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Abstract

Convolutional Neural Network (CNN) for medical image classification has
produced satisfying work [11, 12, 15]. Several pretrained models such as
VGG19 [17], InceptionV3 [18], and MobileNet [8] are architectures that can be
relied on to design high accuracy classification models. This work investigates
the performance of three pretrained models with two methods of training.
The first method trains the model independently, meaning that each model
is given an input and trained separately, then the best results are determined
by majority voting. In the second method the three pretrained models are
trained simultaneously as interconnected models.

The interconnected model adopts an ensemble architecture as is shown in
[7]. By training multiple CNNs, this work gives optimum results compared
to a single CNN. The difference is that the three subnetworks are trained si-
multaneously in an interconnected network and showing one expected result.
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In the training process the interconnected model determines each subnet-
work’s weight by itself. Furthermore, this model will apply the most suitable
weight to the final decision. The interconnected model showed comparable
performance after training on several datasets. The measurement includes
comparing the Accuracy, Precision and Recall scores as is shown in confusion
matrix [3, 14].

Keywords: Convolutional Neural Network, medical image classification, in-
terconnected model

1. Introduction

For the last decade, the Convolutional Neural Network (CNN) has done an im-
pressive image classification task. Some of the successfully developed models, that
achieved good results in classification tasks, include VGG19 [17], InceptionV3 [18],
and MobileNet [8]. Referring to its architecture, CNN stacks several convolutions
down or sideways according to each architecture’s characteristics and then com-
bined with a multilayer perceptron at the end of the network.

Medical Imaging is a technique of visualizing body parts to conduct clinical
analysis or get a medical response. Furthermore, it also builds a database of body
anatomy and physiology, allowing experts to identify abnormalities [4, 6]. Briefly,
the medical imaging is started from the sensor’s stage which penetrates the hu-
man body, subsequently it is transformed into signals and read by the detector,
continuously mathematically manipulated and eventually visualized into an image
[9].

The medical image classification has been well implemented in the following
tasks. In [11] by adopting the VGG19 architecture, they developed four Convolu-
tion blocks. The first block consists of two convolutions with 64 channels using the
ReLU activation function followed by the Max pooling layer to reduce its dimen-
sions. Two convolutions fill the second block with 128 channels using the ReLU
activation function and the Max pooling layer. The third block is similar to the
previous one, but the convolutions’ channels are changed for 256 with the ReLU ac-
tivation function and Max pooling layer at the end of the block. The final block also
consists of two convolutions with 512 channels using the ReLU activation function
and a Max pooling layer to decrease its dimensions. The architecture is extended
to the Multilayer Perceptron (MLP), consisting of two fully connected layers with
a ReLU activation function and one final layer with a Sigmoid activation function
after passing through the Flatten layer. Architecture also uses Dropouts in order
to resist Overfitting. The model was then tested on the PatchCamelyon dataset,
which was published in the Kaggle competition. This work has successfully exhib-
ited good performance by achieving 0.92 and 0.98 for the validation accuracy score
and the Area Under Curve, respectively.

Similar results can be seen in [15]. This architecture utilizes 121 layers of CNN,
known as DenseNet to train the input images which are the frontal views of chest
X-ray photos. The result is the probability score for the presence of pneumonia
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on the input images. Further, the F1 score of the model was compared to four
pathologists’ F1 score. The results reported that the F1 score of the model was
better than the mean F1 score of the four pathologies. CheXNet’s F1 score was
0.435, while the mean score for the four pathologies was 0.387. All the F1 scores
were measured by 95% confidence interval. This study was also compared with
the results of previous studies in predicting 14 levels of pneumonia. These results
showed that CheXNet model exceeds previous studies’ results by dominating the
best accuracy scores of the fourteen levels of pneumonia. In [12] AlexNet was used
to demonstrate that CNN is capable of classifying Blood Smear Digital Images for
malaria detection. The architecture was composed of four blocks. The first block
was filled with two convolutions and it ended with the Max pooling layer. On the
other hand, the second convolution was supplied with two blocks and it ended with
the Average pooling layer. The third block was filled with two convolution layers
without having a pooling layer. The ReLU activation function was used for these
three blocks of convolution. The last block was the MLP with three fully connected
layers which had 256 neurons. This architecture ended with Soft-Max two classes
according to the given classification problem. The reported results were as follows:
97.37% Accuracy, 96.99% Sensitivity, 97.75% Specificity, 97.73% Precision, and
97.36% F1 Score.

