class, QDense includes the quantization bit-width bw, which will later be passed to
the round_quantize function when being called inside the call method of QDense,
as shown in Listing 2. This function calculates the quantized kernel using the given
quantization bit-width.

1 def call(self, inputs):
2 output = K.dot(inputs,round_quantize(self.kernel, self.bw))
3 if self.use_bias:
4 return K.bias_add(output, self.bias)
5 if self.activation is not None:
6 return self.activation(output)

Listing 2. Inside the QDense layer.

Listing 3 shows how to start to assemble a sequential QNN model. Note that
most layers must be uniquely labeled in order to access their parameters later on.

1 model = Sequential()
2 model.add(QDense(bw = 1, name=’qlayer0’, ...))
3 model.add(BatchNormalization(name=’bnlayer0’, ...))
4 model.add(Activation(lambda x: round_quantize(x, quantizationBw)))

Listing 3. Structure of the QNN network.

For the sake of formal verification, the parameters of all the QDense and batch
normalization layers must be extracted. This can easily be done by using the
save_weights procedure of Keras, to save the stored weights, bias values and
other parameters to a file. By using the unique labels of layers, the corresponding
parameters can be accessed as shown in Listing 4. Note that since the kernels do
not store the quantized weights, we must quantize them after reading from the file.
Notice, furthermore, that the quantization bit-width for the kernels is 1.

1 model.save_weights(datafile)
2 with h5py.File(datafile, ’r+’) as hdf:
3 kernel0 = round_quantize(np.array(hdf.get(’/qlayer0/qlayer0/kernel:0’)), 1)

40

Annal. Math. et Inf. Formal verification for quantized neural networks

4 bias0 = np.array(hdf.get(’/qlayer0/qlayer0/bias:0’))
5 variance0 = np.array(hdf.get(’/bnlayer0/bnlayer0/moving_variance:0’))
6 mean0 = np.array(hdf.get(’/bnlayer0/bnlayer0/moving_mean:0’))
7 beta0 = np.array(hdf.get(’/bnlayer0/bnlayer0/beta:0’))
8 gamma0 = np.array(hdf.get(’/bnlayer0/bnlayer0/gamma:0’))

Listing 4. Extracing the parameter of the layers qlayer0 and
bnlayer0.

4. Encoding quantized internal blocks
In this section, we show how to encode the internal blocks into a set of Boolean
constraints. In order to make it easier to distinguish Boolean variables from non-
Boolean ones, we will use the (·)bl notation.

Given the quantization bit-width bw ∈ N, let us introduce the simplified no-
tation of threshold constants Tq := Tbw(q) for all q = 1, . . . , 2bw. The quantized
output oi ∈ [−1, 1] is represented by a vector obl

i =
(
obl

i,1, . . . , obl
i,2bw

)
of Boolean

variables, i.e., obl
i,q ∈ {0, 1} for all q = 1, . . . , 2bw. Let obl

i,q be set to true iff the
block’s ith output exceeds the threshold value Tq:

γi
⟨ai, x⟩ + bi − µi

σi
+ βi ≥ Tq ⇔ obl

i,q. (4.1)

Here, x denotes the input vector to this internal block, ai the ith row vector of the
kernel A, bi the bias value, and βi, γi, µi, σi the parameters of batch normalization.
(4.1) can be reorganized into

⟨ai, x⟩ ◦rel Ci,q ⇔ obl
i,q, (4.2)

where

Ci,q = σi

γi
(Tq − βi) + µi − bi,

◦rel =

≥, if γi > 0,

≤, if γi < 0.

Optionally, the variables obl
i,q can be further constrained if this makes propagation

faster:
obl

i,q+1 ⇒ obl
i,q for all q = 1, . . . , 2bw.

A quantized input xj ∈ [−1, 1] is represented by a vector xbl
j =

(
xbl

j,1, . . . , xbl
j,2bw

)
of Boolean variables. The sum of vector elements can be calculated as 1 · xbl

j . The
actual input value xj can be calculated:

xj =
1 · xbl

j

2bw−1 − 1.

