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Abstract. For a finite group 𝒢, the power graph 𝒫(𝒢) is a connected simple
graph, whose vertex set is the set of elements of 𝒢 and two vertices are con-
nected by an edge if and only if one is the power of the other. In this article,
we obtain sharp bounds for the distance signless Laplacian spectral radius of
the power graphs of cyclic groups, dihedral and dicyclic groups. Furthermore,
we characterize the extremal power graphs attaining such bounds and give
some open problems.
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1. Introduction
We follow the text [23] for graph theory terminology and basic definitions. A
graph 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) (simply written as 𝐺) consists of a vertex set 𝑉 (𝐺) =
{𝑣1, 𝑣2, . . . , 𝑣𝑛} and the set of unordered pairs of elements of 𝑉 (𝐺) is the edge set
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𝐸(𝐺). The order 𝑛 of 𝐺 is the number of elements in the set 𝑉 (𝐺) and the size
𝑚 is the number of elements in the set 𝐸(𝐺). The neighbourhood of 𝑣 ∈ 𝑉 (𝐺),
denoted by 𝑁(𝑣), is the set of vertices incident on 𝑣. The degree of 𝑣, denoted by
𝑑𝑣, is the number of elements in 𝑁(𝑣). A graph 𝐺 is said to be 𝑟 regular if the
degree of each vertex is 𝑟. We assume all our graphs are simple, connected and
undirected. An alternating sequence of vertices and edges, beginning and ending
with vertices such that no edge is traversed or covered more than once. The walk
is said to be open if the initial and terminal vertices are distinct, otherwise closed.
An open walk in which no vertex (and therefore no edge) is repeated is called a
path and is denoted by 𝑃𝑛. A graph is said to be complete if it contains all possible
edges and a complete graph with 𝑛 vertices is denoted 𝐾𝑛. A graph 𝐺(𝑉, 𝐸) is said
to be bipartite (or 2-partite) if its vertex set can be partitioned into two different
sets 𝑉1 and 𝑉2 with 𝑉 = 𝑉1 ∪ 𝑉2 such that 𝑢𝑣 ∈ 𝐸 if and only if 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2.
A bipartite graph is said to be complete if 𝑢𝑣 ∈ 𝐸 for all 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2. The
complete bipartite graph 𝐾1,𝑛−1 is called a star.

The adjacency matrix of 𝐺, denoted by 𝐴(𝐺) = (𝑎𝑖𝑗) is the matrix of order
𝑛 × 𝑛, defined as

𝐴(𝐺) = (𝑎𝑖𝑗)𝑛 =
{︃

1 if 𝑖 and 𝑗 are adjacenct,
0 otherwise.

We denote the determinant of a matrix 𝑀 ∈ M𝑛(C) by det(𝑀). The character-
istic polynomial of the matrix 𝐴(𝐺) is det(𝐴(𝐺) − 𝑥𝐼), where 𝐼 is the identity
matrix. Since 𝐴(𝐺) is a real symmetric matrix, so the zeros of the polynomial
det(𝐴(𝐺) − 𝑥𝐼) are all real and can be ordered. The set of all the eigenvalues
including multiplicity is known as the spectrum of 𝐴(𝐺) (or simply spectrum of
𝐺). The largest eigenvalue of 𝐴(𝐺) is called the spectral radius of 𝐺. More about
the adjacency matrix can be seen in [13].

In a graph 𝐺, the distance between the two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), denoted by
𝑑(𝑢, 𝑣), is defined as the length of the smallest path between them. The distance
matrix indexed by the vertices of a connected graph 𝐺, denoted by 𝒟(𝐺), is defined
as

𝒟(𝐺) = (𝑑𝑢𝑣)𝑛 =
{︃

0 if 𝑢 = 𝑣,

𝑑(𝑢, 𝑣) otherwise.

A complete survey of the matrix 𝒟(𝐺) is given in [8]. The transmission of the vertex
𝑣 (or transmission degree), denoted by Tr(𝑣) (or Tr𝑣), is defined to be the sum of
the distances from 𝑣 to all other vertices in 𝐺, that is, Tr(𝑣) =

∑︀
𝑢∈𝑉 (𝒢) 𝑑(𝑢, 𝑣).

