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Abstract. In this paper, a finite-source retrial queueing system with two-
way communication is investigated with the help of a simulation program of
own. If a randomly arriving request from the finite-source finds the single
server idle its service starts immediately, otherwise it joins an orbit from
where it generates retrial/repeated calls after a random time. To increase
the utilization of the server when it becomes idle after a random time an
outgoing request is called for service from an infinity source. Upon its arrival
if the server is busy, it goes to a buffer and when the server becomes idle
again its service starts immediately. requests arriving from the finite-source
and orbit are referred to as primary or incoming ones while requests called
from the infinite source are referred to as secondary or outgoing requests,
respectively. The service times of the primary and secondary requests are
supposed to be random variables having different distributions. However,
randomly catastrophic failures may happen to all the requests in the system,
that is from the orbit, the service unit, and the buffer. In this case, the
primary requests return to the finite-source, and the secondary ones are lost.
The operation of the system is restored after a random time. Until the
restoration is finished no arrivals and service take place in the system. All
the above-mentioned times are supposed to be independent random variables.

The novelty of this paper is to perform a sensitivity analysis of the failure
and restoration/repair times on the main characteristics to illustrate the effect
of different distributions having the same average and variance value. Our
aim is to determine the distribution of the number of requests in the system,
the average response time of an arbitrary primary request without successful
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service, also the average response time of an arbitrary and successfully served
primary request, the total utilization of the service unit, or the probability
that a primary request leaves the system without successful service because
of a catastrophic event. Results are illustrated graphically obtained by our
simulation program.

Keywords: finite-source queueing, two-way communication, catastrophic fail-
ure, restoration, sensitivity analysis, characteristics, simulation

1. Introduction
Retrial queues with two-way communication arose as stochastic models of call
centers, where the operator can provide both inbound/incoming and outbound/out-
going calls. The idea of call blending is to improve the productivity of call centers
by reducing the idle time of an operator was investigated among others in [2, 3, 5],
and references cited in them.

However, from a practical point of view, it is also important to investigate
situations where the server is not always able to serve the requests. There are many
models and assumptions about the distribution of the operation and restoration
time of the server. In case of a breakdown, there are many options corresponding
to the behavior of request under service and the request generation process. In this
paper, we deal with catastrophes, sometimes called disasters or negative requests
which clear all the requests from the service facility, orbit, buffer, and stop the
arrivals of the requests. The interested reader is referred to among others [1, 7, 8]
and references cited in them.

In our earlier papers we dealt with finite-source single server two-way com-
munication systems with an unreliable server under different repair options and
request generation processes. With the help of simulation, the main characteristics
were obtained and sensitivity analysis was carried out corresponding to failure and
repair time distributions, see [9–11].

The primary aim of the present paper is to carry out a sensitivity analysis of the
time of catastrophe and restoration/repair on the main characteristicsto illustrate
the effect of different distributions having the same average and variance value. Our
goal is to determine the distribution of the number of requests in the system, the
average response time of an arbitrary primary request without successful service,
also the average response time of arbitrary and successfully served primary request,
the total utilization of the service unit, or the probability that a primary request
leaves the system without successful service because of a catastrophic event. Results
are illustrated graphically obtained by our simulation program.

2. System model
Figure 1 shows the behavior of the system with the aim that we are interested
in investigating the effect of the catastrophes on the main characteristics. That
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is the reason that we assume exponentially distributed random variables except
the distribution of the time of disaster. 𝑁 sources generate requests after an
exponentially distributed time with parameter 𝜆 independently of each other. If
an arriving request finds the single server idle its service starts immediately, the
services time is supposed to be exponentially distributed with parameter 𝜇1. If
the serves is busy the call joins an orbit from where it generates retrial/repeated
calls after an exponentially distributed time with parameter 𝜈. To increase the
utilization of the server when it becomes idle after an exponentially distributed
time with parameter 𝜆2 an outgoing request is called for service from an infinity
source. Upon its arrival, if the server is busy, it goes to a buffer and when the server
becomes idle again its service starts immediately. The service time of this type of
request is supposed to be exponentially distributed with parameter 𝜇2. Requests
arriving from the finite-source and orbit are referred to as primary or incoming
ones while requests called from the infinite source are referred to as secondary or
outgoing requests, respectively.