41

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

Let ¬xbl
j =

(
¬xbl

j,1, . . . , ¬xbl
j,2bw

)
denote the piecewise negation of vector elements.

Now, let us plug each xj into (4.2), as follows:
nk∑

j=1
aij

(
1 · xbl

j

2bw−1 − 1
)

◦rel Ci,q ⇔ obl
i,q∑

j

aij 1 · xbl
j ◦rel C ′

i,q ⇔ obl
i,q, (4.3)

where
C ′

i,q = 2bw−1
(

Ci,q +
∑

j

aij

)
.

Since ai,j ∈ {−1, 0, 1}, we can further translate (4.3) to∑
j∈J+

i

1 · xbl
j −

∑
j∈J−

i

1 · xbl
j ◦rel C ′

i,q ⇔ obl
i,q, (4.4)

where

J+
i = {j | aij > 0},

J−
i = {j | aij < 0}.

(4.4) can be further translated to∑
j∈J+

i

1 · xbl
j −

∑
j∈J−

i

1 ·
(
1 − ¬xbl

j

)
◦rel C ′

i,q ⇔ obl
i,q

∑
j∈J+

i

1 · xbl
j +

∑
j∈J−

i

1 · ¬xbl
j ◦rel Di,q ⇔ obl

i,q, (4.5)

where

Di,q =


⌈
C ′

i,q

⌉
+ 2bw|J−

i |, if γi > 0,⌊
C ′

i,q

⌋
+ 2bw|J−

i |, if γi < 0.
(4.6)

Note that the left-hand side of (4.5) is a sum of Boolean literals, therefore (4.5)
represents a set of reified Boolean cardinality constraints.

5. Verification for quantized neural networks
In the previous section, we showed how to transform the QNN blocks into Boolean
constraints, which can now fed into a constraint solver, for the sake of formal
verification. In this section, we demonstrate how to implement this. Our imple-
mentation is written in Python and it leverages a range of different solver pack-
ages such as PySAT [12], PySMT [6] or Google’s OR-Tools [20]. Our tool is able
to run those solvers in parallel, due to applying ProcessPool from the module
pathos.multiprocessing [18].

42

Annal. Math. et Inf. Formal verification for quantized neural networks

5.1. Generating bounds and constraints
To implement the encoding of an internal block, we need to generate all the bounds
Di,q from (4.6), as shown in Listing 5.

1 quantizationCount = 1 << quantizationBitWidth
2

3 D = []
4 for q in range(quantizationCount):
5 C = sigma[k][i] / gamma[k][i] *
6 (quantizationBound(q) - beta[k][i]) + mu[k][i] - b[k][i]
7

8 Cprime = (C + sum(A[k][i])) * (quantizationCount >> 1)
9

10 D.append(int(math.ceil(Cprime) if gamma[k][i] > 0 else math.floor(Cprime)))
11

12 offset = sum(1 for a in A[k][i] if a < 0) * quantizationCount
13 D = [d + offset for d in D]

Listing 5. Generating bounds for an internal block.

Note that Listing 5 only shows how to generate those bounds for the kth block
and its ith output. Of course, this has to be done for each k and each i, thus the
corresponding bounds are going to be stored in a 3-dimensional matrix and can be
accessed within the vector D[k][i], as Listing 6 shows, which is about generating
the constraints (4.5).

1 lits = []
2 for j in range(len(inputVars[k])):
3 if A[k][i][j] > 0:
4 lits.extend(inputVars[k][j])
5 elif A[k][i][j] < 0:
6 lits.extend([solver.negateVar(x) for x in inputVars[k][j]])
7

8 solver.addConstraint(Constraint(
9 lits = lits,

10 relation = Relations.GreaterOrEqual if gamma[k][i] > 0 else Relations.
LessOrEqual,

11 bounds = D[k][i],
12 resLits = inputVars[k + 1][i]
13))

Listing 6. Generating constraints for an internal block.