We observe that the transmission of 𝑣𝑖 is same as the 𝑖th row sum of the matrix
𝒟(𝐺).

Let Tr(𝐺) = diag(Tr1, Tr2, . . . , Tr𝑛) be the diagonal matrix of vertex transmis-
sions of 𝐺. The authors in [10] introduced the distance Laplacian

ℒ(𝐺) = Tr(𝐺) − 𝒟(𝐺)
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and the distance signless Laplacian

𝒬(𝐺) = Tr(𝐺) + 𝒟(𝐺)

for the distance matrix of a connected graph 𝐺. These matrices are real symmetric
and positive semi-definite (definite), so the spectrum is real and non negative. In
this article, we focus on the matrix 𝒬(𝐺), and we denote its eigenvalues by 𝜌𝑖’s.
We order them as 𝜌𝑛 ≤ 𝜌𝑛−1 ≤ · · · ≤ 𝜌1, where 𝜌1 is known as the distance signless
Laplacian spectral radius of 𝐺. Since 𝒬(𝐺) is irreducible, so by Perron–Frobenius
theorem, 𝜌1 is a simple eigenvalue and the entries of its corresponding eigenvector
are positive. Further information about the matrix 𝒬(𝐺) can be seen in [2–7, 9–11,
24–27].

Kelarev and Quinn [19] defined the directed power graph of a semigroup 𝑆 as a
directed graph with vertex set 𝑆 in which two distinct vertices 𝑥, 𝑦 ∈ 𝑆 are joined
by an arc from 𝑥 to 𝑦 if and only if 𝑥 ̸= 𝑦 and 𝑦𝑖 = 𝑥, for some positive integer 𝑖.
Chakrabarty et al. [15] defined the undirected power graph 𝒫(𝐺) of a group 𝐺 as
an undirected graph with vertex set as 𝐺 and two vertices 𝑥, 𝑦 ∈ 𝐺 are adjacent
if and only if 𝑥𝑖 = 𝑦 or 𝑦𝑗 = 𝑥, for some 2 ≤ 𝑖, 𝑗 ≤ 𝑛. Such graphs have valuable
applications and are related to the automata theory [20], besides being useful in
characterizing the finite groups. More on power graphs can be seen in [1, 14, 15].
Laplacian spectrum of power graphs of finite cyclic and dihedral groups have been
investigated in [16], where it is shown that the Laplacian spectral radius of the
power graph of any finite group coincides with the order of group 𝒢. Panda [22]
studied the Laplacian spectral properties including vertex connectivity, Laplacian
integrability and others. Spectral properties of the adjacency matrix of 𝒫(𝒢) were
investigated in [21]. Other spectral results of the power graphs can be seen in [12,
17].

The identity of the group 𝐺 is denoted by 𝑒. The proper power graph of
𝒫(𝐺), denoted by 𝒫(𝐺*) = 𝒫(𝐺 ∖ {𝑒}), is obtained by removing the vertex 𝑒. Let
Z𝑛 = {0, 1, 2, . . . , 𝑛 − 1} be the cyclic group of integers modulo 𝑛. Then by 𝑈𝑛, we
denote the set

{𝑎 ∈ Z𝑛 | 1 ≤ 𝑎 < 𝑛, gcd(𝑎, 𝑛) = 1}

and 𝑈*
𝑛 = 𝑈𝑛 ∪ {0}. M𝑛(F) denotes the set of 𝑛 × 𝑛 matrices with entries from the

field F. For other undefined notations and terminology, the readers are referred to
[13, 18, 23].

The rest of the paper is organized as follows. In Section 2, we give the sharp
bounds for the distance signless Laplacian spectral radius of 𝒫(Z𝑛) and characterize
the power graphs attaining such bounds. In Section 3, we find the distance signless
Laplacian spectrum of the power graphs of the dihedral and the dicyclic groups for
some special cases. We also obtain the bounds for the distance signless Laplacian
spectral radius for these graphs.
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2. Distance Laplacian spectral radius of the power
graphs of finite cyclic group Z𝑛

The first result gives the bounds for the largest distance signless Laplacian eigen-
value of the power graph of the finite cyclic group Z𝑛.