However, randomly catastrophic failures may happen clearing all the requests
in the system, that is from the orbit, the service unit, and the buffer. In this case,
the primary requests return to the finite-source, and the secondary ones are lost.
The operation of the system is restored after an exponentially distributed time with
parameter 𝛾2. Until the restoration is finished no arrivals and service take place in
the system. All the above-mentioned times are assumed to be independent random
variables. Catastrophes can take place according to gamma, hypo-exponential,
hyper-exponential, Pareto and lognormal distribution selecting their parameters to
have the same average value.

Figure 1. System model.
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3. Simulation results and examples
We applied the simulation approach to obtain all the desired characteristics. Due
to the simulation, we can deal with generally distributed random variables repre-
senting different times that occurred in the model construction. Expect the case
when all the random variables are exponentially distributed it is very difficult, if
not impossible to get an analytical solution to the characteristics. The estimation is
carried out by applying a statistical package in which the method of batch averages
is used, see [6]. First, we deal with exponentially distributed failure time with pa-
rameter 𝛾1 and show the effect of the failure rate on the probability that a primary
request leaves the system without successful service, see Table 2. Then we turn our
attention to generally distributed failure times when the (CV) squared coefficient
of variation which is defined as variance/(square of average) is greater or less than
one. In both cases we consider distributions with the same average and variances
to show the effect of the particular distribution on some of the characteristics.

We must admit by choosing different input parameters our aim is to show how
the system behaves and they are not realistic values since we do not have data for
this type of system. In this phase the paper is more theoretic than practical.

3.1. Exponentially distributed failure times
In this part, the failure time is assumed to be exponentially distributed with pa-
rameter 𝛾1. The other input parameters are given in Table 1. This model was
treated by the help of a software package called MOSEL (MOdeling, Specification
and Evaluation Language) and served as a validation for the simulation, see [4].

Table 1. Numerical values of model parameters for exponentially
distributed failure time.

N 𝜆 𝜆2 𝜇1 𝜇2 𝜈 𝛾2

100 0.02 0.5 1 2.5 0.01 1

Table 2. Probability that a primary request departs because of a
catastrophic event.

𝛾1 P(departure)
0.00001 0.002113

0.01 0.535419
0.1 0.724697

It should be mentioned that even for a small failure intensity the probability of
departure is not negligible. In addition, in Figure 2 we can see how the distribution
of the number of primary requests changes as the failure rate increases. In the case
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Figure 2. Distribution of the number of primary requests in the
system.

of a very small value the distribution graph is similar to a normal distribution, but
as we increase the failure rate the distribution is unknown.

3.2. Different distributions of failure time of the system, CV
is greater than one

This part is devoted to the sensitivity analysis of the characteristics corresponding
to the distribution of failure times. Table 3 shows the used parameter setting and
Table 4 collects the values of parameters in the case of gamma, hyper-exponential,
lognormal, and Pareto distributions. We assume that 𝐶𝑉 > 1 and to perform a
valid comparison both the average value and variance are the same using different
parameters’ values.

Table 3. Numerical values of model parameters.

N 𝜆2 𝜇1 𝜇2 𝜈 𝛾2

100 0.5 1 2.5 0.01 1

The steady-state probability of the number of primary requests in the systems
is presented in Figure 3 when 𝜆 = 0.02. Having the same average and variance,
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Table 4. Parameters of failure time.

Distribution Gamma Hyper-exponential Pareto Lognormal
Parameters 𝛼 = 0.31225 𝑝 = 0.3619707 𝛼 = 2.145538 𝑚 = 1.0027833

𝛽 = 0.05588 𝜆1 = 0.1295528 𝑘 = 2.9835251 𝜎 = 1.1981970
𝜆2 = 0.2283569

average 5.588
Variance 100

Squared CV 3.2024857438

Figure 3. Distribution of the number of primary requests in the
system.

the obtained results vary from each other which is especially true in the case of the
Pareto distribution. This figure illustrates the impact of the selected distribution
on the operation of the system, as was expected.

In Figures 4, 5 the average response time of a primary request and a primary
request without successful service can be seen as the function of the arrival rate 𝜆.
Essential differences can be observed which is due to the distributions. Naturally,
the average response time of requests without successful service should be greater
as they leave the system because of catastrophes. Some of them can be in the
orbit and one under service. Since the average failure time is 5.588 we expected
that all the average response times are less than this value. However, it is true
only for the Pareto distribution. It also looks surprising that three averages first
increasing then decreasing, while in the Pareto case it is increasing. During several
simulation runs, we realized that the behavior of the systems heavily depends on
the variance of the failure time and the other input parameters of the system.
Our explanation for the unexpected higher average response time is the following.
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Figure 4. Average response time of a primary request.

