
Submitted: November 6, 2022
Accepted: December 3, 2022
Published online: December 28, 2022

Annales Mathematicae et Informaticae
56 (2022) pp. 47–57
DOI: https://doi.org/10.33039/ami.2022.12.013
URL: https://ami.uni-eszterhazy.hu

Unbounding discrete oriented polytopes

Mátyás Kiglics∗, Gábor Valasek, Csaba Bálint∗

Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
kiglics@caesar.elte.hu
valasek@inf.elte.hu
csabix@inf.elte.hu

Abstract. We propose an efficient algorithm to compute k-sided unbound-
ing discrete oriented polytopes (𝑘-UDOPs) in arbitrary dimensions. These
convex polytopes are constructed for a fixed set of directions and a given
center point. The interior of 𝑘-UDOPs does not intersect the scene geometry.
We discuss several types of general geometric queries on these constructs,
such as intersection with rays, and provide an empirical investigation on the
limit of these shapes as the number of sides increases. In the 2D case, we
extend our construction to planar shapes enclosed by arbitrary parametric
boundaries with known derivative bounds.
Keywords: computer graphics, computational geometry, collision avoidance
AMS Subject Classification: 68U05

1. Introduction
Bounding volumes are ubiquitous in various computing venues, such as computer
graphics [6], collision detection [2, 3, 7, 9], and geometric information systems.

A 𝐵 ⊂ R𝐷 volume is a bounding volume of a 𝐺 ⊂ R𝐷 geometry if 𝐺 ⊂ 𝐵
holds. This property facilitates quick filtering of geometries, in other words, we
only execute a query on 𝐺 if it is successful on 𝐵. For example, if a line does not
intersect 𝐵, it cannot intersect 𝐺.

The more efficiently a query is carried out on 𝐵, the more performance may
be gained by using culling based on bounding volumes. However, 𝐵 has to be a

∗EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies – The Project is supported by the Hungarian Government and co-financed by the
European Social Fund. Supported by the ÚNKP-21-3 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research, Development
and Innovation Fund.

https://doi.org/10.33039/ami.2022.12.013
https://ami.uni-eszterhazy.hu
mailto:kiglics@caesar.elte.hu
mailto:valasek@inf.elte.hu
mailto:csabix@inf.elte.hu

Annal. Math. et Inf. M. Kiglics, G. Valasek, Cs. Bálint

sufficiently close approximation to the shape of 𝐺 to avoid an excessive amount of
false positives. In practice, bounding volumes are also organized into hierarchies
[6], a construct that only depends on the structure of the initial bounding volumes,
not the geometries they contain.

Typical realization of bounding volumes are axis-aligned bounding boxes
(AABBs) and oriented bounding boxes (OBBs). Geometric queries, for example,
ray-surface intersection and collision detection against other similar volumes, are
trivially resolved on these at the expense of their relatively low capacity for adapt-
ing to the shape and orientation of their enclosed geometries. These properties are
improved by generalizing bounding boxes to the k-sided bounding discrete oriented
polytope (𝑘-DOP). The 𝑘-DOPs are defined as the intersection of 𝑘 half-spaces;
as such, they are convex. As 𝑘 increases, the bounding volume can better adapt
to the source geometry. However, it also incurs additional processing costs upon
filtering geometries, as we must process more faces. In this sense, the choice of 𝑘
is a trade-off between adaptivity and query complexity.

Unbounding volumes are complements to bounding volumes. They enclose
empty spaces such that none of their interior points intersect any geometry. The
most prominent example of such a construct is Hart’s sphere tracing [5] algorithm
that infers unbounding spheres from signed distance values to accelerate ray trac-
ing.

In collision detection and path planning, these unbounding volumes can be used
to reject geometries that cannot intersect a given entity. In this case, an unbounding
geometry with a smaller volume generates fewer candidates in the filtering pass;
thus, it also decreases the number of false positives.