Theorem 2.1. Let 𝒫(Z𝑛) be the power graph of order 𝑛 ≥ 3. Then the distance
signless Laplacian spectral radius 𝜌1 of 𝒫(Z𝑛) satisfies the following

𝑛 − 2 + 𝑟min +
√

𝐷

2 ≤ 𝜌1 ≤ 𝑛 − 2 + 𝑟max +
√

𝐷′

2 ,

where 𝐷 = 𝑟2
min − (2𝑛 − 𝜑(𝑛))𝑟min + 𝑛2 + 8𝑛𝜑(𝑛) + 4𝑛 − 8𝜑(𝑛) − 4, 𝐷′ = 𝑟2

max −
(2𝑛 − 𝜑(𝑛))𝑟max + 𝑛2 + 8𝑛𝜑(𝑛) + 4𝑛 − 8𝜑(𝑛) − 4, 𝑟min and 𝑟max are the minimum
and maximum row sums of 𝒜, which is the block matrix of (2.1). Equality occurs
if and only if 𝑛 is a prime power. (Note that 𝐷 and 𝐷′ are positive, since they are
the roots of the spectral eigenequation of a real symmetric matrix).

Proof. We list the vertices of 𝒫(Z𝑛) first by those vertices which are adjacent
to every vertex and then by others. Under this labelling, the distance signless
Laplacian matrix of 𝒫(Z𝑛) can be partitioned as

𝒬
(︀
𝒫(Z𝑛)

)︀
𝑛×𝑛

=
(︂(︀

(𝑛 − 2)𝐼 + 𝐽
)︀

𝜑(𝑛)+1 𝐽(𝜑(𝑛)+1)×(𝑛−𝜑(𝑛)−1)

𝐽(𝑛−𝜑(𝑛)−1)×(𝜑(𝑛)+1) 𝒜𝑛−𝜑(𝑛)−1

)︂
, (2.1)

where 𝐼 is the identity matrix and 𝐽 is the matrix of all ones. Clearly, the constant
row sum of

(︀
(𝑛−2)𝐼 +𝐽

)︀
𝜑(𝑛)+1, 𝐽(𝜑(𝑛)+1)×(𝑛−𝜑(𝑛)−1) and 𝐽(𝑛−𝜑(𝑛)−1)×(𝜑(𝑛)+1) are

𝑛 + 𝜑(𝑛) + 1, 𝑛 − 𝜑(𝑛) − 1 and 𝜑(𝑛) + 1, respectively. Let 𝑟min and 𝑟max be the
minimum and the maximum row sums of the matrix 𝒜𝑛−𝜑(𝑛)−1. Then, we know
that they are bounded below by the constant row sum of 𝐽(𝑛−𝜑(𝑛)−1)×(𝜑(𝑛)+1) and
we take 𝑟min − 𝜑(𝑛) − 1 and 𝑟max − 𝜑(𝑛) − 1 as the minimum and the maximum
row sums of 𝒬

(︀
𝒫(Z𝑛)

)︀
. As 𝒬

(︀
𝒫(Z𝑛)

)︀
𝑛−𝜑(𝑛)−1 is an irreducible matrix, so by

Perron–Frobenius theorem, the signless Laplacian spectral radius is simple and its
corresponding eigenvector, say 𝑋, has positive entries. Let 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤

and assume that 𝑥𝑖 = min1≤𝑘≤𝜑(𝑛)+1 𝑥𝑘 and 𝑥𝑗 = min𝜑(𝑛)+1<𝑘≤𝑛 𝑥𝑘. Therefore,
taking the 𝑖th eigenvalue equation of 𝒬

(︀
𝒫(Z𝑛)

)︀
𝑋 = 𝜌1𝑋 and using the fact that

𝑞𝑖𝑘 =
{︃

𝑛 − 1 if 𝑖 = 𝑘,

1 otherwise,

we have

𝜌1𝑥𝑖 = 𝑞𝑖1𝑥1 + 𝑞𝑖2𝑥2 + · · · + 𝑞𝑖(𝜑(𝑛)+1)𝑥(𝜑(𝑛)+1)

