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Abstract. Generalized Mersenne numbers are defined as 𝑀𝑝,𝑛 = 𝑝𝑛 − 𝑝 + 1,
where 𝑝 is a prime and 𝑛 is a positive integer. Here, we prove that for each
pair (𝑐, 𝑝) with 𝑐 ≥ 1 an integer, there is at most one 𝑀𝑝,𝑛 of the form 𝑐𝑥2

with a few exceptions.
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1. Introduction
Mersenne numbers are positive integers of the form 2𝑛 − 1 with 𝑛 ≥ 1. These
numbers have attracted a great deal of interest since the seventeenth century. Fur-
thermore, the primes of this form; so called Mersenne primes are traceable back to
Euclid, who in his “Elements” connected primes of the form 2𝑛 − 1 to even perfect
numbers. In particular, Euclid-Euler theorem states that an even number is perfect
if and only if it has the form 2𝑛−1(2𝑛 − 1), where 2𝑛 − 1 is a prime number. A
perfect number is a positive integer that is equal to the sum of its proper divi-
sors. Several earliest results spawned from attempts to understand these numbers.
Although some modern researchers continue to attribute the same mystical signif-
icance to these numbers that the ancient people once did, these numbers remain a
substantial inspiration for research in number theory (see [5, 8, 10, 11]). One of the
challenging unsolved problems in number theory is Lenstra–Pomerance–Wagstaff
conjecture, which states that there are infinitely many Mersenne primes.

In [7], the author and Saikia studied a generalization of Mersenne numbers;
so called generalized Mersenne numbers. These numbers are defined as 𝑀𝑝,𝑛 =
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𝑝𝑛 − 𝑝 + 1, where 𝑝 is a prime and 𝑛 is a positive integer. In this case too, we
expect an extended version of Lenstra-Pomerance-Wagstaff conjecture. The precise
problem is whether there are infinitely many primes of the form 𝑀𝑝,𝑛 for each
prime 𝑝. A weaker version of this problem was posted in [7]. Here, we investigate
the problem: How many generalized Mersenne numbers are there of the form 𝑐𝑥2

for each pair of integers (𝑐, 𝑝) with 𝑐 ≥ 1 an integer and 𝑝 a prime? Precisely, we
prove:

Theorem 1.1. For any odd integer 𝑐 ≥ 1 and a prime 𝑝, the generalized Mersenne
numbers of the form 𝑐𝑥2 are 1, 25 and 121, with at most one more possibility for
each pair (𝑐, 𝑝). Further for even integer 𝑐 ≥ 2, there is no generalized Mersenne
number of the form 𝑐𝑥2.

Assume that 2𝑛 − 1 = 𝑐𝑥2. Then for 𝑛 ≥ 3, we have 𝑐 ≡ 7 (mod 8) and thus
by [3, p. 1], 𝑐𝑥2 + 1 = 2𝑛 has at least one solution (𝑥, 𝑛). Therefore we have the
following straightforward corollary.

Corollary 1.2. Let 𝑐 be a positive integer. If 𝑐 ̸≡ 7 (mod 8), then 1 is the only
Mersenne number of the form 𝑐𝑥2. Further for 𝑐 ≡ 7 (mod 8), there is exactly one
Mersenne number of the form 𝑐𝑥2.

The proof of Theorem 1.1 largely relies on a remarkable result of Bugeaud
and Shorey [2, Theorem 1] on the positive integer solutions of certain Diophantine
equations.

2. Preliminary descent

We begin this section with a classical result of Bugeaud and Shorey [2] on the num-
ber of positive integer solutions of certain Diophantine equations. Before stating
this result, we need to introduce some definitions and notations.