Section 2 describes an efficient algorithm to compute 𝑘-sided unbounding con-
vex oriented polytopes, or 𝑘-UDOPs, for a wide range of geometry types. The
construction runs in Θ(𝑘𝑁) complexity for 𝑁 objects and is generalized to higher
dimensions. Our algorithm relies on the capability to compute the distance of the
discussed geometries to hyperplanes. Section 3 enumerates several simple geomet-
ric representations and how to compute these distances on them. In particular,
Section 3.5 describes a method to infer a conservative 𝑘-UDOP for shapes with
arbitrary parametric boundaries in the plane, given known bounds on their deriva-
tives, and in Section 4, we describe some alogorithms applied on k-UDOPs. In
Section 5, we demonstrate that the 𝑘-UDOP converges to a polygon empirically as
the number of sides increases. Finally, we demonstrate the results of our proposed
algorithm on various plane geometries in Section 5.

2. Unbounding 𝑘-DOP construction

2.1. Representation
A 𝑘-DOP, or a discrete oriented polytope with 𝑘 sides in 2 ≤ 𝐷 ∈ N dimensions, is
defined by a center point 𝑐 ∈ R𝐷, and a sequence of directions 𝑣𝑖 ∈ R𝐷, ‖𝑣𝑖‖2 = 1
and distances 0 ≤ ℎ𝑖 ∈ R, where 𝑖 = 1, . . . , 𝑘 and 𝑘 ≥ 𝐷 + 1. The interior of the

48

Annal. Math. et Inf. Unbounding discrete oriented polytopes

𝑘-DOP is given by

𝐻𝑐 = {𝑥 ∈ R𝐷 | ∀𝑖 ∈ {1, . . . , 𝑘} : (𝑥− 𝑐)T · 𝑣𝑖 < ℎ𝑖}

For even 𝑘 values, one may arrange the directions such that 𝑣2𝑖 = −𝑣2𝑖+1. This
makes 𝑘-DOP queries more efficient, essentially halving the number of necessary
evaluations. Note that sometimes the literature uses this convention, that is, a
𝑘-DOP refers to a 2𝑘 sided oriented convex polytope. In our constructs, 𝑘 denotes
the number of sides.

In this paper, we consider 𝑘 and the 𝑣𝑖 directions fixed and investigate the
problem of finding the largest unbounding 𝑘-DOP around a point 𝑐 that does not
contain any point from a predefined set of geometries 𝐴 ⊂ R𝐷, that is 𝐴∩𝐻𝑐 = ∅.
Note that 𝐻𝑐 is convex, making intersection tests highly efficient. For example,
Algorithm 2 is an Θ(𝑘) algorithm for computing intersection with a ray.

2.2. Algorithm
We present a generalized method for constructing 𝑘-UDOPs for a fixed center point
and directions. Let us consider a two-dimensional scene 𝑆, consisting of arbitrary
geometric entities with a known evaluation of the distance-to-hyperplane query.
Our method (Algorithm 1) is summarized as follows.

Algorithm 1 Constructing general 𝑘-UDOPs
Input: c center point, 𝑆 set of geometries, v𝑖 directions
Output: ℎ𝑖 distances
ℎ𝑖 ←∞ ◁ 1 ≤ 𝑖 ≤ 𝑘
for all 𝑔 ∈ 𝑆 do

for all v𝑖 do
𝑑𝑖 ← min{(p− c)T · v𝑖 | p ∈ 𝑔} ◁ distance of 𝑔 from line containing c

end for
if ℎ𝑖 > 𝑑𝑖 ∀𝑖 ∈ {𝑗 | 𝑑𝑗 > 0} then ◁ 𝑔 is inside

𝑚← index of max(𝑑1, 𝑑2, . . . , 𝑑𝑘)
ℎ𝑚 ← 𝑑𝑚

end if
end for

For every shape 𝑔 ∈ 𝑆, we need to calculate the signed 𝑑𝑖 distances, that is,
the dot product of the 𝑣𝑖 directions and 𝑝 − 𝑐 vectors, where 𝑝 is the point of 𝑔
with the smallest Euclidean distance from the hyperplane defined by 𝑐 and 𝑣𝑖. The
calculations of these distances are detailed in Section 3. Using these distances, we
can separate the directions for which 𝑔 overlaps the 𝑘-UDOP, and if that is the case
for at least one 𝑣𝑖, we overwrite ℎ𝑚 with the largest distance 𝑑𝑚. After iterating
through every 𝑔 shape, the ℎ1, ℎ2, . . . , ℎ𝑘 distances represent a single 𝑘-UDOP that
does not overlap with any 𝑔. The construction method is visualized in Fig. 1, and
some example scenes are presented in Fig. 2 and Fig. 3.