Figure 5. Average response time of a primary request without
service.

Since the standard deviation of the operation time is almost two times higher than
its average there will be short operation times in which there are no requests in
the system, and there are long operation times with high response times. Thus
the average response time can be greater than the average operation time. The
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Figure 6. Probability that a primary request departs.

Figure 7. Total utilization w.r. primary requests.

maximum of the average happens only at special parameter setup.
Figure 6 shows the probability that a request departs from the system due to

the catastrophe. There are differences between the distributions and of course the
probability is an increasing function of the arrival rate from the source since more
and more requests are in the system when a catastrophe happens.
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Figure 8. Total utilization w.r. primary requests without service.

Figure 9. Total utilization w.r. secondary requests.

In Figures 7, 8, 9 utilization of the server corresponding to different types of
requests is illustrated. As usual, the utilization of the server with respect to a
certain type of request is defined as the probability that the server is busy with
that type of request, respectively. There is a very special property of finite-source
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retrial queues, namely under special parameter setup the mean response time of
a customer has maximum as the function of arrival rate from the source. We
could find such a parameter setup that there is maximum of the utilization for the
primary requests which includes requests with successful and without successful
service, see Figure 7. In the first phase due to the increasing number of requests
the utilization increases, but after a certain point due to the catastrophes many
requests depart from the system and the utilization decreases.

Figure 8 shows the utilization corresponding to the departed requests due to the
catastrophes. Since the number of requests in the system increases as the function
of the arrival rate 𝜆 more and more requests depart the systems because of the
failure, hence the utilization decreases. As we can observe this measure is almost
the same for all distributions.

Finally, Figure 9 shows the utilization of the server with respect to the secondary
requests invited when the server is idle. The behavior can be explained by the
catastrophes since the server in this case is idle and there is more chance for a
secondary request to occupy the server.

3.3. Different distributions of failure time of the system, CV
is less than one

This part is devoted to the sensitivity analysis of the characteristics with respect
to the distribution of failure times. Table 3 shows the used parameter setting and
Table 5 collects the values of parameters in the case of gamma, hypo-exponential,
lognormal, and Pareto distribution. 𝐶𝑉 < 1 and both the average value and
variance are the same using different parameters’ values.

Table 5. Parameters of failure time.

Distribution Gamma Hypo-exponential Pareto Lognormal
Parameters 𝛼 = 1.2320819 𝜇1 = 0.2 𝛼 = 2.4940153 𝑚 = 1.423548

𝛽 = 0.2204778 𝜇2 = 1.7 𝑘 = 3.3475773 𝜎 = 0.7708627
average 5.588

Variance 25.3460207612
Squared CV 0.811634349

Due to the lack of pages, we cannot show the same characteristics as we pre-
sented before. We can summarize the findings as follows. The average response
times are not greater than the average operation time due to the smaller variance of
the operation time. All the other characteristics show similar behavior with fewer
differences between the different distributions. In general, performing several sim-
ulation runs we observed that the variance of the response times of requests behave
similar way as the variance of the operation time either 𝐶𝑉 > 1 or 𝐶𝑉 < 1. One
of the advantages of the simulation approach is that we can estimate any of the
characteristics giving not only expected values but variances, too.
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4. Conclusion
A finite-source retrial queueing system with two-way communication was investi-
gated with the help of simulation. We were interested in carrying out a sensitivity
analysis of the failure and restoration/repair times on the main characteristics to
illustrate the effect of different distributions having the same average and variance
value. We aimed to determine the distribution of the number of requests in the
system, the average response time of an arbitrary primary request without suc-
cessful service, also the average response time of arbitrary and successfully served
primary request, the total utilization of the service unit, or the probability that a
primary request leaves the system without successful service because of a catas-
trophic event. Results were illustrated graphically and some explanations were
given. The scientific message of the this paper is following: from earlier papers
published in different high level journals it can be seen that systems with catas-
trophic failures are important and needs investigations. The authors are not aware
of any papers with two-way communications with this type of failures. In our opin-
ion allowing non-exponentially distributed operation times the analytic solution is
hopeless. The only way is the simulation method. It is a natural question to ask
how the characteristics of the system depends on the distribution of the opera-
tion time assuming the same first two moments, respectively. That was our strong
motivation and we are confident that this paper is a valuable contribution to this
topic.
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