Let 𝐹𝑘 (resp. 𝐿𝑘) denote the 𝑘-th term in the Fibonacci (resp. Lucas) sequence
defined by 𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑘+2 = 𝐹𝑘 + 𝐹𝑘+1 (resp. 𝐿0 = 2, 𝐿1 = 1, and
𝐿𝑘+2 = 𝐿𝑘 + 𝐿𝑘+1), where 𝑘 ≥ 0 is an integer. Given 𝜆 ∈ {1,

√
2, 2}, we define the

sets ℱ , 𝒢, ℋ ⊂ N × N × N as follows:

ℱ := {(𝐹𝑘−2𝜀, 𝐿𝑘+𝜀, 𝐹𝑘) | 𝑘 ≥ 2, 𝜀 ∈ {±1}},

𝒢 := {(1, 4𝑝𝑟 − 1, 𝑝) | 𝑝 is an odd prime, 𝑟 ≥ 1},

ℋ :=

⎧⎪⎨⎪⎩(𝐷1, 𝐷2, 𝑝)

⃒⃒⃒⃒
⃒⃒⃒𝐷1, 𝐷2 and 𝑝 are mutually coprime positive integers with 𝑝

an odd prime and there exist positive integers 𝑟, 𝑠 such that
𝐷1𝑠2 + 𝐷2 = 𝜆2𝑝𝑟 and 3𝐷1𝑠2 − 𝐷2 = ±𝜆2

⎫⎪⎬⎪⎭.

Note that for 𝜆 = 2, the condition “odd” on the prime 𝑝 should be removed from
the above notations.
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Theorem A ([2], Theorem 1). Assume that 𝐷1 and 𝐷2 are coprime positive in-
tegers, and 𝑝 is a prime satisfying gcd(𝐷1𝐷2, 𝑝) = 1. Then for 𝜆 ∈ {1,

√
2, 2}, the

number of positive integer solutions (𝑥, 𝑦) of the Diophantine equation

𝐷1𝑥2 + 𝐷2 = 𝜆2𝑝𝑦 (2.1)

is at most one, except for

(𝜆, 𝐷1, 𝐷2, 𝑝) ∈ Ω :=
{︃

(2, 13, 3, 2), (
√

2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2),
(
√

2, 1, 1, 5), (
√

2, 1, 1, 13), (2, 1, 3, 7)

}︃
and (𝐷1, 𝐷2, 𝑝) ∈ ℱ ∪ 𝒢 ∪ ℋ.

Note that the authors in [2] were unable to determine (𝜆, 𝐷1, 𝐷2, 𝑝) = (2, 7, 25, 2)
in the set Ω due to a mild error in calculation. It gives two solutions to (2.1), namely,
(𝑥, 𝑦) = (1, 3), (17, 9). This comes from simple computation, and it can also be
confirmed by [9] that these are the only solutions in positive integers corresponding
to the above quadruple.

We also need the following result of the author.

Lemma 2.1 ([6], Lemma 2.1). For an integer 𝑘 ≥ 0, let 𝐹𝑘 (resp. 𝐿𝑘) denote the
𝑘-th Fibonacci (resp. Lucas) number. Then for 𝜀 = ±1, we have 4𝐹𝑘 − 𝐹𝑘−2𝜀 =
𝐿𝑘+𝜀.

In [4], Cohn completely solved the Diophantine equation 𝑥2+2𝑘 = 𝑦𝑛 in positive
integers 𝑥, 𝑦 and 𝑛, when 𝑘 ≥ 1 is an odd integer. We deduce the following lemma
from his result (see [4, Theorem]).

Lemma 2.2. The solutions of the equation

𝑥2 + 2 = 3𝑛, 𝑥, 𝑦, 𝑛 ∈ N (2.2)

are (𝑥, 𝑛) = (1, 1), (5, 3).

On the other hand, for even positive integer 𝑘, Arif and Abu Muriefah gave the
complete solution of the Diophantine equation 𝑥2 +2𝑘 = 𝑦𝑛 in positive integers 𝑥, 𝑦
and 𝑛. The next lemma can easily be deduced from their result [1, Theorem 1].

Lemma 2.3. The solutions of the equation

𝑥2 + 4 = 5𝑛, 𝑥, 𝑦, 𝑛 ∈ N (2.3)

are (𝑥, 𝑛) = (1, 1), (11, 3).

