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1. Introduction

The Tauberian theory based on the following fact. If the sequence (𝑥𝑛) converges,
i.e.

lim
𝑛→∞

𝑥𝑛 = 𝑙

exists then it follows that the limit in sense of a regular summability method (𝑇𝑛)
exists and

lim
𝑛→∞

𝑇𝑛(𝑥𝑛) = 𝑙.

The converse of the above fact is not true (or “does not hold”) in general. Condi-
tions under which the converse follows are known as Tauberian conditions, and the
result with such conditions is known Tauberian theorem. The Tauberian theorems
are investigated for many summability methods under different conditions, see for
example ([2, 3, 5, 7–11]). In 1976, the well-known Hardy–Littlewood Tauberian
theorem was extended to the multidimensional case by Vladimirov [14]. After that
paper, the work began on a systematic investigation of the Tauberian theory of
generalized functions from the standpoint of both pure mathematics and its ap-
plication in theoretical and mathematical physics. In [4], some multidimensional
Tauberian theorems for generalized functions were established along with their ap-
plication in mathematical physics. In recent year the Tauberian theorems were
proved in 2-normed spaces for the Cesàro summability method (see [12]).

The convolution (𝑝 * 𝑞) of two non-negative sequences (𝑝𝑛) and (𝑞𝑛) is defined
by

𝑅𝑛 := (𝑝 * 𝑞)𝑛 =
𝑛∑︁

𝑘=0
𝑝𝑘𝑞𝑛−𝑘 =

𝑛∑︁
𝑘=0

𝑝𝑛−𝑘𝑞𝑘.

In case (𝑝 * 𝑞)𝑛 ̸= 0 for all 𝑛 ∈ N, the generalized Nörlund transform (𝑇 𝑝,𝑞
𝑛 ) of

the sequence (𝑥𝑛) is given as follows

𝑇 𝑝,𝑞
𝑛 = 1

(𝑝 * 𝑞)𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘.

The sequence (𝑥𝑛) is generalized Nörlund summable to 𝐿 (see [1]), if

lim
𝑛→∞

𝑇 𝑝,𝑞
𝑛 = 𝐿. (1.1)

Let us define

𝐴(𝑛, 𝑡) := {𝑞𝜆𝑛−𝑘 − 𝑞𝑛−𝑘 : 𝑘 = 0, 1, 2, . . . , 𝑛; 𝜆 > 1}

and
𝐵(𝑛, 𝑡) := {𝑞𝑘−𝜆𝑛

− 𝑞𝑛−𝑘 : 𝑘 = 0, 1, 2, . . . , 𝜆𝑛; 0 < 𝜆 < 1},

where 𝜆𝑛 := [𝜆𝑛] denotes the integral part of 𝜆𝑛.
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Let us suppose that the sequences 𝑝 = (𝑝𝑛) and 𝑞 = (𝑞𝑛) satisfies the following
conditions:

𝑝𝑛 ≤ 𝑞𝑛, 𝑛 ∈ N,

𝑞𝑛 ≥ 1, 𝑛 ∈ N,

sup
𝑛

𝐴(𝑛, 𝜆) < ∞,

and
sup

𝑛
𝐵(𝑛, 𝜆) < ∞.

If
lim

𝑛→∞
𝑥𝑛 = 𝐿

implies (1.1), then the method (𝑁, 𝑝, 𝑞) is regular. The necessary and sufficient
condition for the (𝑁, 𝑝, 𝑞) method to be regular is (see [6])

𝑝𝑛−𝑘𝑞𝑘 = 𝑜(𝑅𝑛) (𝑛 → ∞, 𝑘 ∈ N),

and
𝑛∑︁

𝑘=0
|𝑝𝑛−𝑘𝑞𝑘| = 𝑂(𝑅𝑛) (𝑛 → ∞).

