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Abstract. The Chinese remainder theorem provides the solvability condi-
tions for the system of linear congruences. In section 2 we present the con-
struction of the solution of such a system. Focusing on the Chinese remainder
theorem usage in the field of number theory, we looked for some problems.
The main contribution is in section 3, consisting of Problems 3.1, 3.2 and 3.3
from number theory leading to the Chinese remainder theorem. Finally, we
present a different view of the solution of the system of linear congruences by
its geometric interpretation, applying lattice points.
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1. Introduction

One of the first systematic knowledge of the discipline we now call number theory
came from ancient China [10, 11], where queries leading to linear indeterminate
equations and systems of linear congruences occurred. Indeterminate linear equa-
tions of two unknowns occurred mainly in commercial tasks, e.g. by selling several
kinds of goods at integer prices. Apart from mathematics (e.g. in astronomy)
appeared more complicated problems leading to systems of linear indeterminate
equations with multiple unknowns, which we classify within the congruence do-
main nowadays. A very significant knowledge from this period, in particular, is the
so-called Chinese remainder theorem, which determines the necessary and sufficient
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conditions for the solvability of a system of linear congruences. In the mathematical
treatise, which comes from the ancient Chinese mathematician Sun-c’ (4th century
AD), we can find this problem [7]: “An unknown number of things is given. If they
are counted by three, two remain, if they are counted by five, three remain, if they
are counted by seven, there remain two. Determine the number of these things.”

Solving this problem is easy. The least common multiple of the numbers 3, 5,
and 7 is 105, so one solution of the problem will occur in the set {1, 2, . . . , 105}.
From the second condition, it follows, that the solution is a number in the form
5𝑛+3 from the given set. Therefore it suffices to check the numbers 3, 8, 13, . . . , 103,
if the remainder after division by three (resp. seven) meets the problem conditions.
The smallest suitable solution is 𝑥 = 23. There are still other solutions, which
are “repeated by 105”, and are in the form 𝑦 ≡ 23 mod 105. The problem of the
Chinese mathematician Sun-c’ reached both India and Europe [6], and especially
in the 18th and 19th centuries engaged the attention of mathematicians L. Euler
and C. F. Gauss. The Chinese used a lunar calendar, in which small and large
months changed by 29 and 30 days, so the year had 354 days. However, such a
calendar brought problems, because due to the different length of the solar year,
which the Chinese set at 365 1

4 days, it happened that the beginnings of the years
were not in fixed dates. The Chinese inserted after 19 lunar years another 7 lunar
months (around 600 BC) [2]. At the end of the first millennium AD, Chinese
mathematicians and astronomers devoted great effort to calculate the so-called
Great period, i.e. the question in how many years the three periods will meet –
the tropical year with 365 1

4 days, the lunar month with 29 499
940 days and a sixty-day

cycle [13]. The problem led to a system of congruences with large numbers. The
Chinese mathematician Qin Jiushao [12] came up with a solution to the system
of congruences 𝑥 ≡ 193440 (mod 1014000), 𝑥 ≡ 16377 (mod 499067), where 𝑥 =
6172608𝑛, (𝑛 is the number of years elapsed since the Great Period) [8].

There are several ways to formulate the Chinese remainder theorem.

Theorem 1.1. Let there be a system of solvable linear congruences

𝑎1𝑥 ≡ 𝑏1 (mod 𝑚1)
𝑎2𝑥 ≡ 𝑏2 (mod 𝑚2)...
𝑎𝑘𝑥 ≡ 𝑏𝑘 (mod 𝑚𝑘),

(1.1)

where 𝑎𝑖, 𝑏𝑖, 𝑚𝑖(𝑖 = 1, 2, . . . , 𝑘) are given integers. If 𝑚𝑖 are pairwise coprime,
then the system is solvable; or more precisely, elements of the congruence class
modulo 𝑚 = 𝑚1𝑚2 · · · 𝑚𝑘 satisfy all given congruences. This statement is called
the Chinese remainder theorem [9].