The interconnected model was depicted in [7], which trained three CNNs to-
gether. The three CNNs used AlexNet, VGGNet, and GoogLenet. The three CNNs
were trained simultaneously on the skin cancer dataset, and then the best results
were determined by voting. At the end of the article, they compared the AUCs of
the three CNNs trained separately, in pairs, and simultaneously. The final results
showed that the three models’ best average AUC score was achieved when they
trained simultaneously.

2. Datasets, hardware and software

In this work, we trained the developed model on three datasets published by the
Kaggle dataset. The three datasets were the result of digitizing medical images
of the human body. The first dataset was the chest X-ray dataset1 representing
data on a small amount of 5216 photos. The second was the Malaria dataset2,
representing an intermediate amount of data, namely 27,560 pictures. The last
was the PatchCam dataset3, which was a large dataset with a total of 220,025
images. The chest X-ray dataset [10] was a radiological image of human lungs
categorized into two classes and not distributed proportionally, consisting of 3875
and 1341 for viral pneumonia/bacterial and normal ones. The entire picture had
run through doctors’ labeling process and followed by an expert’s level of accuracy
verification. Here are examples of a chest X-ray dataset in Figure 1.

1https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
2https://www.kaggle.com/miracle9to9/files1
3https://www.kaggle.com/c/histopathologic-cancer-detection
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The malaria dataset was owned by the Open Knowledge Foundation4 and pub-
lished by the Kaggle dataset. Data was the result of digitization from the Thin
Blood Smear process. The image was taken using an Android smartphone applica-
tion integrated with a microscope using standard lighting. The data was distributed
proportionally, with a total of 27,560 images. Experts carry out the labeling pro-
cess by producing two categories of images, namely parasitized and normal. Here
are examples image from the dataset in Figure 2.

Figure 1. X-ray dataset, (a) Normal and
(b) bacterial/viral pneumonia.

Figure 2. Malaria dataset, (a) Normal and (b) parasitized.

Figure 3. PatchCam Dataset, (a) Cancerous and (b) non-cancerous.

4https://opendatacommons.org/licenses/by/1-0/index.html
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The next dataset was the PatchCam Dataset [1, 19], published at the Kaggle
competition. The data were small pathology images converted into digital for-
mat, consisting of 220,025 images, and not evenly distributed in the two classes,
cancerous and non-cancerous. Here are examples from the PatchCam dataset in
Figure 3.

For the daily experiment, we used Google Collaboratory, and then the data
were trained on a Dell Desktop with GEFORCE GTX 1060 6GB. Each code in
this work was written in Python version 3.6 by exploiting jupyter notebook. Apart
from that, the Tensorflow and Keras frameworks were also used in this work.

3. Methodology

3.1. Network architecture

In this work, we proposed an interconnected CNN model. This model was a combi-
nation of three subnetworks consisted of three pretrained models. The purpose of
combining the three subnetworks is to let the three subnetworks work independently
in the training process to determine the influence of each subnetwork on decision
making. Thus, the interconnected model will get the proper weight, increasing its
ability in the classification task. The three subnetworks, namely, VGG19 consisted
of sixteen convolution layers, InceptionV3 consisted of forty-eight layers of convo-
lution, and MobileNet consisted of eighteen layers of convolution. The Multilayer
Perceptron (MLP) of each subnetwork was replaced with three Fully Connected
layers using the ReLU activation function to fit the interconnected models needed.
Before entering into MLP, the architectural design required a Flatten layer to con-
vert the features’ dimensions. The next layer was the Concatenation layer, where
the three output layers will be combined so that the interconnected model will
only have one output. Afterward, the three Fully Connected layers were installed,
consisting of two Fully Connected layers using the ReLU activation function and
one Fully Connected layer using Soft-Max two classes to represent our dataset’s
classification problem. Here it is shown the architectural design in Figure 4.