Remark 1.1. In case when 𝑝𝑛 ≡ 𝑞𝑛 ≡ 1 for 𝑛 ∈ N, the (𝑁, 𝑝, 𝑞) method coincides
the Cesàro (𝐶, 1) summability. For 𝑞𝑛 = 1 we get the Nörlund method (𝑁, 𝑝). In
case when 𝑝𝑛 =

(︀
𝑛+𝛽

𝛽

)︀
, 𝑞𝑛 =

(︀
𝑛+𝛼−1

𝛼

)︀
, we get the (𝐶, 𝛼, 𝛽) ([1]) method. Finally,

for 𝑝𝑛 = 𝜆𝑛 and 𝑞𝑛 = 1, we get the generalized de la Vallée-Poussin method.

In this paper we will prove Tauberian theorems for the (𝑁, 𝑝, 𝑞) summability
method in 2-normed spaces.

Definition 1.2. A sequence (𝑥𝑛) converges to 𝐿 in a 2-norm 𝑋, i.e.

𝑥𝑛
‖·,·‖𝑋−→ 𝐿,

if
lim

𝑛→∞
‖𝑥𝑛 − 𝐿, 𝑦‖ = 0,

for all 𝑦 ∈ 𝑋.

A sequence (𝑥𝑛) in a 2-normed space 𝑋 is 𝑇 𝑝,𝑞
𝑛 summable to 𝐿 ∈ 𝑋 and write,

in sign: 𝑥𝑛
‖·,·‖𝑋−→ 𝐿(𝑇 𝑝,𝑞

𝑛 ), if

lim
𝑛→∞

‖𝑇 𝑝,𝑞
𝑛 − 𝐿, 𝑦‖ = 0,

for all 𝑦 ∈ 𝑋.

Theorem 1.3. In a 2-normed space 𝑋, lim𝑛 𝑥𝑛 = 𝐿 ∈ 𝑋, implies lim𝑛 𝑇 𝑝,𝑞
𝑛 = 𝐿

in 𝑋. The converse statement is not true in general.
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Proof. Let us suppose that lim𝑛 𝑥𝑛 = 𝐿 in a 2-normed space 𝑋. It is clear that,
for every 𝜖 > 0, there exists an 𝑛0 such that for every 𝑛 > 𝑛0 and any 𝑦 ∈ 𝑋 we
have

‖𝑥𝑛 − 𝐿, 𝑦‖ < 𝜖 :

and for any 𝑛 < 𝑛0, 𝑦 ∈ 𝑋 there exists a 𝑀 > 0 such that

‖𝑥𝑛 − 𝐿, 𝑦‖ ≤ 𝑀.

Now we can estimate as follows:

‖𝑇 𝑝,𝑞
𝑛 − 𝐿, 𝑦‖

=

⃦⃦⃦⃦
⃦ 1

(𝑝 * 𝑞)𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦ 1

(𝑝 * 𝑞)𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑘 − 𝐿), 𝑦

⃦⃦⃦⃦
⃦

≤

⃦⃦⃦⃦
⃦ 1

(𝑝 * 𝑞)𝑛

𝑛0∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑘 − 𝐿), 𝑦

⃦⃦⃦⃦
⃦ +

⃦⃦⃦⃦
⃦⃦ 1

(𝑝 * 𝑞)𝑛

∑︁
𝑘∈{𝑛0+1,··· ,𝑛}

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑘 − 𝐿), 𝑦

⃦⃦⃦⃦
⃦⃦

≤ 𝑀 ·
𝐴𝑝,𝑞

𝑛0

(𝑝 * 𝑞)𝑛
+ 𝜖,

where 𝐴𝑝,𝑞
𝑛0

=
∑︀𝑛0

𝑘=0 𝑝𝑘𝑞𝑛−𝑘. Hence, we get desired result.