3. Proof of Theorem 1.1

Assume that 𝑁 is a generalized Mersenne number such that 𝑁 = 𝑐𝑥2. Then for
some prime 𝑝 and positive integer 𝑛, we have 𝑀𝑝,𝑛 = 𝑐𝑥2. This can be written as

𝑐𝑥2 + 𝑝 − 1 = 𝑝𝑛. (3.1)
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Clearly 𝑝 ∤ 𝑐𝑥 and gcd(𝑐, 𝑝 − 1) = 1. It is easy to see from (3.1) that there is no
generalized Mersenne number of the form 𝑐𝑥2 when 2 | 𝑐.

Let the sets Ω, ℱ , 𝒢 and ℋ be as in Theorem A. If (𝑐, 𝑝 − 1, 𝑝) ∈ Ω, then
(𝑐, 𝑝 − 1, 𝑝) = (2, 1, 3) which is not possible.

Now let (𝑐, 𝑝 − 1, 𝑝) ∈ ℱ . Then (𝐹𝑘−2𝜀, 𝐿𝑘+𝜀, 𝐹𝑘) = (𝑐, 𝑝 − 1, 𝑝), and thus by
Lemma 2.1 4𝑝 − 𝑐 = 𝑝 − 1. This implies that 𝑐 + 𝑝 ≡ 1 (mod 4).

If 𝑝 > 2, then (3.1) modulo 4 gives

𝑐 ≡

{︃
1 (mod 4) if 2 ∤ 𝑛,

2 − 𝑝 (mod 4) if 2 | 𝑛.

Thus 𝑐 + 𝑝 ≡ 1 (mod 4) implies that either 𝑝 ≡ 0 (mod 4) or 2 ≡ 1 (mod 4), and
none of these is possible.

For 𝑝 = 2, we have 𝐹𝑘 = 2 and 𝐿𝑘+𝜀 = 1, which are again not possible.
Therefore, (𝑐, 𝑝 − 1, 𝑝) ̸∈ ℱ .

Assume that (𝑐, 𝑝 − 1, 𝑝) ∈ 𝒢. Then 𝑝 − 1 = 4𝑝𝑟 − 1 for some positive integer
𝑟. This implies that 𝑝(4𝑝𝑟−1 − 1) = 0 and thus 4𝑝𝑟−1 = 1 which is not possible.
Thus, (𝑐, 𝑝 − 1, 𝑝) ̸∈ 𝒢.

Now if (𝑐, 𝑝 − 1, 𝑝) ∈ ℋ, then for odd prime 𝑝, we have

𝑐𝑠2 + 𝑝 − 1 = 𝑝𝑟 (3.2)

and
3𝑐𝑠2 − 𝑝 + 1 = ±1, (3.3)

where 𝑟 and 𝑠 are positive integers.
From (3.3), we have 3𝑐𝑠2 = 𝑝 and thus (𝑐, 𝑝, 𝑠) = (1, 3, 1). Therefore (3.1)

becomes 𝑥2 + 2 = 3𝑛, and hence by Lemma 2.2 we have (𝑥, 𝑛) = (1, 1), (5, 3). This
shows that 1 and 25 are only generalized Mersenne numbers 𝑀3,𝑛 which can be
written in the form 𝑐𝑥2.

Again from (3.3), we have 3𝑐𝑠2 = 𝑝 − 2 and thus (3.2) gives 𝑝(4 − 3𝑝𝑟−1) = 5,
which implies that (𝑝, 𝑟) = (5, 1). This gives (𝑐, 𝑠) = (1, 1) and hence (3.1) becomes
𝑥2 + 4 = 5𝑛. By Lemma 2.3, we get (𝑥, 𝑛) = (1, 1), (11, 3), which shows that 1 and
121 are only generalized Mersenne numbers 𝑀5,𝑛 that can be written in the form
𝑐𝑥2. Thus, we complete the proof by Theorem A.
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