49

Annal. Math. et Inf. M. Kiglics, G. Valasek, Cs. Bálint

Figure 1. Construction of an unbunding 12-DOP polytope about
a point (in green) to a scene containing a point, a line segment,
a circle, and a quadratic Bézier curve. All ℎ𝑖 distances along 𝑣𝑖

directions (thin lines) are initialized to +∞ (top-left). Then at each
iteration, we select a geometry (in red) and adjust the distances
along all directions that have a positive dot product with the vector
from the center point to the closest point of the selected geometry.
The final 𝑘-UDOP have less sides than the number of directions it

have started with (bottom-right).

This algorithm is linear in the number of entities for a fixed 𝑘, so its complexity
is Θ(𝑁𝑘), where |𝑆| = 𝑁 . The algorithm can be applied in higher dimensions,
assuming we can evaluate the necessary signed distances.

3. Distance computations
This section summarizes signed distance computations between a hyperplane and
elementary geometric shapes.

For a fixed 𝑥0 and 𝑣𝑖 direction, let 𝑑(𝑥) denote the signed distance between 𝑥
and the hyperplane passing through 𝑥0 with normal 𝑣𝑖, that is, 𝑑(𝑥) = (𝑥−𝑥0)T·𝑣𝑖,
‖𝑣𝑖‖2 = 1.

Let there be given an 𝑥0 region center and a unit normal 𝑣𝑗 and let 𝐿𝑗 denote
the hyperplane that passes through 𝑥0 with normal 𝑣𝑗 , that is, 𝐿𝑗 = {𝑥 ∈ R𝐷 |
(𝑥− 𝑥0)T · 𝑣𝑗}.

3.1. Points

The distance from a point 𝑥 is computed as (𝑥− 𝑥0)T · 𝑣𝑗 .

50

Annal. Math. et Inf. Unbounding discrete oriented polytopes

(a) Unbounding 8-DOPs fitted to a text with a TrueType font. The boundary curves
are composed of linear and quadratic polynomial segments.

(b) A stylized floor-plan composed of
line segments, quadratic Bézier curves

and circles.

(c) Fitting unbounding 12-DOPs to
the floorplan of Fig. 2b.

Figure 2. Test scenes used in our deterministic tests. Figures 2a
and 2c illustrate a sparse 3 × 5 and 4 × 4 grid of center points and

the corresponding 15 and 16 𝑘-UDOPs of the respective scenes.

3.2. Line segments and polygons

A line segment between 𝑎, 𝑏 ∈ R𝐷 is parametrized as 𝑝(𝑡) = 𝑎 + 𝑡(𝑏−𝑎), 𝑡 ∈ [0, 1].
The smallest distance between 𝐿𝑗 and 𝑝(𝑡) is then either at their intersection point
at 𝑡 = − (𝑎−𝑥0)T·𝑣𝑗

(𝑏−𝑎)T·𝑣𝑗
, if 𝑎 ̸= 𝑏 and 𝑡 ∈ [0, 1], or the smallest of |𝑑(𝑎)| and |𝑑(𝑏)|.

The distance of an 𝑛-sided polygon is resolved by taking the smallest distance
between 𝐿𝑗 and the polygon edges.