Example 1.4. Consider 𝑋 = R3 and

‖𝑥, 𝑦‖ = max{|𝑥1𝑦2 − 𝑥2𝑦1|, |𝑥1𝑦3 − 𝑥3𝑦1|, |𝑥2𝑦3 − 𝑥3𝑦2|},

where 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3). Let

𝑥𝑛 =
(︂

1 + (−1)𝑛, 2 + (−1)𝑛, 3 + 3(−1)𝑛

2

)︂
,

and 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑋.
If we put 𝑝𝑛 = 𝑛 and 𝑞𝑛 = 1, then we have

𝑇 𝑝,𝑞
𝑛 (1 + (−1)𝑛) = 1 + (−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1) ,

𝑇 𝑝,𝑞
𝑛 (2 + (−1)𝑛) = 2 + (−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1) ,

𝑇 𝑝,𝑞
𝑛

(︂
3 + 3(−1)𝑛

2

)︂
= 3 + 3(−1)𝑛

2(𝑛 + 1) + 3[(−1)𝑛 − 1]
4𝑛(𝑛 + 1) .

Now we will prove that 𝑇 𝑝,𝑞
𝑛 → (1, 2, 3) in the 2-normed space 𝑋.

lim
𝑛→∞

‖𝑇 𝑝,𝑞
𝑛 − 𝐿, 𝑦‖

= lim
𝑛→∞

⃦⃦⃦⃦(︂
(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1) ,

(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1) ,

3(−1)𝑛

2(𝑛 + 1) + 3[(−1)𝑛 − 1]
4𝑛(𝑛 + 1)

)︂
, 𝑦

⃦⃦⃦⃦
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= lim
𝑛→∞

max
{︃⃒⃒⃒⃒

𝑦2

(︂
(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1)

)︂
− 𝑦1

(︂
(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1)

)︂⃒⃒⃒⃒
,⃒⃒⃒⃒

𝑦3

(︂
(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1)

)︂
− 𝑦1

(︂
3(−1)𝑛

2(𝑛 + 1) + 3[(−1)𝑛 − 1]
4𝑛(𝑛 + 1)

)︂⃒⃒⃒⃒
,⃒⃒⃒⃒

𝑦3

(︂
(−1)𝑛

𝑛 + 1 + (−1)𝑛 − 1
2𝑛(𝑛 + 1)

)︂
− 𝑦2

(︂
3(−1)𝑛

2(𝑛 + 1) + 3[(−1)𝑛 − 1]
4𝑛(𝑛 + 1)

)︂⃒⃒⃒⃒}︃
= 0.

So (𝑥𝑛) is 𝑇 𝑝,𝑞
𝑛 -summable to (1, 2, 3) in 2-normed space 𝑋. Now we will prove that

(𝑥𝑛) does not converge to (1, 2, 3) in 2-normed space 𝑋. Let 𝑦 = (1, 1, 1) ∈ R3 then

lim
𝑛→∞

‖𝑥𝑛 − 𝐿, 𝑦‖ = lim
𝑛→∞

⃦⃦⃦⃦(︂
(−1)𝑛, (−1)𝑛,

3(−1)𝑛

2

)︂
, (𝑦1, 𝑦2, 𝑦3)

⃦⃦⃦⃦
= lim

𝑛→∞
max

{︂
|(−1)𝑛 · 𝑦2 − (−1)𝑛 · 𝑦1|,

⃒⃒⃒⃒
(−1)𝑛 · 𝑦3 − 3(−1)𝑛

2 · 𝑦1

⃒⃒⃒⃒
,⃒⃒⃒⃒

(−1)𝑛 · 𝑦3 − 3(−1)𝑛

2 · 𝑦2

⃒⃒⃒⃒}︂
̸= 0,

sequence (𝑥𝑛) is not convergent.