+ 𝑞𝑖(𝜑(𝑛)+2)𝑥(𝜑(𝑛)+2) + · · · + 𝑞𝑖𝑛𝑥𝑛

≥ 𝜑(𝑛)𝑥𝑖 + (𝑛 − 1)𝑥𝑖 + (𝑛 − 𝜑(𝑛) − 1)𝑥𝑗 ,
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which is equivalent to

(𝜌1 − 𝜑(𝑛) − 𝑛 + 1)𝑥𝑖 ≥ (𝑛 − 𝜑(𝑛) − 1)𝑥𝑗 . (2.2)

Also, taking the 𝑗th eigenvalue equation, we have

𝜌1𝑥𝑗 = 𝑞𝑗1𝑥1 + 𝑞𝑗2𝑥2 + · · · + 𝑞𝑗(𝜑(𝑛)+1)𝑥(𝜑(𝑛)+1)

+ 𝑞𝑗(𝜑(𝑛)+2)𝑥(𝜑(𝑛)+2) + · · · + 𝑞𝑗𝑛𝑥𝑛

≥ (𝜑(𝑛) + 1)𝑥𝑖 + (𝑟min − 𝜑(𝑛) − 1)𝑥𝑗 ,

which implies that

(𝜌1 − 𝑟min + 𝜑(𝑛) + 1)𝑥𝑗 ≥ (𝜑(𝑛) + 1)𝑥𝑖. (2.3)

Thus, from Equations (2.2) and (2.3), we obtain

𝜌2
1 − (𝑛 + 𝑟min − 2)𝜌1 + 𝑟min(𝑛 + 𝜑(𝑛) − 1) − 2𝑛𝜑(𝑛) − 2𝑛 + 2𝜑(𝑛) + 2 ≥ 0.

So, the lower bound follows

𝜌1 ≥ 𝑛 − 2 + 𝑟min +
√︀

𝑟2
min − (2𝑛 − 𝜑(𝑛))𝑟min + 𝑛2 + 8𝑛𝜑(𝑛) + 4𝑛 − 8𝜑(𝑛) − 4

2 .

Again, letting 𝑥𝑖 = max1≤𝑘≤𝜑(𝑛)+1 𝑥𝑘 and 𝑥𝑗 = max𝜑(𝑛)+1<𝑘≤𝑛 𝑥𝑘, and proceeding
as above, we have

𝜌2
1 − (𝑛 + 𝑟max − 2)𝜌1 + 𝑟max(𝑛 + 𝜑(𝑛) − 1) − 2𝑛𝜑(𝑛) − 2𝑛 + 2𝜑(𝑛) + 2 ≤ 0

and the upper bound for 𝜌1 of 𝒬(𝒫(Z𝑛)) follows.
Now, equality occurs in both the cases if and only 𝑟min = 𝑟max, which is possible

if and only if 𝐺 ∼= 𝐾𝑛 and hence the equality holds if and only if 𝑛 = 𝑝𝑛1 , where 𝑝
is prime and 𝑛1 is a positive integer.

The following result [13] gives a relation between the eigenvalues of a symmetric
matrix and its principal submatrix.

Theorem 2.2 (Interlacing Theorem). Let 𝑀 ∈ M𝑛(R) be the real symmetric
matrix and 𝐴 be its principal submatrix of order 𝑚, (𝑚 ≤ 𝑛), respectively. Then
the eigenvalues of 𝑀 and 𝐴 satisfy the following relation

𝜆𝑖+𝑛−𝑚(𝑀) ≤ 𝜆𝑖(𝐴) ≤ 𝜆𝑖(𝑀), with 1 ≤ 𝑖 ≤ 𝑚.