Proof. By mathematical induction. First, consider a system with two congruences:

𝑎1𝑥 ≡ 𝑏1 (mod 𝑚1)
𝑎2𝑥 ≡ 𝑏2 (mod 𝑚2).
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The first congruence is solvable from assumption, hence there exists 𝑥 ≡ 𝑐1(
(mod 𝑚1)) which satisfies the first congruence. Substitute this solution 𝑥 = 𝑐1 +
𝑡𝑚1, 𝑡 ∈ 𝑍, into the second congruence:

𝑎2(𝑐1 + 𝑚1𝑡) ≡ 𝑏2 (mod 𝑚2)
(𝑎2𝑚1)𝑡 ≡ (𝑏2 − 𝑎2𝑐1) (mod 𝑚2).

Since 𝑚1 and 𝑚2 are coprime, then gcd(𝑎2𝑚1, 𝑚2) = gcd(𝑎2, 𝑚2). From the theo-
rem assumptions the second congruence is solvable too, therefore gcd(𝑎2, 𝑚2) | 𝑏2.
However, this already results in gcd(𝑎2𝑚1, 𝑚2) | 𝑏2, which is the condition for
solvability of the congruence (𝑎2𝑚1)𝑡 ≡ (𝑏2 − 𝑎2𝑐1) (mod 𝑚2). So we have 𝑡 ≡ 𝑐2
(mod 𝑚2), which satisfies the second congruence. Then we can rewrite 𝑥 as:

𝑥 = 𝑐1 + 𝑚1(𝑐2 + 𝑠𝑚2) = (𝑐1 + 𝑐2𝑚1) + 𝑠(𝑚1𝑚2),

where 𝑐1, 𝑐2, 𝑠 ∈ 𝑍. Thus, the solution of the system of the two linear congruences
is the whole congruence class

𝑥 ≡ 𝑒1 (mod 𝑚1𝑚2),

where 𝑒1 = 𝑐1 + 𝑐2𝑚1.
Now suppose the statement holds true for 𝑘 = 𝜈. Consider the system of 𝜈 + 1

solvable linear congruences with pairwise coprime moduli 𝑚1, 𝑚2, . . . , 𝑚𝜈+1. The
system of first 𝜈 congruences is solvable from the induction assumption, so we have

𝑥 ≡ 𝑒𝜈 (mod 𝑚1𝑚2 . . . 𝑚𝜈)

satisfying the first 𝜈 congruences. We have to find out if any element of this
congruence class is also the solution of the last congruence. We solve the system
of congruences:

𝑥 ≡ 𝑒𝜈 (mod 𝑚1𝑚2 . . . 𝑚𝜈)
𝑎𝜈+1𝑥 ≡ 𝑏𝜈+1 (mod 𝑚𝜈+1).

Since gcd(𝑚𝜈+1, 𝑚1, . . . , 𝑚𝜈) = 1, then there exists the solution of this system of
two congruences (by analogy to the first step of the proof).

The Chinese remainder theorem says nothing about a case of the congruence
system (1.1) with non-coprime moduli. In this case, the system can be unsolvable,
although individual congruences are solvable. But the system also can be solvable.

2. The construction of a solution of a system of
linear congruences

First, we present the applicable construction method for a solution of the sys-
tem (1.1). We show, that u in the following form is a solution of the system (1.1).
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Theorem 2.1. Consider the solvable system of linear congruences (1.1). Then

𝑢 =
𝑘∑︁

𝑖=1

𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) = 𝑚

𝑚1
𝑐1𝑟(1) + · · · + 𝑚

𝑚𝑘
𝑐𝑘𝑟(𝑘)

is a common solution of given system, where 𝑟(𝑖) is a solution of 𝑎𝑖𝑥 ≡ 𝑏𝑖 (mod 𝑚𝑖)
and 𝑐𝑖 is a solution of

𝑚

𝑚𝑖
𝑦 ≡ 1 (mod 𝑚𝑖), 𝑚 = 𝑚1𝑚2 . . . 𝑚𝑘, 𝑖 = 1, . . . , 𝑘, gcd

(︂
𝑚

𝑚𝑖
, 𝑚𝑖

)︂
= 1.