3.3. Bézier curves

Let 𝑏(𝑡) =
∑︀𝑛

𝑖=0 𝑏𝑖𝐵
𝑛
𝑖 (𝑡), 𝑡 ∈ [0, 1] denote a degree 𝑛 Bézier curve, where 𝑏𝑖 ∈ R𝐷,

𝑖 = 1, . . . , 𝑛 are control points and 𝐵𝑛
𝑖 (𝑡) =

(︀
𝑛
𝑖

)︀
𝑡𝑖(1 − 𝑡)𝑛−𝑖 are the Bernstein

polynomials.
The smallest distance is either realized at a 𝑡* ∈ [0, 1] parameter or at one of

51

Annal. Math. et Inf. M. Kiglics, G. Valasek, Cs. Bálint

Figure 3. A 3D generalization of Algorithm 1 to a point cloud.

the curve endpoints 𝑏0 or 𝑏𝑛. Since

𝑑(𝑏(𝑡)) = (𝑏(𝑡)− 𝑥)T · 𝑣𝑗

=
(︃

𝑛∑︁
𝑖=0

𝐵𝑛
𝑖 (𝑡)𝑏𝑖 −

𝑛∑︁
𝑖=0

𝐵𝑛
𝑖 (𝑡)𝑥

)︃T

· 𝑣𝑗

=
𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡) (𝑏𝑖 − 𝑥)T · 𝑣𝑗⏟ ⏞
𝑑𝑖

=
𝑛∑︁

𝑖=0
𝐵𝑛

𝑖 (𝑡)𝑑𝑖 ,

the parameters of the closest points on the curve satisfy

𝜕𝑡𝑑(𝑏(𝑡)) = 𝑛

𝑛−1∑︁
𝑖=0

𝐵𝑛−1
𝑖 (𝑡)Δ𝑑𝑖 = 0 ,

using the notation Δ𝑘𝑑𝑖 = Δ𝑘−1𝑑𝑖+1 − Δ𝑘−1𝑑𝑖, 𝑘 ≥ 1, 𝑖 = 0, . . . , 𝑛 − 𝑘 and the
convention Δ0𝑑𝑖 = 𝑑𝑖.

In case of quadratic Bézier curves, the solution is

𝑡 = − Δ𝑑0

Δ2𝑑0
,

as long as Δ2𝑑0 ̸= 0 and 𝑡 is in [0, 1] interval. The closest distance is then realized
either at 𝑏0, 𝑏2, or 𝑏(𝑡) between the line and the Bézier curve.

For cubic Bézier curves, we can use the Bernstein form of the quadratic formula
to obtain the two roots as

𝑡1,2 = −Δ𝑑0 ±
√︀

𝑑2
1 − 𝑑0𝑑2

Δ2𝑑0
.

The minimum distance is then at either one of the roots that lie in [0, 1] or at one
of the endpoints.

52

Annal. Math. et Inf. Unbounding discrete oriented polytopes

Note that the convex hull property of Bézier curves [4] allows us to approximate
the exact distance to 𝑏(𝑡).

3.4. Spheres

The signed distance between 𝐿𝑗 and a sphere with center 𝑐 ∈ R𝐷 and radius 𝑟 > 0
is (𝑐− 𝑥)T · 𝑣𝑗 − 𝑟.

3.5. Shapes with continuous parametric boundaries

Let us consider the plane only and address the case of shapes that have sufficiently
many times continuously differentiable boundaries, parametrized by some 𝑝(𝑡) :
[𝑎, 𝑏] → R2 mapping. We devise conservative bounds on the distance between the
line 𝐿𝑗 and 𝑝(𝑡) given a bound on the magnitude of the appropriate derivatives of
𝑝(𝑡).

First, we construct a piecewise polynomial approximation to the boundary to
achieve this. Afterward, we compute the distance of 𝐿𝑗 to these polynomial bound-
ary approximations, as shown in Section 3.3. Finally, using the error term of the
particular approximating polynomial, we decrease the computed distance.

Geometrically, the last step uses a distance lower bound to the offset of the
polynomial approximation. The key insight is that we do not explicitly represent
the offset of the parametric boundary; it is sufficient to apply it in distance space
[1].