Note that the class Constraint represents the reifed Boolean cardinality con-
straints (4.5) to add to the underlying solver. It is important to note that a
Constraint instance represents a set of actual constraints, as a list of bounds is
associated with the same left-hand side (lits) and relation. Notice furthermore
that, via the resLit parameter, the value of each inequality is made equivalent
with the corresponding input of the subsequent block.

5.2. Solver interface
One of our attempts is to extend the number of available solvers in our tool. For
easier usage and addition of the different solver packages, a Solver base class was

43

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

introduced. It defines an interface through which the derived solver classes can be
used uniformly, but it also provides the possibility to handle the solver packages
differently. The common interface includes functions to generate Boolean variables,
negate them, or feed constraints to the underlying solver. After defining a set of
constraints for satisfiability checking, a solver can be called through the interface
to solve the problem and to return a satisfying model.

5.2.1. Gurobi’s solver interface as example

Each solver package has a different interface. They also differ in the possibility of
adding different constraints. In this section, we describe a few issues with Gurobi’s
Python API and show how to overcome them.

For example, the Gurobi solver lacks the possibility of adding “greater than”
and “less than” constraints. As a Boolean cardinality constraint is defined over
Boolean variables and integer numbers, “less than” and “greater than” Boolean
cardinality constraints can be transformed as follows:∑

i

li < c −→
∑

i

li ≤ c − 1∑
i

li > c −→
∑

i

li ≥ c + 1.

Since the constraints that we got from encoding quantized blocks in Section 4 assign
multiple bounds to the same left-hand sides, the above transformation of a “greater
than” constraint can be implemented as Listing 7 shows.

1 constraint.relation = Relations.GreaterOrEqual
2 for i in range(len(constraint.bounds)):
3 constraint.bounds[i] += 1

Listing 7. The translation of a “greater than” constraint for
Gurobi’s API.

Another issue that had to be handled with Gurobi’s API is the lack of adding
reified constraints, or using “not equal to” relation for a constraint. However,
Gurobi supports indicator constraints. Therefore, a reified constraint A ⇔

∑
i li =

c can be split into two equations:

A ⇒
∑

i

li = c (5.1)

¬A ⇒
∑

i

li ̸= c. (5.2)

Since Gurobi cannot natively deal with “not equal to” constraints, (5.1) has to be
transformed by introducing two new Boolean variables A1, A2 as follows:

A1 ⇒
∑

i

li ≤ c

44

Annal. Math. et Inf. Formal verification for quantized neural networks

A2 ⇒
∑

i

li ≥ c

A ⇒ A1 ∧ A2.

In a similar way, we transform (5.2) to

¬A1 ⇒
∑

i

li ≥ c + 1

¬A2 ⇒
∑

i

li ≤ c − 1

¬A ⇒ ¬A1 ∨ ¬A2.

The above translation can be implemented by calling the addGenConstrIndicator
method from Gurobi’s API, which takes as parameters a Boolean variable var, a
Boolean value val, and a constraint constr, and then it adds the indicator constraint
(var = val) ⇒ constr to the solver. The implementation is shown in Listing 8.

1 leftHandSide = sum(constraint.lits)
2 for i in range(len(constraint.bounds)):
3 if constraint.relation == Relations.Equal:
4 [a1, a2] = self.generateVar(2)
5

6 self.model.addGenConstrIndicator(
7 a1, True, leftHandSide <= constraint.bounds[i])
8 self.model.addGenConstrIndicator(
9 a1, False, leftHandSide >= constraint.bounds[i] + 1)

10

11 self.model.addGenConstrIndicator(
12 a2, True, leftHandSide >= constraint.bounds[i])
13 self.model.addGenConstrIndicator(
14 a2, False, leftHandSide <= constraint.bounds[i] - 1)
15

16 self.model.addGenConstrIndicator(
17 constraint.resLits[i], True, a1 + a2 == 2)
18 self.model.addGenConstrIndicator(
19 constraint.resLits[i], False, a1 + a2 < 2)

Listing 8. The translation of a reified “equal to” constraint for
Gurobi’s API.