3.2. Training process

Due to variations between small and large datasets, the augmentation method
[13] was employed to provide sufficient data for the model. The augmentation
process that we have implemented includes rotation, shifting, shearing, zooming,
and flipping. For simplicity purposes, a few aspects were standardized. We took
10% of the images from each dataset, then used them as a test set. Afterward, 70%
of the remaining images were allocated as a training set and 30% as a validation
set. The input sizes of all datasets were set to 100 × 100 pixels. The batch sizes
were set to 16 and an epoch of 50 for each training process.

In our work, emphasis is put on having a training process which is carried
out simultaneously in a series of interconnections. Although each subnetwork has
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Figure 4. Architecture of the interconnected Model.

authority in the training process, the training process is an integral part that
cannot be separated from one and another. This process causes each subnetwork’s
weights to be determined by the training process itself and not by the user. When a
subnetwork has better performance than others, the subnetwork will automatically
have more significant impact on the overall interconnected model. Conversely, if a
subnetwork produces unsatisfactory performance, it will have less weight in the final
decision process. In [7], the initial weights was determined to be equivalent for the
three subnetworks. In our work, the interconnected model determined its weights
according to the training process that each model gone through. The weighting
process of each subnetwork was intervened neither at the initial nor during the final
decision stage.

Utilizing the transfer learning method in the training process caused many layers
that may not be necessary and will consume extra resources of the computational of
our work. The Freezing layers technique as explained in [2] was implemented to save
computation resources without destroying the model’s performance. The process
includes freezing several layers causing the input images to go through these layers
to avoid updating weights. This Freezing layers method aimed to diversify the
three subnetworks, allowing three different perspectives to more effectively notice
the image’s characteristics.

During the training process, the model tried to get the smallest possible Loss
score to get the best possible Accuracy score. Thus, we aimed to minimize the
Loss score of the model using the Soft-Max Loss function. The Soft-Max Loss
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function itself was the product of implementing the Soft-Max function into the
Loss function. To see the connection between these two functions more clearly,
let’s look at the formula (3.1). As explained in [5, 16], the formula Soft-Max
function 𝑓(𝑠) : R𝐾 → R𝐾 is a vector function in the range 0 to 1, where 𝐾 is
number of classes.

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑︀𝐾
𝑐=1 𝑒

𝑠𝑐
. (3.1)

This formula is obtained by calculating the 𝑒 number to the power of 𝑠𝑖, 𝑠𝑖 itself
refers to the score 𝑠 from class 𝑖. Hence, the numerator divided by the sum of the
constant 𝑒 to the power of all score in number of classes. So that when implemented
into the Soft-Max loss function [5, 16] it will become:

𝐶𝐸 = −
𝐾∑︁

𝑖

𝑡𝑖 log(𝑓(𝑠)𝑖). (3.2)

Equation (3.2) explains that cross-entropy 𝐶𝐸 is the sum of ground truth 𝑡𝑖 loga-
rithm the CNN score of each class that represents by 𝑓(𝑠)𝑖.

We were also optimizing our model by setting Adam optimizer at 1e-4 learning
rate and decay 1e-6 for each subsequent epoch. Furthermore, we calculated the
accuracy score based on the Confusion Matrix [3, 14], which results in True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN). TP is
representing ill patients as precisely predicted to be ill patients. Meanwhile, TN
is healthy patients correctly predicted as healthy patients. On the other hand, FP
is healthy patients incorrectly predicted as ill patients. and vice versa FN is ill
patients, mistakenly classified as healthy patients. We also measured the Precision
and Recall score to see the performance of the ill predicted label. For more details,
the Accuracy, Precision, and Recall score calculation are in the equations. (3.3),
(3.4), and (3.5).

Accuracy =
TP + TN

TP + TN + FP + FN
, (3.3)

Precision =
TP

TP + FP
, (3.4)

Recall =
TP

TP + FN
. (3.5)

4. Results

4.1. Training and validation accuracy
In the first experiment, the three subnetworks were trained separately. Thus each
subnetwork provided its prediction result. The results from each subnetwork were
then used in the voting process. Experiments using the chest X-ray dataset showed
that the three pretrained models can be appropriately implemented. It can be ob-
served from the ability of the three pretrained models to validate the training
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results. The two intersecting lines in Figure 5 indicated that the training accuracy
and the validation accuracy scores were comparable. It revealed that the three pre-
trained models were suitable and did not overfit. Each model achieved a validation
score of 0.91 for VGG19, 0.89 for InceptionV3, and 0.93 for MobileNet.