2. Tauberian theorems for 𝑇 𝑝,𝑞
𝑛 -summability method

Theorem 2.1. Let (𝑝𝑛) and (𝑞𝑛) be two sequences of real numbers defined as above
and

lim inf
𝑛→∞

𝑅𝜆𝑛

𝑅𝑛
> 1, 𝜆 > 1 (2.1)

where 𝜆𝑛 = [𝜆𝑛]. Suppose that lim𝑛 𝑇 𝑝,𝑞
𝑛 = 𝐿, in 2-normed space 𝑋. Then (𝑥𝑛) is

convergent to the same number 𝐿 in 2-normed space 𝑋 if and only if

inf
𝜆>1

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑖=𝑛+1

𝑝𝑖𝑞𝜆𝑛−𝑖(𝑥𝑖 − 𝑥𝑛), 𝑦

⃦⃦⃦⃦
⃦ = 0 (2.2)

and

inf
0<𝜆<1

lim sup
𝑛→∞

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑖=𝜆𝑛+1

𝑝𝑖𝑞𝑛−𝑖(𝑥𝑛 − 𝑥𝑖), 𝑦

⃦⃦⃦⃦
⃦ = 0. (2.3)

Definition 2.2. The sequence (𝑥𝑛) ∈ 𝑋 is slowly oscillating (see [13]) in a 2-
normed space if

inf
𝜆>1

lim sup
𝑛→∞

max
𝑛≤𝑘≤𝜆𝑛

‖𝑥𝑘 − 𝑥𝑛, 𝑦‖ = 0

for all 𝑦 ∈ 𝑋, or equivalently

inf
0<𝜆<1

lim sup
𝑛→∞

max
𝜆𝑛≤𝑘≤𝑛

‖𝑥𝑛 − 𝑥𝑘, 𝑦‖ = 0

118



Annal. Math. et Inf. Tauberian theorems via the generalized Nörlund mean for . . .

for all 𝑦 ∈ 𝑋.
Denoting Δ𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1, we can rewrite the above conditions to the form

inf
𝜆>1

lim sup
𝑛→∞

max
𝑛≤𝑘≤𝜆𝑛

⃦⃦⃦⃦
⃦−

𝑛∑︁
𝑖=𝑘+1

Δ𝑥𝑖, 𝑦

⃦⃦⃦⃦
⃦ = 0

and

inf
0<𝜆<1

lim sup
𝑛→∞

max
𝜆𝑛≤𝑘≤𝑛

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑖=𝑘+1

Δ𝑥𝑖, 𝑦

⃦⃦⃦⃦
⃦ = 0,

for all 𝑦 ∈ 𝑋.

We will need the following lemmas.

Lemma 2.3 ([3]). For the sequences of real numbers (𝑝𝑛) and (𝑞𝑛), condition (2.1)
is equivalent to

lim inf
𝑛→∞

𝑅𝑛

𝑅𝜆𝑛

> 1, 0 < 𝜆 < 1.

Lemma 2.4. Let (𝑝𝑛) and (𝑞𝑛) be the sequences defined as above and relation (2.1)
is satisfied. Assume that 𝑥 = (𝑥𝑛) is 𝑇 𝑝,𝑞

𝑛 -convergent to 𝐿, in the 2-normed space
𝑋. Then for every 𝜆 > 0,

lim
𝑛

‖𝑇 𝑝,𝑞
𝜆𝑛

− 𝐿, 𝑦‖ = 0

for every 𝑦 ∈ 𝑋.

Proof. Case 1: 𝜆 > 1. Then from the definition of 𝜆 = (𝜆𝑛), we get

lim
𝑛

(𝑛 − 𝜆𝑛) = lim
𝑛

(𝑅𝜆𝑛 − 𝑅𝑛).

Now from given conditions, for every 𝜖 > 0 we have:

‖𝑇 𝑝,𝑞
𝜆𝑛

− 𝐿, 𝑦‖ ≤ ‖𝑇 𝑝,𝑞
𝜆𝑛

− 𝑇 𝑝,𝑞
𝑛 , 𝑦‖ + ‖𝑇 𝑝,𝑞

𝑛 − 𝐿, 𝑦‖ ≤ 𝜖.