5.3. Experiments
Our preliminary experiments were run on Intel i5-7200U 2.50 GHz CPU (2 cores,
4 threads) with 8 GB memory. The time limit was set to 1200 seconds.

In our experiments, the QNN architecture consisted of 3 internal blocks that
contain QLin layers with 200, 100 and 100 neurons, respectively. The quantization
bit-width was set to 2. We trained the network on the MNIST dataset [16] with
an accuracy of 91%. To process the inputs, we added an additional preprocessing
block to the QNN before Block 1. The preprocessing block consisted of a BN
layer and a Qnt layer, and it applied quantization to the grayscale MNIST images.

45

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

The use case for our experiments was to verify the adversarial robustness of
the resulting QNN, meaning that it might have misclassified inputs if we allowed
to add perturbation in the range [−ϵ, ϵ] to individual input values. For this, we
randomly picked 20 images that were correctly classified by the network and then
we experimented with three different maximum perturbation values by varying
ϵ ∈ {1, 3, 5}. Figure 3 shows the results of our experiments. As the figure suggests,
our tool produced the best results when running MiniCARD as an underlying
solver. All the benchmark instances were proved to be satisfiable and our tool were
able to generate the corresponding perturbation matrices. Notice that MiniCARD
timed out for only one input image when ϵ = 3.

0 5 10 15 20

0

200

400

600

800

1,000

1,200

Input images

R
un

tim
e

(s
)

ϵ = 1
ϵ = 3
ϵ = 5

Figure 3. Runtimes of VerBiNe when running MiniCARD on
20 MNIST images with maximum perturbation ϵ ∈ {1, 3, 5}.

6. Summary
In this paper, we proposed a structure of Quantized Neural Networks (QNNs)
consisting of blocks of suitable layers. Dense layers use ternary weights to strive
for sparse weight matrices, while activation layers apply quantization of arbitrary
bit-width. The goal is to make neural networks efficient and robust enough, while
making them suitable subjects for logic-based verification. We showed how to im-
plement QNNs in Python, using the Tensorflow and Keras libraries. For the sake of
the formal verification of QNNs, we demonstrated how to encode the internal blocks

46

Annal. Math. et Inf. Formal verification for quantized neural networks

of a QNN into a set of reified Boolean cardinality constraints. We discussed some
aspects of implementing a tool for verifying the encoded QNNs, also in Python,
where the constraints that we have specified are to be passed to the underlying
solvers. Finally, we reported on the results of our preliminary experiments.

As future work, we will define a Boolean encoding for other types of blocks,
including blocks with convolutional layers. We are about finishing the development
of our verification tool, after which we will run a thorough experimentation.

References
[1] C. Cheng, G. Nührenberg, H. Ruess: Verification of Binarized Neural Networks via Inter-

Neuron Factoring, CoRR (2017), arXiv: 1710.03107.
[2] S. Dutta, S. Jha, S. Sankaranarayanan, A. Tiwari: Output Range Analysis for Deep

Feedforward Neural Networks, in: NASA Formal Methods, Springer, 2018, pp. 121–138.
[3] R. Ehlers: Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, in:

Automated Technology for Verification and Analysis, Springer, 2017, pp. 269–286.
[4] EU Data Protection Regulation: Regulation (EU) 2016/679 of the European Parliament

and of the Council, 2016.
[5] M. Fischetti, J. Jo: Deep Neural Networks and Mixed Integer Linear Optimization, Con-

straints 23 (3 2018), pp. 296–309, doi: https://doi.org/10.1007/s10601-018-9285-6.
[6] M. Gario, A. Micheli: PySMT: A Solver-Agnostic Library for Fast Prototyping of SMT-

based Algorithms, in: International Workshop on Satisfiability Modulo Theories (SMT), 2015.
[7] I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, The MIT Press, 2016, isbn:

0262035618.
[8] B. Goodman, S. R. Flaxman: European Union Regulations on Algorithmic Decision-Making

and a "Right to Explanation", AI Magazine 38.3 (2017), pp. 50–57.
[9] X. Huang, M. Kwiatkowska, S. Wang, M. Wu: Safety Verification of Deep Neural Net-

works, in: Computer Aided Verification, Springer, 2017, pp. 3–29.
[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio: Binarized Neural Net-

works, in: Advances in Neural Information Processing Systems 29, Curran Associates, Inc.,
2016, pp. 4107–4115.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio: Quantized Neural
Networks: Training Neural Networks with Low Precision Weights and Activations, Journal
of Machine Learning Research 18.187 (2018), pp. 1–30.

[12] A. Ignatiev, A. Morgado, J. Marques-Silva: PySAT: A Python Toolkit for Prototyping
with SAT Oracles, in: Proc. International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), vol. 10929, Lecture Notes in Computer Science, Springer, 2018,
pp. 428–437.

[13] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer: Reluplex: An
Efficient SMT Solver for Verifying Deep Neural Networks, in: CAV, 2017, pp. 97–117.

[14] G. Kovásznai, K. Gajdár, N. Narodytska: Portfolio Solver for Verifying Binarized Neural
Networks, Annales Mathematicae et Informaticae 53 (2021), pp. 183–200, issn: 1787-6117,
doi: https://doi.org/10.33039/ami.2021.03.007.

[15] J. Kung, D. Zhang, G. Van der Wal, S. Chai, S. Mukhopadhyay: Efficient Object De-
tection Using Embedded Binarized Neural Networks, Journal of Signal Processing Systems
(2017), pp. 1–14.

47

https://arxiv.org/abs/1710.03107
https://doi.org/10.1007/s10601-018-9285-6
https://doi.org/10.33039/ami.2021.03.007

Annal. Math. et Inf. G. Kovásznai, D. H. Kiss, P. Mlinkó

[16] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-Based Learning Applied to Doc-
ument Recognition, Proceedings of the IEEE 86.11 (Nov. 1998), pp. 2278–2324.

[17] B. McDanel, S. Teerapittayanon, H. T. Kung: Embedded Binarized Neural Networks, in:
EWSN, Junction Publishing, Canada / ACM, 2017, pp. 168–173.

[18] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, M. A. Aivazis: Building a Framework
for Predictive Science, CoRR (2012), arXiv: 1202.1056.

[19] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, T. Walsh: Verifying Proper-
ties of Binarized Deep Neural Networks, in: 32nd AAAI Conference on Artificial Intelligence,
2018, pp. 6615–6624.

[20] L. Perron, V. Furnon: OR-Tools, version 9.3, Google, Mar. 15, 2022, url: https://devel
opers.google.com/optimization/.

[21] G. Singh, T. Gehr, M. Püschel, M. T. Vechev: Boosting Robustness Certification of
Neural Networks, in: 7th International Conference on Learning Representations, OpenRe-
view.net, 2019.

[22] V. Tjeng, K. Y. Xiao, R. Tedrake: Evaluating Robustness of Neural Networks with Mixed
Integer Programming, in: 7th International Conference on Learning Representations, Open-
Review.net, 2019.

[23] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. S. Boning, I. S. Dhillon:
Towards Fast Computation of Certified Robustness for ReLU Networks, in: ICML, 2018,
pp. 5273–5282.

[24] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou: DoReFa-Net: Training Low Bitwidth
Convolutional Neural Networks with Low Bitwidth Gradients, CoRR (2016), arXiv: 1606.0
6160.

48

https://arxiv.org/abs/1202.1056
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