Proof. First, let us solve the congruences

𝑚

𝑚𝑖
𝑦 ≡ 1 (mod 𝑚𝑖), 𝑖 = 1, . . . , 𝑘, gcd

(︂
𝑚

𝑚𝑖
, 𝑚𝑖

)︂
= 1,

where 𝑐𝑖 is the appropriate solution. Let 𝑟(𝑖) be a solution satisfying

𝑎𝑖𝑥 ≡ 𝑏𝑖 (mod 𝑚𝑖), 𝑖 = 1, . . . , 𝑘.

We show that

𝑢 =
𝑘∑︁

𝑖=1

𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) = 𝑚

𝑚1
𝑐1𝑟(1) + · · · + 𝑚

𝑚𝑘
𝑐𝑘𝑟(𝑘)

satisfies any of the congruences 𝑎𝑖𝑥 ≡ 𝑏𝑖 (mod 𝑚𝑖).
We express

𝑎𝑖𝑥 = 𝑎𝑖𝑢 = 𝑎𝑖

𝑘∑︁
𝑖=1

𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) = 𝑎𝑖

(︂
𝑚

𝑚1
𝑐1𝑟(1) + · · · + 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) + · · · + 𝑚

𝑚𝑘
𝑐𝑘𝑟(𝑘)

)︂
.

Since all members 𝑚
𝑚1

, . . . , 𝑚
𝑚𝑘

except member 𝑚
𝑚𝑖

are divisible by the number 𝑚𝑖,
we get

𝑎𝑖𝑢 ≡ 𝑎𝑖
𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) (mod 𝑚𝑖).

Since 𝑐𝑖 is a solution of 𝑚
𝑚𝑖

𝑦 ≡ 1 (mod 𝑚𝑖), then 𝑚
𝑚𝑖

𝑐𝑖 ≡ 1 (mod 𝑚𝑖), and thus

𝑎𝑖𝑢 ≡ 𝑎𝑖𝑟
(𝑖) (mod 𝑚𝑖).

And finally from 𝑎𝑖𝑟
(𝑖) ≡ 𝑏𝑖 (mod 𝑚𝑖) we have 𝑎𝑖𝑢 ≡ 𝑏𝑖 (mod 𝑚𝑖).

Now we show that any 𝑥 = 𝑢 + 𝑡𝑚, 𝑡 ∈ 𝑍 satisfies the congruence 𝑎𝑖𝑥 ≡ 𝑏𝑖

(mod 𝑚𝑖). We have
𝑎𝑖(𝑢 + 𝑡𝑚) = 𝑎𝑖𝑢 + 𝑎𝑖𝑡𝑚,

where 𝑎𝑖𝑢 ≡ 𝑏𝑖 (mod 𝑚𝑖) and 𝑎𝑖𝑡𝑚 ≡ 0 (mod 𝑚𝑖), while ∃ℎ ∈ 𝑍 : 𝑚 = ℎ𝑚𝑖. Then

𝑎𝑖(𝑢 + 𝑡𝑚) ≡ 𝑏𝑖 (mod 𝑚𝑖).
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If the congruence 𝑎𝑖𝑥 ≡ 𝑏𝑖 (mod 𝑚𝑖) has 𝑛𝑖 incongruent solutions 𝑟(𝑖), then we
have together 𝑛1𝑛2 · · · 𝑛𝑘 incongruent solutions 𝑢 = 𝑚

𝑚1
𝑐1𝑟(1) + · · ·+ 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) + · · ·+
𝑚

𝑚𝑘
𝑐𝑘𝑟(𝑘) of the system (1.1). We show, that all are incongruent by modulo 𝑚.
If we changed any of the solutions 𝑟(𝑖) of the congruence 𝑎𝑖𝑥 ≡ 𝑏𝑖 (mod 𝑚𝑖)

of the common solution 𝑢 of the system to an incongruent one by modulo 𝑚𝑖, we
would get an incongruent solution 𝑢. Let’s change, e.g., ℎ solutions 𝑟(𝑖) (ℎ ≤ 𝑘)
to incongruent ones by modulo 𝑚𝑖 and arrange the expressions 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) in 𝑢 by
placing forward those, which contain an incongruent solution 𝑟(𝑖). Then, after
re-indexing members in 𝑢 and re-denoting incongruent solutions, we can write

𝑢2 = 𝑚

𝑚1
𝑐1𝑟

(1)
2 +· · ·+ 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖)
2 +· · ·+ 𝑚

𝑚ℎ
𝑐ℎ𝑟

(ℎ)
2 + 𝑚

𝑚ℎ+1
𝑐ℎ+1𝑟(ℎ+1) +· · ·+ 𝑚

𝑚𝑘
𝑐𝑘𝑟(𝑘).