Let us consider the case of order 𝑘 Hermite interpolation. Let ℎ𝑘(𝑡) denote the
Hermite polynomial that interpolates 𝑝(𝑙)(𝑡𝑘), 𝑙 = 0, . . . , 𝑘 at prescribed knots 𝑡𝑘,
where 𝑝(𝑙)(𝑡) denotes the 𝑙-th derivative at 𝑡. Then

𝑝(𝑡)− ℎ𝑘(𝑡) = 𝑝(𝑘+1)(𝜉)
(𝑘 + 1)! (𝑡− 𝑡𝑘)𝑘+1(𝑡𝑘+1 − 𝑡)𝑘+1

holds for some 𝜉 ∈ (𝑡𝑘, 𝑡𝑘+1). If 𝑀 > 0 is a bound on ‖𝑝(𝑘+1)‖∞, then the right
hand side of

‖𝑝− ℎ𝑘(𝑡)‖∞ ≤
𝑀

(𝑘 + 1)!

⃒⃒⃒⃒
𝑡𝑘+1 − 𝑡𝑘

2

⃒⃒⃒⃒2𝑘

⏟ ⏞
𝐸𝑘

provides the maximum deviation between the polynomial approximation and the
original shape. Computing the Hermite interpolation in Bernstein basis is trivial
[4], and subtracting

√
2 · 𝐸𝑘 from the distance between 𝐿𝑗 and the polynomial

approximation gives a conservative bound on the distance between 𝐿𝑗 and the
segment of 𝑝(𝑡) between 𝑡𝑘 and 𝑡𝑘+1.

53

Annal. Math. et Inf. M. Kiglics, G. Valasek, Cs. Bálint

4. Queries on 𝑘-UDOPs

4.1. Converting 𝑘-UDOPs to polytope mesh
To compute the vertices of the 𝐷-dimensional polytope, we have to find the inter-
section of all possible combinations of 𝐷 planes. This produces

(︀
𝑘
𝐷

)︀
vertices that

could be part of the polytope, so we have to filter out those that are not.
Given two vectors 𝑎, 𝑏 ∈ R𝐷, we can compute the 𝑣 = 𝛼 ·𝑎 + 𝛽 · 𝑏 ∈ R𝐷 vector

that has perpendicular difference vectors to 𝑎 and 𝑏, with the following deltoid [8]
formula: [︂

𝛼
𝛽

]︂
= 1

𝑎T𝑎 · 𝑏T𝑏− 𝑎T𝑏 · 𝑎T𝑏

[︂
𝑏T𝑏 · (𝑎T𝑎− 𝑎T𝑏)
𝑎T𝑎 · (𝑏T𝑏− 𝑎T𝑏)

]︂
, (4.1)

where the vertex is obtained with 𝑣 = 𝛼 · 𝑎 + 𝛽 · 𝑏.
Equation (4.1) allows the computation of multiple intersections in parallel. Ap-

plying the formula 𝐷−1 times to 𝐷 directions yields a single vertex, which is then
tested against the boundary of the 𝑘-DOP. Thus, in general, the algorithm is slow
𝑂(𝑘𝐷+1). In two dimensions, these steps can be simplified to be 𝑂(𝑘2) because
directions have a circular ordering.

Once the vertices are computed, the connectivity information of the vertices
may be computed by running a 𝐷-dimensional convex hull algorithm.

Algorithm 2 Ray and 𝑘-DOP intersection
Input: c center, v𝑖 directions, ℎ𝑖 distances, 𝑝0 + 𝑡𝑑 ray
Output: 𝑡1, 𝑡2 intersection parameters
𝑡1 ← −∞, 𝑡2 ← +∞
for all v𝑖 do

𝑡← (𝑝0 − 𝑐)T · 𝑣𝑖

𝑑T𝑣𝑖
; ◁ Intersect with each plane

if 𝑑T𝑣𝑖 < 0 then ◁ Is plane back-facing?
𝑡1 ← max(𝑡1, 𝑡) ◁ Keep furthest back-facing

else
𝑡2 ← min(𝑡2, 𝑡) ◁ Keep closest front-facing

end if
end for
If 𝑡1 < 𝑡2 then there is an intersection

4.2. Ray intersection
Intersecting a 𝑘-UDOP with a ray in two dimensions can be reformulated as a ray-
convex polygon intersection problem once the 𝑘-UDOP is converted to a polygon,
as shown in Section 4.1. Even though the subsequent intersection computation
may be carried out in 𝒪(log 𝑘) time, it does not generalize to higher dimensions

54

Annal. Math. et Inf. Unbounding discrete oriented polytopes

and involves a quadratic time conversion. Pre-computing the polygons mitigates
the latter; however, it may double the storage for each 𝑘-UDOP.