The next result gives the lower bounds for the largest and the second largest
distance signless Laplacain eigenvalues of 𝒫(Z𝑛) in terms of the maximum trans-
mission degree and the second maximum transmission degree.
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Theorem 2.3. Let 𝒫(Z𝑛) be the power graph of Z𝑛 having the maximum trans-
mission degree Trmax and the second maximum transmission degree Tr2

max. Then

𝜌1 ≥ 1
2

(︂
Trmax + Tr2

max +
√︁

(Trmax − Tr2
max)2 + 4

)︂
and

𝜌1 ≥ 1
2

(︂
Trmax + Tr2

max +
√︁

(Trmax − Tr2
max)2 + 16

)︂
,

according as the two vertices of maximum and second maximum transmission degree
are adjacent or non-adjacent.

Proof. Assume that 𝑛 ≥ 3 and let 𝑣1 and 𝑣2 be the vertices having the maximum
transmission degree Trmax and the second maximum transmission degree Tr2

max,
respectively. We have the following two possibilities.
(i). Suppose that 𝑣1 and 𝑣2 are adjacent. Then it is clear that 𝑑(𝑣1, 𝑣2) = 1. Now,
consider the principal 2 × 2 submatrix

𝐴 =
(︂

Trmax 1
1 Tr2

max

)︂
.

By using Theorem 2.2, we have

𝜌1(𝒫(Z𝑛)) ≥ 𝜌1(𝐴) = 1
2

(︂
Trmax + Tr2

max +
√︁

(Trmax − Tr2
max)2 + 4

)︂
.

(ii). If 𝑣1 and 𝑣2 are not adjacent, then as power graphs of finite groups are
of diameter at most two, so 𝑑(𝑣1, 𝑣2) = 2. Again, consider the principal 2 × 2
submatrix

𝐵 =
(︂

Trmax 2
2 Tr2

max

)︂
.

Thus, by Theorem 2.2, we obtain

𝜌1(𝒫(Z𝑛)) ≥ 𝜌1(𝐵) = 1
2

(︂
Trmax + Tr2

max +
√︁

(Trmax − Tr2
max)2 + 16

)︂
.

With the same notations and procedure as in Theorem 2.3, we see that the
second largest distance signless Laplacian eigenvalues are bounded below by

1
2

(︂
Trmax + Tr2

max −
√︁

(Trmax − Tr2
max)2 + 4

)︂
and

1
2

(︂
Trmax + Tr2

max −
√︁

(Trmax − Tr2
max)2 + 16

)︂
.
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3. Distance signless Laplacian eigenvalues of dihe-
dral and dicyclic groups

Let 𝑀 ∈ M𝑛(R) be partitioned in the blocks matrices 𝐵𝑗 and let 𝑄 be the new
matrix whose 𝑖𝑗th entry is the average row sum of 𝐵𝑖 block. Then 𝑄 is called the
quotient matrix, and the eigenvalues of 𝑀 interlace the eigenvalues of 𝑄. In case
row sums of each block are some constants, the partition is said to be equitable,
and in such a situation, each eigenvalue of 𝑄 is an eigenvalue of 𝑀 .

Let 𝐺 be any graph of order 𝑛 and let 𝐺𝑖(𝑉𝑖, 𝐸𝑖) be graphs of order 𝑚𝑖, where 𝑖 =
1, . . . , 𝑛. The joined union of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛, denoted by 𝐺[𝐺1, 𝐺2, . . . , 𝐺𝑛],
is the union of graphs 𝐺1, 𝐺2, . . . , 𝐺𝑛 together with the edges from every vertex of
𝐺𝑖 to each vertex of 𝐺𝑗 whenever 𝑣𝑖 and 𝑣𝑗 are adjacent in 𝐺.

The next result gives the distance signless Laplacian spectrum of 𝐺[𝐺1, . . . , 𝐺𝑛]
together with the eigenvalues of the quotient matrix, where 𝐺𝑖 is an 𝑟𝑖 regular
graph.