We show, that 𝑢2 is not congruent with 𝑢 by modulo 𝑚. By contradiction, if
𝑢 ≡ 𝑢2 (mod 𝑚), then 𝑚 | 𝑢 − 𝑢2 ∧ 𝑚𝑖 | 𝑚 ⇒ 𝑚𝑖 | 𝑢 − 𝑢2, hence 𝑢 ≡ 𝑢2 (mod 𝑚𝑖).
Then

𝑚

𝑚1
𝑐1𝑟(1) + · · · + 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) + · · · + 𝑚

𝑚ℎ
𝑐ℎ𝑟(ℎ) −

(︂
𝑚

𝑚1
𝑐1𝑟

(1)
2 + · · ·

+ 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖)
2 + · · · + 𝑚

𝑚ℎ
𝑐ℎ𝑟

(ℎ)
2

)︂
≡ 0 (mod 𝑚𝑖).

From the last congruence we have
𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) − 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖)
2 ≡ 0 (mod 𝑚𝑖) ⇔ 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖) ≡ 𝑚

𝑚𝑖
𝑐𝑖𝑟

(𝑖)
2 (mod 𝑚𝑖).

Since 𝑚
𝑚𝑖

𝑐𝑖 ≡ 1 (mod 𝑚𝑖), then 𝑟(𝑖) ≡ 𝑟
(𝑖)
2 (mod 𝑚𝑖), what is a contradiction.

Hence solution 𝑢2 can not be congruent with 𝑢 by modulo 𝑚. This means we have
incongruent solutions 𝑢 and 𝑢2.

3. Selected problems from number theory leading
to use of Chinese remainder theorem

Focusing on the use of the Chinese remainder theorem, we present the proofs of
selected problems from number theory. We also present simple codes in R language
to demonstrate the solutions to these problems.

Problem 3.1. There are at most two 𝑛-digit numbers with the property
𝑥2 = 𝑘10𝑛 + 𝑥. Such numbers 𝑥, whose squares end in themselves, are called
1-automorphic numbers (see e.g. [5]).

Solution. We are searching for natural numbers 𝑥, among 𝑛-digit numbers 0 ≤
𝑥 < 10𝑛, with the property:

𝑥2 = 𝑘10𝑛 + 𝑥.
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Hence
𝑥2 − 𝑥 = 𝑘10𝑛 = 𝑘2𝑛5𝑛,

which leads to congruence 𝑥2 ≡ 𝑥 (mod 10𝑛), or

𝑥2 − 𝑥 = 𝑥(𝑥 − 1) ≡ 0 (mod 10𝑛). (3.1)

Since 𝑥 ∈ 𝑁 , then it is true that if 𝑥 is even then 𝑥 − 1 is odd, or if 𝑥 is odd then
𝑥 − 1 is even. Then from (3.1) we get, that 𝑥 satisfies either system of congruences

𝑥 ≡ 0 (mod 2𝑛)
𝑥 − 1 ≡ 0 (mod 5𝑛) ⇔ 𝑥 ≡ 1 (mod 5𝑛)

(3.2)

or system of congruences

𝑥 ≡ 0 (mod 5𝑛)
𝑥 − 1 ≡ 0 (mod 2𝑛) ⇔ 𝑥 ≡ 1 (mod 2𝑛).

(3.3)

Since gcd(2𝑛, 5𝑛) = 1 and 0 ≡ 1 (mod 1) holds true, then the system (3.2) and
also the system (3.3) has a unique solution modulo 2𝑛5𝑛. Consequently there are
at most two 𝑛-digit numbers with the property 𝑥2 = 𝑘10𝑛 + 𝑥.