Case 2: 0 < 𝜆 < 1. For 𝜆𝑛 = [𝜆 · 𝑛], for any natural number 𝑛, we can conclude
that (𝑇 𝑝,𝑞

𝜆𝑛
) does not appear more than [1 + 𝜆−1] times in the sequence (𝑇 𝑝,𝑞

𝑛 ). In
fact if there exist integers 𝑘, 𝑙 such that

𝑛 ≤ 𝜆 · 𝑘 < 𝜆(𝑘 + 1) < · · · < 𝜆(𝑘 + 𝑙 − 1) < 𝑛 + 1 ≤ 𝜆(𝑘 + 𝑙),

then
𝑛 + 𝜆(𝑙 − 1) ≤ 𝜆(𝑘 + 𝑙 − 1) < 𝑛 + 1 ⇒ 𝑙 < 1 + 1

𝜆

and
‖𝑇 𝑝,𝑞

𝜆𝑛
− 𝐿, 𝑦‖ ≤

(︂
1 + 1

𝜆

)︂
‖𝑇 𝑝,𝑞

𝑛 − 𝐿, 𝑦‖ ≤ 𝜖.

From this, lim𝑛 ‖𝑇𝜆𝑛
− 𝐿, 𝑦‖ = 0 follows.
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Lemma 2.5. Let (𝑝𝑛) and (𝑞𝑛) be the sequences defined as above and relation (2.1)
be satisfied. Let 𝑥 = (𝑥𝑛) be 𝑇 𝑝,𝑞

𝑛 -convergent to 𝐿, in 2-normed space 𝑋. Then for
every 𝜆 > 0,

lim
𝑛

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=𝑛+1

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦ = 0 for 𝜆 > 1 (2.4)

and

lim
𝑛

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=𝜆𝑛+1

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦ = 0 for 0 < 𝜆 < 1, (2.5)

for every 𝑦 ∈ 𝑋.

Proof. Case 1: 𝜆 > 1. We get⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=𝑛+1

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦 − 1
𝑅𝜆𝑛

− 𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛 − 𝑅𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿,

𝑦 − 1
𝑅𝜆𝑛 − 𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘(𝑞𝑛−𝑘 + 𝑞𝜆𝑛−𝑘 − 𝑞𝑛−𝑘)𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

≤

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦 − 1
𝑅𝜆𝑛

− 𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

+

⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘(𝑞𝜆𝑛−𝑘 − 𝑞𝑛−𝑘)𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦. (2.6)

We know that

lim
𝑛

sup 𝑅𝑛

𝑅𝜆𝑛
− 𝑅𝑛

=
(︂

lim
𝑛

inf 𝑅𝜆𝑛

𝑅𝑛
− 1

)︂−1
< ∞. (2.7)

Now from (2.6) and (2.7), we get (2.4).
Case 2: 0 < 𝜆 < 1. Then we have⃦⃦⃦⃦

⃦ 1
𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=𝜆𝑛+1

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦 − 1
𝑅𝑛 − 𝑅𝜆𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦
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=

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, (2.8)

𝑦 − 1
𝑅𝑛 − 𝑅𝜆𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘(𝑞𝜆𝑛−𝑘 + 𝑞𝑛−𝑘 − 𝑞𝜆𝑛−𝑘)𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

≤

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦 − 1
𝑅𝑛 − 𝑅𝜆𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝜆𝑛−𝑘𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦

+

⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝜆𝑛∑︁
𝑘=0

𝑝𝑘(𝑞𝑛−𝑘 − 𝑞𝜆𝑛−𝑘)𝑥𝑘 − 𝐿, 𝑦

⃦⃦⃦⃦
⃦. (2.9)

In this case, we know

lim sup
𝑛→∞

𝑅𝜆𝑛

𝑅𝑛 − 𝑅𝜆𝑛

=
(︂

lim inf
𝑛→∞

𝑅𝑛

𝑅𝜆𝑛

− 1
)︂−1

< ∞. (2.10)

From (2.9) and (2.10), we get (2.5).