Theorem 3.1 ([25]). Let 𝐺 be a graph of order 𝑛 having vertex set 𝑉 (𝐺) =
{𝑣1, . . . , 𝑣𝑛}. Let 𝐺𝑖 be 𝑟𝑖 regular graphs of order 𝑛𝑖 having adjacency eigenvalues
𝜆𝑖1 = 𝑟𝑖 ≥ 𝜆𝑖2 ≥ . . . ≥ 𝜆𝑖𝑛𝑖

, where 𝑖 = 1, 2, . . . , 𝑛. The distance signless Laplacian
spectrum of the joined union graph 𝐺[𝐺1, . . . , 𝐺𝑛] of order 𝑁 =

∑︀𝑛
𝑖=1 𝑛𝑖 consists

of the eigenvalues 2𝑛𝑖 + 𝑛′
𝑖 − 𝑟𝑖 − 𝜆𝑖𝑘 − 4 for 𝑖 = 1, . . . , 𝑛 and 𝑘 = 2, 3, . . . , 𝑛𝑖,

where 𝑛′
𝑖 =

∑︀𝑛
𝑘=1,𝑘 ̸=𝑖 𝑛𝑘𝑑𝐺(𝑣𝑖, 𝑣𝑘). The remaining 𝑛 eigenvalues are given by the

equitable quotient matrix

𝑄 =

⎛⎜⎜⎜⎝
4𝑛1 + 𝑛′

1 − 2𝑟1 − 4 𝑛2𝑑𝐺(𝑣1, 𝑣2) . . . 𝑛𝑛𝑑𝐺(𝑣1, 𝑣𝑛)
𝑛1𝑑𝐺(𝑣2, 𝑣1) 4𝑛2 + 𝑛′

2 − 2𝑟2 − 4 . . . 𝑛𝑛𝑑𝐺(𝑣2, 𝑣𝑛)
...

...
. . .

...
𝑛1𝑑𝐺(𝑣𝑛, 𝑣1) 𝑛2𝑑𝐺(𝑣𝑛, 𝑣2) . . . 4𝑛𝑛 + 𝑛′

𝑛 − 2𝑟𝑛 − 4

⎞⎟⎟⎟⎠.

Next, we find the distance Laplacian spectrum of the dihedral group and the
dicyclic group for some particular values of 𝑛. The dihedral group of order 2𝑛 and
the dicyclic group of order 4𝑛 are denoted and presented as follows:

𝐷2𝑛 = ⟨𝑎, 𝑏 | 𝑎𝑛 = 𝑏2 = 𝑒, 𝑏𝑎𝑏 = 𝑎−1⟩,
𝑄𝑛 = ⟨𝑎, 𝑏 | 𝑎2𝑛 = 𝑒, 𝑏2 = 𝑎𝑛, 𝑎𝑏 = 𝑏𝑎−1⟩.

If 𝑛 is a power of 2, then 𝑄𝑛 is called the generalized quaternion group of order 4𝑛.
Now, we obtain the distance signless Laplacian spectrum of the power graph of

the dihedral and the dicyclic group for some special cases and obtain bounds for
the spectral radius.

Proposition 3.2. If 𝑛 is a prime power, then the distance signless Laplacian
spectrum of 𝒫(𝐷2𝑛) is{︁

(3𝑛 − 2)[𝑛−2], (4𝑛 − 5)[𝑛−1], 𝑥1 ≥ 𝑥2 ≥ 𝑥3

}︁
,
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where 𝑥𝑖, for 𝑖 = 1, 2, 3 are the zeros of the following polynomial

𝑥3 − (12𝑛 − 9)𝑥2 +
(︀
44𝑛2 − 106𝑛 + 24

)︀
𝑥 − 48𝑛3 + 188𝑛2 − 140𝑛 + 20.

Proof. As ⟨𝑎⟩ generates the cyclic group of order 𝑛, its power graph behaves as
that of 𝒫(Z𝑛). The other 𝑛 elements of 𝐷2𝑛 in 𝒫(𝐷2𝑛) form a star graph with
identity as the vertex of maximum degree. Therefore, the power graph of 𝐷2𝑛 can
be obtained from the power graph 𝒫(Z𝑛) by adding the 𝑛 pendent vertices at the
identity vertex 𝑒. If 𝑛 = 𝑝𝑚1 , where 𝑚1 is a positive integer, then