Instead, a linear time ray intersection algorithm may be formulated directly on
our 𝑘-UDOP representation, shown in Algorithm 2.

The main idea is to divide the half planes into two groups: front-facing (𝑑T𝑣𝑖 >
0), and back-facing (𝑑T𝑣𝑖 < 0). We have to find the smallest 𝑡 solution amongst
the front-facing (𝑡2) and the largest 𝑡 solution for the back-facing (𝑡1) planes. If,
and only if, the 𝑘-DOP is intersected, then 𝑡1 < 𝑡2 and hence for any 𝑡 ∈ [𝑡1, 𝑡2],
the segment 𝑥 = 𝑝0 + 𝑡𝑑 is within the 𝑘-DOP.

4.3. Bounding 𝑘-DOP containment test
For collision detection, we would like to also know if a 𝑘-UDOP intersects with
another 𝑘-DOP. For this, let the 𝑘-UDOP be defined by a 𝑐1 ∈ R𝐷 center, 𝑣𝑖 ∈
R𝐷, ‖𝑣𝑖‖2 = 1 directions and ℎ𝑖 > 0 distances, and the 𝑘-DOP be defined by the
same 𝑣𝑖 ∈ R𝐷 directions but with a 𝑐2 ∈ R𝐷 center and 𝑔𝑖 > distances. Then, the
𝑘-DOP is inside the 𝑘-UDOP if the distance vector between the centers (𝑐2 − 𝑐1)
projected onto each 𝑣𝑖 is less than the difference between the 𝑘-DOP distances
(ℎ𝑖 − 𝑔𝑖). Algorithm 3 summarizes the above and allows efficient utilization of
𝑘-UDOP acceleration structures for collision detection tasks in any dimension.

Algorithm 3 Bounding 𝑘-DOP containment test
Input: 𝑐1, 𝑐2 centers, v𝑖 common directions, ℎ𝑖, 𝑔𝑖 distances
Output: True only if first 𝑘-DOP contains the second
for all v𝑖 do

if (𝑐2 − 𝑐1)T · 𝑣𝑖 ≥ ℎ𝑖 − 𝑔𝑖 then
return false

end if
end for
return true

5. Test results
We observed that the 𝑘-DOP does not always utilize all sides, so the generated
polygon often has less than 𝑘 number of edges. To find a reasonable choice of 𝑘, we
generated random points around 𝑐 from different distributions and measured vari-
ous metrics of the resulting 𝑘-DOP. We tested 50 different scenes with 𝑘 increasing
from 3 to 300. The means of the various metrics are shown in Table 1.

We also noticed that as we increase 𝑘, the 𝑘-UDOP shape stabilizes, as if a fixed
point solution was found. To verify this, we have taken the symmetric difference of
the polygons of consecutive pairs of 𝑘-DOPs and measured the average difference of
its area. Generally, the difference converged to zero; however, the area fluctuated
even for large 𝑘 values in a few cases. This seems to have been caused by empty

55

Annal. Math. et Inf. M. Kiglics, G. Valasek, Cs. Bálint

Table 1. Average values of different metrics measured from 50
different set of points for every 𝑘 value between 3 and 300.

𝑘 Perimeter Area # of sides # of sides
𝑘

3 3.217 0.911 3.00 100%
4 3.669 1.070 4.00 100%
5 3.896 1.194 4.42 88.4%
6 3.820 1.165 4.84 80.7%
7 4.018 1.242 4.96 70.9%
8 3.952 1.232 5.06 63.3%
9 3.906 1.264 5.14 57.1%
10 3.757 1.149 5.34 53.4%
11 3.875 1.232 5.70 51.8%
12 3.925 1.233 5.72 47.7%
...