Proof of Theorem 2.1. Let lim𝑛 𝑥𝑛 = 𝐿, and lim𝑛 𝑇 𝑝,𝑞
𝑛 = 𝐿, in 2-normed space

𝑋. Applying Lemma 2.5, we get relation (2.2) for 𝜆 > 1, and (2.3) for 0 < 𝜆 < 1.
Sufficiency. Let lim𝑛 𝑇 𝑝,𝑞

𝑛 = 𝐿 in 2-normed space 𝑋 and conditions (2.1),
(2.2) and (2.3) hold. We will prove that lim𝑛 𝑥𝑛 = 𝐿 in 𝑋. Or equivalently,
lim𝑛 (𝑇 𝑝,𝑞

𝑛 − 𝑥𝑛) = 0 in 2-normed space 𝑋.
For 𝜆 > 1, we have

𝑥𝑛 − 𝑇 𝑝,𝑞
𝑛 = 𝑅𝜆𝑛

𝑅𝜆𝑛
− 𝑅𝑛

(𝑇 𝑝,𝑞
𝜆𝑛

− 𝑇 𝑝,𝑞
𝑛 ) − 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=𝑛+1

𝑝𝑘𝑞𝜆𝑛−𝑘(𝑥𝑘 − 𝑥𝑛).

From relation (2.1) and Lemma 2.4, we obtain⃦⃦⃦⃦
𝑅𝜆𝑛

𝑅𝜆𝑛
− 𝑅𝑛

(𝑇 𝑝,𝑞
𝜆𝑛

− 𝑇 𝑝,𝑞
𝑛 ), 𝑦

⃦⃦⃦⃦
< 𝜖,

for every 𝑦 ∈ 𝑋. From (2.2), for every 𝜖 > 0 we get⃦⃦⃦⃦
⃦ 1

𝑅𝜆𝑛
− 𝑅𝑛

𝜆𝑛∑︁
𝑘=𝑛+1

𝑝𝑘𝑞𝜆𝑛−𝑘(𝑥𝑘 − 𝑥𝑛), 𝑦

⃦⃦⃦⃦
⃦ < 𝜖,

for every 𝑦 ∈ 𝑋. From last relations we have proved that lim𝑛 (𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛) = 0, in

2-normed space 𝑋.
Now for the case 0 < 𝜆 < 1, we get

𝑥𝑛 − 𝑇 𝑝,𝑞
𝜆𝑛

= 𝑅𝑛

𝑅𝑛 − 𝑅𝜆𝑛

(𝑇 𝑝,𝑞
𝑛 − 𝑇 𝑝,𝑞

𝜆𝑛
) + 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=𝜆𝑛+1

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑛 − 𝑥𝑘).
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From relation (2.1) and Lemma 2.4, we have⃦⃦⃦⃦
𝑅𝑛

𝑅𝑛 − 𝑅𝜆𝑛

(𝑇 𝑝,𝑞
𝑛 − 𝑇 𝑝,𝑞

𝜆𝑛
), 𝑦

⃦⃦⃦⃦
< 𝜖,

for every 𝑦 ∈ 𝑋. From relation (2.3), for every 𝜖 > 0 we get⃦⃦⃦⃦
⃦ 1

𝑅𝑛 − 𝑅𝜆𝑛

𝑛∑︁
𝑘=𝜆𝑛+1

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑛 − 𝑥𝑘), 𝑦

⃦⃦⃦⃦
⃦ < 𝜖,

for every 𝑦 ∈ 𝑋. Hence, we have proved that lim𝑛 (𝑇 𝑝,𝑞
𝜆𝑛

− 𝑥𝑛) = 0, in 2-normed
space 𝑋. Now proof of the Theorem follows from Lemma 2.4.