𝒫(𝐷2𝑛) = 𝑃3[𝐾𝑛−1, 𝐾1, 𝐾𝑛],

that is, 𝒫(𝐷2𝑝𝑚1 ) is the pineapple graph, the graph obtained from 𝐾𝑛 by appending
vertices of degree 1 at some vertex of 𝐾𝑛. Now, the value of 𝑛′

𝑖’s are given by
𝑛′

1 = 2𝑛 + 1, 𝑛′
2 = 2𝑛 − 1 and 𝑛′

3 = 2𝑛 − 1. Thus, by Theorem 3.1, the distance
signless Laplacian spectrum of 𝒫(𝐷2𝑛) consists of the eigenvalue

2𝑛𝑖 + 𝑛′
𝑖 + 𝑟𝑖 + 𝜆1𝑘 − 4 = 2(𝑛 − 1) + 2𝑛 + 1 − 𝑛 + 2 + 1 − 4 = 3𝑛 − 2,

with multiplicity 𝑛 − 2. Similarly, the other distance signless Laplacian eigenvalue
is 4𝑛−5 with multiplicity 𝑛−1 and the remaining three distance signless Laplacian
eigenvalues are the eigenvalues of the following matrix⎛⎝4𝑛 − 3 1 2𝑛

𝑛 − 1 2𝑛 − 11 𝑛
2𝑛 − 2 1 6𝑛 − 5

⎞⎠.

The following lemma gives an equivalent method for finding determinant (det)
of a matrix.

Lemma 3.3 ([18]). Let 𝑀1, 𝑀2, 𝑀3 and 𝑀4 be respectively 𝑝 × 𝑝, 𝑝 × 𝑞, 𝑞 × 𝑝 and
𝑞 × 𝑞 matrices with 𝑀1 and 𝑀4 invertible. Then

det
(︂

𝑀1 𝑀2
𝑀3 𝑀4

)︂
= det(𝑀1) det(𝑀4 − 𝑀3𝑀−1

1 𝑀2)

= det(𝑀4) det(𝑀1 − 𝑀2𝑀−1
4 𝑀3),

where 𝑀4 − 𝑀3𝑀−1
1 𝑀2 and 𝑀1 − 𝑀2𝑀−1

4 𝑀3 are called Schur complement of 𝑀1
and 𝑀4, respectively.

The next result gives the distance signless Laplacian spectrum of the generalized
quaternions.

Proposition 3.4. Let 𝑛 = 2𝑚1 , where 𝑚1 is a positive integer. Then the dis-
tance signless Laplacian eigenvalues of 𝒫(𝑄𝑛) are the simple eigenvalue 4𝑛−2, the
eigenvalue 6𝑛 − 2 with multiplicity 2𝑛 − 3, the eigenvalue 8𝑛 − 4 with multiplicity
𝑛, the eigenvalue 8𝑛 − 6 and the two zeros of the polynomial

det(𝑀4) det(𝑀1 − 𝑀2𝑀−1
4 𝑀3).
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Proof. The identity element is always adjacent to every other vertex of 𝒫(𝑄𝑛).
In particular, if 𝑛 is a power of 2, then it can be seen that 𝑎𝑛 is also adjacent to
all other vertices of 𝒫(𝑄𝑛). By using these observations, the power graph 𝒫(𝑄𝑛)
can be written as

𝒫(𝑄𝑛) = 𝑆[𝐾2, 𝐾2𝑛−2, 𝐾2, 𝐾2, . . . , 𝐾2⏟  ⏞  
𝑛

],

where 𝑆 = 𝐾1,𝑛+1. Using Theorem 3.1, we see that 2𝑛1 + 𝑛′
1 − 𝑛1 + 1 + 1 − 4 =

𝑛1 + 𝑛′
1 − 2 = 4𝑛 − 2 + 2 − 2 = 4𝑛 − 2 is the simple distance signless Laplacian

eigenvalue of 𝒫(𝑄𝑛). Similarly, 6𝑛−2 and 8𝑛−6 are the distance signless Laplacian
eigenvalues with multiplicity 2𝑛 − 3 and 𝑛, respectively. The remaining distance
signless Laplacian eigenvalues of 𝒫(𝑄𝑛) are the eigenvalues of following matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

4𝑛 2𝑛 − 2 2 . . . 2 2
2 8𝑛 − 4 2 . . . 2 2
2 4𝑛 − 4 8𝑛 − 4 . . . 2 2
...