...
...

...
...

298 4.033 1.279 15.74 5.28%
299 4.042 1.280 15.92 5.32%
300 4.024 1.266 15.86 5.29%

areas in-between the clusters of generated points, which placed at least one of the
𝑘-DOP sides very far from 𝑐 for certain 𝑘 values but was cut off in other cases.
The results of the different tests are visualized in Fig. 4.

Figure 4. Measured convergence of consecutive polygons for 50
random cases (blue lines) and their average (red). This difference
is measured in the area of the symmetric difference of the polygons

generated from 𝑘 and 𝑘 + 1-DOPs.

The convergence was expected, since if 𝑤𝑗 are directions towards each object’s
closest point to 𝑐, then drawing perpendicular lines through the footpoints to each
𝑤𝑗 , we obtain the convex polygon that the algorithm seems to approach. This is

56

Annal. Math. et Inf. Unbounding discrete oriented polytopes

because at least one of the directions 𝑣𝑖 will generally get closer to each 𝑤𝑗 direc-
tion, so the algorithm will choose a corresponding line that is almost perpendicular
to 𝑤𝑗 .

6. Conclusions
We presented a simple and efficient algorithm to compute 𝐷-dimensional 𝑘-UDOPs
for a prescribed position and a set of 𝑘 fixed directions.

In the plane, we showed that the resulting convex polygon converges to a fixed
shape empirically, whose number of effective sides stayed within 16, even for 𝑘 =
300. As such, large 𝑘 figures function more to orient the resulting 𝑘-UDOP.

Additionally, we presented conversion algorithms to polytope meshes in arbi-
trary dimensions for both bounding and 𝑘-UDOPs and direct ray intersection and
bounding 𝑘-DOP containment tests.

References
[1] C. Bálint, G. Valasek, L. Gergó: Operations on Signed Distance Functions, Acta Cyber-

netica 24.1 (May 2019), pp. 17–28, doi: https://doi.org/10.14232/actacyb.24.1.2019.3,
url: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4004.

[2] S. Dinas, J. M. Bañón: A literature review of bounding volumes hierarchy focused on collision
detection, Ingeniería y competitividad 17.1 (2015), pp. 49–62.

[3] C. Ericson: Real-time collision detection, CRC Press, 2004.
[4] G. Farin: Curves and Surfaces for Computer Aided Geometric Design (3rd Ed.): A Practical

Guide, San Diego, CA, USA: Academic Press Professional, Inc., 1993, isbn: 0-12-249052-5.
[5] J. Hart: Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Implicit

Surfaces, The Visual Computer 12 (June 1995), doi: https://doi.org/10.1007/s003710050
084.

[6] T. L. Kay, J. T. Kajiya: Ray Tracing Complex Scenes, in: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’86, New York,
NY, USA: Association for Computing Machinery, 1986, pp. 269–278, isbn: 0897911962, doi:
https://doi.org/10.1145/15922.15916.

[7] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, K. Zikan: Efficient collision detec-
tion using bounding volume hierarchies of k-DOPs, IEEE Transactions on Visualization and
Computer Graphics 4.1 (1998), pp. 21–36, doi: https://doi.org/10.1109/2945.675649.

[8] G. Valasek, C. Bálint, A. Leitereg: Footvector Representation of Curves and Surfaces,
Acta Cybernetica (Aug. 2021), doi: https: / /doi .org /10 .14232 /actacyb .290145, url:
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4205.

[9] G. Zachmann: Rapid collision detection by dynamically aligned DOP-trees, in: Proceedings.
IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180), 1998,
pp. 90–97, doi: https://doi.org/10.1109/VRAIS.1998.658428.

57

https://doi.org/10.14232/actacyb.24.1.2019.3
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4004
https://doi.org/10.1007/s003710050084
https://doi.org/10.1007/s003710050084
https://doi.org/10.1145/15922.15916
https://doi.org/10.1109/2945.675649
https://doi.org/10.14232/actacyb.290145
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4205
https://doi.org/10.1109/VRAIS.1998.658428