We present a code in R language to demonstrate solutions for 𝑛 ∈ {1, . . . , 8}:

library(numbers)
n=8
a1=c(1,0)
a2=c(0,1)
for (i in 1:n) {
m=c(2^i, 5^i)
print(chinese(a1,m))
print(chinese(a2,m)) }

> 5
6
25
76
625
376
9376
90625
890625
109376
2890625
7109376
12890625
87109376
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Problem 3.2 (inspired by [1]). For every positive integer 𝑛, there exist 𝑛 consec-
utive positive integers such that none of them is a power of a prime.

Solution. We show that for any 𝑛 there exists 𝑥 ∈ 𝑁 such that none of the numbers
𝑥+1, 𝑥+2, . . . , 𝑥+𝑛 ∈ 𝑁 is a power of a prime. The number 𝑥+ 𝑖 (𝑖 = 1, 2, . . . , 𝑛)
is not a power of a prime if there are two different primes 𝑝, 𝑞, that divide 𝑥 + 𝑖.

Let 𝑛 ∈ 𝑁, 𝑖 = 1, 2, . . . , 𝑛, and let all 𝑝1, 𝑝2, . . . , 𝑝𝑛, 𝑞1, 𝑞2, . . . , 𝑞𝑛 be distinct
primes. We look for 𝑥 ∈ 𝑁 , which satisfies 𝑝𝑖𝑞𝑖 | 𝑥 + 𝑖 for each 𝑖 = 1, 2, . . . , 𝑛.
Written as the system of congruences we have

𝑥 + 𝑖 ≡ 0 (mod 𝑝𝑖𝑞𝑖),

or
𝑥 ≡ 𝑝𝑖𝑞𝑖 − 𝑖 (mod 𝑝𝑖𝑞𝑖) (3.4)

for 𝑖 = 1, 2, . . . , 𝑛.
Since 𝑝𝑖, 𝑞𝑖 (𝑖 = 1, 2, . . . , 𝑛) were distinct, then gcd(𝑝𝑖𝑞𝑖, 𝑝𝑗𝑞𝑗) = 1. Hence

there exists one solution 𝑥 of the system (3.4). Thus, for any 𝑛 ∈ 𝑁 we found
(constructed) 𝑥 ∈ 𝑁 such that numbers 𝑥 + 1, 𝑥 + 2, . . . , 𝑥 + 𝑛 ∈ 𝑁 have two
different prime divisors.

A simple code in R language allows us to demonstrate the solution for 𝑛 = 3:
the three consecutive integers are 18458, 18459 and 18460. With help of prime
factorization it’s easy to see, that none of them is a power of a prime.

library(numbers)
n = 3
p = c(11,7,5)
q = c(2,3,13)
i = 1:n
x = chinese(p*q-i,p*q)
print(x)
> 18457

library(gmp)
factorize(x+1)
> 2 11 839

factorize(x+2)
> 3 3 7 293

factorize(x+3)
> 2 2 5 13 71

Problem 3.3 (inspired by [1]). There exists a set 𝑆 of three positive integers such
that for any two distinct 𝑎, 𝑏 ∈ 𝑆 𝑎 − 𝑏 divides 𝑎 and 𝑏 but none of the other
elements of 𝑆.
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Figure 1. Elements of 𝑆.

Solution. Denote three positive integers from 𝑆 by 𝑥, 𝑥 + 𝑑1, 𝑥 + 𝑑1 + 𝑑2, where
𝑑1, 𝑑2 denote the differences between consecutive elements of 𝑆 (Figure 1).
We have 3 pairs of distinct elements and we write down the divisibility conditions
for the first element 𝑥:

𝑑1 | 𝑥 ⇔ 𝑥 ≡ 0 (mod 𝑑1)
𝑑1 + 𝑑2 | 𝑥 ⇔ 𝑥 ≡ 0 (mod 𝑑1 + 𝑑2)

𝑑2 ∤ 𝑥 ⇔ 𝑥 ≡ 𝑎1 (mod 𝑑2),
(3.5)

where 𝑎1 ∈ {1, 2, . . . , 𝑑2 − 1} is the non-zero remainder. We show, that it suffices
to choose any coprime positive integers 𝑑1, 𝑑2, 𝑑1 < 𝑑2, and then the existence of 𝑥
follows from the Chinese remainder theorem.