...
...

. . .
...

...
2 4𝑛 − 4 2 . . . 8𝑛 − 4 2
2 4𝑛 − 4 2 . . . 2 8𝑛 − 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

𝑀1 =
(︂

4𝑛 2𝑛 − 2
2 8𝑛 − 2

)︂
,

𝑀2 =
(︂

2 . . . 2 2
2 . . . 2 2

)︂
,

𝑀3 =
(︂

2 . . . 2 2
4𝑛 − 4 . . . 4𝑛 − 4 4𝑛 − 4

)︂⊤

,

𝑀4 =

⎛⎜⎜⎜⎝
8𝑛 − 4 . . . 2 2

...
. . .

...
...

2 . . . 8𝑛 − 4 2
2 . . . 2 8𝑛 − 4

⎞⎟⎟⎟⎠.

Now, by Lemma 3.3, it is easy to verify that the polynomial det(𝑀4 − 𝑥𝐼) has a
zero 8𝑛 − 6 with multiplicity 𝑛. The remaining two distance signless Laplacian
eigenvalues are the zeros of the following polynomial

det(𝑀4) det(𝑀1 − 𝑀2𝑀−1
4 𝑀3).

The distance signless Laplacian matrix of 𝒫(𝐷2𝑛) can be written as

𝒬
(︀
𝒫(𝐷2𝑛)

)︀
=

(︂
𝒬

(︀
𝒫(Z𝑛) + 𝒜

)︀
𝐵𝑛

𝐵′
𝑛 𝐶𝑛

)︂
,
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where

𝒜 =

⎛⎜⎜⎜⎝
𝑛 0 · · · 0
0 2𝑛 . . . 0
...

...
. . .

...
0 0 · · · 2𝑛

⎞⎟⎟⎟⎠, 𝐵 =

⎛⎜⎜⎜⎝
1 1 · · · 1
2 2 · · · 2
...

...
. . .

...
2 2 · · · 2

⎞⎟⎟⎟⎠
and

𝐶 =

⎛⎜⎜⎜⎝
4𝑛 − 3 2 · · · 2

2 4𝑛 − 3 · · · 2
...

...
. . .

...
2 2 · · · 4𝑛 − 3

⎞⎟⎟⎟⎠
As 𝐶𝑛 is invertible, so by Schur’s Lemma 3.3,

det(𝐶 − 𝑥𝐼) det((𝒬
(︀
𝒫(Z𝑛) + 𝒜

)︀
− 𝑥𝐼) − (𝐵 − 𝑥𝐼) det(𝐶 − 𝑥𝐼)−1(𝐵 − 𝑥𝐼)

gives the characteristic polynomial of the matrix 𝒬
(︀
𝒫(𝑄2𝑛)

)︀
. Clearly, 𝑥 = 4𝑛 − 5

is a zero of the characteristic polynomial det(𝐶 − 𝑥𝐼) with multiplicity 𝑛.

4. Conclusion
In general, to find all the distance signless Laplacian eigenvalues of a power graph of
any group is difficult. So in this regard, we have obtained the bounds on the largest
distance signless Laplacian eigenvalue of the power graph of the finite cyclic group
Z𝑛. However to find the bounds for other eigenvalues of such power graphs remains
open. Also, we find some distance signless Laplacian eigenvalues (including bounds)
of the power graphs of 𝐷2𝑛 and 𝑄𝑛, for some special cases. Though in general, the
distance signless Laplacian eigenvalues of these graphs remain challenging, we need
to devise more techniques and information about the structure of the power graphs,
so that more distance signless Laplacian eigenvalues (if not all) need to be obtained.
For the remaining distance signless Laplacian eigenvalues, best possible bounds
need to be established. All other distance signless Laplacian spectral parameters
like distance signless Laplacian energy, distance signless Laplacian spread, distance
signless Laplacian Estrada index and others can be discussed for power graphs of
finite groups.
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