In what follows we will show that under the conditions that (𝑥𝑛) is a slowly
oscillating sequence (see [13]), the 𝑇 𝑝,𝑞

𝑛 -summability implies the convergence in the
ordinary sense.

Theorem 2.6. Let 𝑋 be a 2-normed space and (𝑥𝑛) ∈ 𝑋 be 𝑇 𝑝,𝑞
𝑛 -limitable to 𝐿.

If (𝑥𝑛) is slowly oscillating in 2-normed space 𝑋, then (𝑥𝑛) converges to 𝐿 in 𝑋.

Proof. In case 𝜆 > 1 let us suppose that 𝑇 𝑝,𝑞
𝑛 converges to 𝐿 in 𝑋. To prove that

(𝑥𝑛) → 𝐿 in 𝑋, it is enough to prove that

lim
𝑛

‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ = 0,

for every 𝑦 ∈ 𝑋. Let us start with

‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ =

⃦⃦⃦⃦
⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝑥𝑛, 𝑦

⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑘 − 𝑥𝑛), 𝑦

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘

𝑛∑︁
𝑗=𝑘+1

Δ𝑥𝑗 , 𝑦

⃦⃦⃦⃦
⃦⃦ ≤ max

0≤𝑘≤𝑛

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑗=𝑘+1
Δ𝑥𝑗 , 𝑦

⃦⃦⃦⃦
⃦⃦.

Taking limit superior in both sides of the above relation and then infimum, we get

inf
𝜆>1

lim
𝑛→∞

sup‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ = 0.

Hence, it is proved that (𝑥𝑛) converges to 𝐿 in 𝑋.
The case 0 < 𝜆 < 1 is similar to the previous one and for this reason we omit

it.

The following result shows that if (𝑥𝑛) satisfies Hardy ([6]) conditions, and is
𝑇 𝑝,𝑞

𝑛 -summable, then it converges in the ordinary sense.

Theorem 2.7. Let (𝑥𝑛) ∈ 𝑋 be 𝑇 𝑝,𝑞
𝑛 -summable to 𝐿 in 2-normed space 𝑋. If (𝑥𝑛)

satisfies relation
𝑛Δ𝑥𝑛 = 0(1),

then (𝑥𝑛) converges to 𝐿 in 𝑋.
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Proof. It is enough to prove that

lim
𝑛

‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ = 0

for every 𝑦 ∈ 𝑋. First, suppose that 𝜆 > 1. From the condition

𝑛Δ𝑥𝑛 = 0(1),

it follows that for every 𝜖 > 0, there exists an 𝑛0 such that for every 𝑛 > 𝑛0 we
have

|𝑛Δ𝑥𝑛| < 𝜖.

A routine calculation gives

‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ =

⃦⃦⃦⃦
⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘𝑥𝑘 − 𝑥𝑛, 𝑦

⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘(𝑥𝑘 − 𝑥𝑛), 𝑦

⃦⃦⃦⃦
⃦

=

⃦⃦⃦⃦
⃦⃦ 1

𝑅𝑛

𝑛∑︁
𝑘=0

𝑝𝑘𝑞𝑛−𝑘

𝑛∑︁
𝑗=𝑘+1

Δ𝑥𝑗 , 𝑦

⃦⃦⃦⃦
⃦⃦ ≤ max

0≤𝑘≤𝑛

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑗=𝑘+1
Δ𝑥𝑗 , 𝑦

⃦⃦⃦⃦
⃦⃦.

From above relations, we get

‖𝑇 𝑝,𝑞
𝑛 − 𝑥𝑛, 𝑦‖ ≤ max

0≤𝑘≤𝑛

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑗=𝑘+1
Δ𝑥𝑗 , 𝑦

⃦⃦⃦⃦
⃦⃦ ≤ 𝜖.

Hence, it is proved that (𝑥𝑛) converges to 𝐿 in 𝑋.
The second case, when 0 < 𝜆 < 1, can be proved similarly.
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