Let 𝑑1, 𝑑2, 𝑑1 < 𝑑2, be any coprime positive integers, hence also 𝑑1, 𝑑2, 𝑑1 + 𝑑2
are pairwise coprime. Remainder 𝑎1 ∈ {1, 2, . . . , 𝑑2 − 1} depends on the choice of
𝑑1, 𝑑2 following way. From the condition 𝑥 + 𝑑1 ≡ 0 (mod 𝑑2) we have 𝑥 ≡ −𝑑1
(mod 𝑑2), which together with congruence

𝑥 ≡ 𝑎1 (mod 𝑑2)

gives the result for 𝑎1: 𝑎1 ≡ −𝑑1 (mod 𝑑2), so we can put 𝑎1 = 𝑑2 − 𝑑1 (since
𝑑1 < 𝑑2). Since 𝑑1, 𝑑2, 𝑑1 + 𝑑2 are pairwise coprime moduli, then there is a unique
solution of the system (3.5):

𝑥 ≡ 0 (mod 𝑑1)
𝑥 ≡ 0 (mod 𝑑1 + 𝑑2)
𝑥 ≡ 𝑑2 − 𝑑1 (mod 𝑑2).

We can get some solutions of this example by using the following code in R
language:

library(numbers)
d1 = 8
d2 = 15
a = c(0,0,d2-d1)
m = c(d1,d1+d2,d2)
x = chinese(a,m)
print(c(x,x+d1,x+d1+d2))
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Table 1. Some solutions.

𝑑1 𝑑2
2 3
2 7
8 15

𝑥 𝑥 + 𝑑1 𝑥 + 𝑑1 + 𝑑2
10 12 15
54 56 63

2392 2400 2415

4. Geometric interpretation of the solution of sys-
tem of linear congruences

Finally, we present a different view of the solution of the system of linear con-
gruences by its geometric interpretation, applying lattice points. For some basic
knowledge of the lattice points, see, e.g. [4].

Consider a congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚), 𝑎, 𝑏, 𝑥, 𝑚 ∈ 𝑍, 𝑚 > 1. There is a direct
connection between this congruence relation and the Diophantine equation [3],
while 𝑎𝑥 − 𝑏 = 𝑦𝑚, 𝑦 ∈ 𝑍, represents the linear Diophantine equation

𝑎𝑥 − 𝑚𝑦 = 𝑏

(where 𝑥, 𝑦 ∈ 𝑍 are the unknowns and 𝑎, 𝑏, 𝑚 ∈ 𝑍, 𝑎, 𝑏 ̸= 0, are given constants).
On the other hand, the equation

𝑎𝑥 − 𝑚𝑦 − 𝑏 = 0 (4.1)

represents a straight line (in Euclidean plane). So for given 𝑎, 𝑏, 𝑚 ∈ 𝑍 the solution
of the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑚) geometrically represents all intersection points
[𝑥0, 𝑦0], 𝑥0, 𝑦0 ∈ 𝑍, of the straight line (4.1) and the lattice of integral coordinates.

Example 4.1. Consider system of congruences

3𝑥 ≡ 4 (mod 8)
4𝑥 ≡ 2 (mod 5).

Both congruences are solvable (gcd(3, 8) = 1 | 4 and gcd(4, 5) = 1 | 2). The
solution of the second congruence 4𝑥 ≡ 2 (mod 5) is 𝑥 ≡ 3 (mod 5). Substitute
𝑥 = 3 + 5𝑡, 𝑡 ∈ 𝑍 into the first congruence, then

3(3 + 5𝑡) ≡ 4 (mod 8),

hence
15𝑡 ≡ −5 (mod 8)

with a solution 𝑡 ≡ 5 (mod 8). Finally, after substitution 𝑡 = 5 + 8𝑦, 𝑦 ∈ 𝑍 into 𝑥:

𝑥 = 3 + 5(5 + 8𝑦) = 28 + 40𝑦,

we get the solution 𝑥 ≡ 28 (mod 40) of the system.
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Figure 2 shows the geometric representation of the congruence 𝑥 ≡ 28 (mod 40).
That means, there are infinitely many points [𝑥0, 𝑦0] with integer coordinates on
the green straight line 𝑥 − 28 − 40𝑦 = 0. See, that e.g. the lattice point [68, 1] is
one of the solution points.

Figure 2. Example of the intersection of straight line and a lattice
of the integer coordinates.

In our geometric interpretation of the Diophantine equation, we consider the
solvability conditions based on the lattice points, through which the line represented
by equation (4.1) passes.

Now consider a system of linear congruences (1.1), where gcd(𝑚𝑖, 𝑚𝑗) = 1 for
all 𝑖, 𝑗, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, . . . , 𝑘. Such a system of congruences can be converted to
Diophantine equations with the same consideration as mentioned above. Since we
are looking for a common solution for these Diophantine equations, geometrically
this means that we are looking for a line that passes through all the lattice, which
is characteristic for concrete Diophantine equations. The solution of such a system
of equations is a congruence

𝑥 ≡ 𝑢 (mod
∏︀

𝑚𝑖),

which we can interpret as a straight line in the form

𝑥 − 𝑢 − 𝑦
∏︀

𝑚𝑖 = 0.

In other words, considered congruences give us information about a line in
various specific scales, and we’re looking for its formula. For an illustration of this
representation, an example follows.

Example 4.2. Consider system of congruences

2𝑥 − 4 ≡ 0 (mod 8)
2𝑥 − 1 ≡ 0 (mod 3)

13𝑥 − 4 ≡ 0 (mod 5).
(4.2)
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We will construct the solution of the system of congruences according to the
Theorem 2.1. We see, that gcd(8, 3) = gcd(3, 5) = gcd(8, 5) = 1, so we can apply
the Chinese remainder theorem. Denote 𝑚 = 23 · 3 · 5 = 120. Then the number of
system solutions is 𝑛 = 𝑛1𝑛2𝑛3 = 2 · 1 · 1 = 2.

Congruence 2𝑥 − 4 ≡ 0 (mod 8) has solutions 𝑟
(1)
1 = 2, 𝑟

(1)
2 = 6, congruence

2𝑥 − 1 ≡ 0 (mod 3) has a solution of 𝑟(2) = 2 and congruence 13𝑥 − 4 ≡ 0 (mod 5)
has a solution of 𝑟(3) = 3.

Solutions of congruences 120
8 𝑦 ≡ 1 (mod 8), 120

3 𝑦 ≡ 1 (mod 3) and 120
5 𝑦 ≡ 1

(mod 5) are 𝑐1 = 7, 𝑐2 = 1 and 𝑐3 = 4, respectively.
Finally 𝑢 = 15 · 7𝑟(1) + 40 · 1𝑟(2) + 24 · 4𝑟(3) = 105𝑟(1) + 40𝑟(2) + 96𝑟(3).

Table 2. Summary of the resulting two solutions.

𝑟(1) 𝑟(2) 𝑟(3) 𝑢
1. 2 2 3 578 ≡ 98 (mod 120)
2. 6 2 3 998 ≡ 38 (mod 120)

Figure 3. Geometric interpretation of the solution.

The solutions from Table 2 are represented in the Figure 3 by straight lines
with equations

𝑥 − 120𝑦 − 98 = 0,

𝑥 − 120𝑦 − 38 = 0.

Finally we mention, that there exists one residue class containing all solutions in
form 𝑥 ≡ 38 (mod 60), represented by a straight line with equation 𝑥−60𝑦−38 = 0.
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5. Conclusion
The paper introduces the historical background of the Chinese remainder theorem,
focusing on one of its proofs. Section 2 presents the construction of a solution
of a system of linear congruences, which gives the applicable solving method of
the system (1.1). The main contribution is in section 3, consisting of three prob-
lems from number theory, leading to the Chinese remainder theorem. The article
also deals with the geometric interpretation of the solution of the system of linear
congruences. It introduces a different perspective of the solution, applying lattice
points and the relationship between the congruence and the Diophantine equation.
Illustrating examples supplement all of the theoretical results.
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