Figure 5. Training and validation accuracy for chest X-ray dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet.

Likewise, the training process using the malaria dataset showed a good perfor-
mance of VGG19 by achieving a validation score of 0.90. InceptionV3 and Mo-
bileNet had satisfactory validation scores of 0.80 as shown in Figure 6.

For training the PatchCam dataset, VGG19 achieved optimum results in the
classification task reported a score of 0.86 for validation accuracy. InceptionV3
showed satisfactory performance with a validation score of 0.70. The MobileNet
pretrained model also achieved the same score with a small overfit condition. In
Figure 7, the training and validation processes on the PathCam dataset were de-
picted.

The training process for the interconnected model operated the same as the
separate training process. The only difference was the interconnected model trains
three submodels simultaneously. This model had trained all parameters owned by
the three pretrained models. These experiments reported that the interconnected
model showed comparable performance with any single model. The interconnected
model’s validation accuracy scores compared to all single models are presented in
Table 1.
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Figure 6. Training and validation accuracy for malaria dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet.

Figure 7. Training and validation accuracy for PatchCam dataset:
a) VGG-19, b) InceptionV3 and, c) MobileNet.
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Figure 8. Training and validation accuracy of the interconnected
model on all datasets: a) chest X-ray, b) Malaria, c) PatchCam.

Table 1. Validation accuracy of all models for three datasets.

Dataset VGG19 InceptionV3 MobileNet Interconnected
chest X-ray 0.91 0.89 0.93 0.93

Malaria 0.90 0.80 0.80 0.90
PatchCam 0.86 0.70 0.70 0.86

4.2. Visualization of training process
Figure 9 explains the steps that occur during the training process by visualizing
[2] the images. Figure 𝑎 represents the image that was input to the model. The
original image size, as previously mentioned, was 100x100 pixels. Given that this
dataset’s training process studied the completeness of photographs of human lungs,
an example image from the normal category dataset is presented. Having the
extracted features as shown in parts, 𝑏 to 𝑑, then the part 𝑒 shows that the model
can detect lungs in a healthy condition with an image representation showing the
lungs appearing intact.

Figure 10 depicts the malaria dataset image from the input process, feature
extraction, and object detection in human blood. Part 𝑎 is the image input to the
model. Parts 𝑏 to 𝑑 are the extracted features by the models. Part 𝑒 is the model’s
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Figure 9. a) Input, b)-d) Extracted Features, e) Heatmap.

heatmap as the classification result for the image labeled as malaria.

Figure 10. a) Input, b)-d) Extracted features, e) Heatmap.

The training process on the PatchCam dataset aimed to detect the presence of
cancer cells in the image. Therefore, when the image in Figure 11 𝑎 was input to
the model, the model performed the feature extraction process shown in Figure 11
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𝑏 to 𝑑. After that, the model can detect the cancer cells’ presence in the image as
displayed in the heatmap in Figure 11 𝑒.

Figure 11. a) Input, b)-d) Extracted Features, e) Heatmap.

4.3. Predicted results
After training and validating all models on the dataset, The model was tested
using the test set. This was performed to observe the model’s ability to predict
new data. From the three pretrained models that we trained on the chest X-ray
dataset, it can be reported that all models can predict the data accurately. Table 2
shows that all pretrained models achieved good accuracy scores, which were 0.91,
0.84, and 0.91 for VGG19, InceptionV3, and MobileNet, respectively. However,
in this case, the interconnected model’s achievement has not exceeded majority
voting performance, which can be seen from the majority voting accuracy score of
0.91. Nevertheless, the interconnected model results were comparable with both
the single model and the majority voting. Table 2 also shows that the correctly
and incorrectly predicted images is well distributed. The precision and recall score
in Table 2 also indicates that the interconnected model’s ability was slightly better
than the majority voting model. In retrieving images containing pneumonia, the
interconnected model found 383 images with 7 images error or equivalent to a recall
score of 0.98, compared to majority voting, with 370 images containing pneumonia
and 20 images error or equivalent to 0.85 recall score. Even so, the two models’
precision score was comparable, namely, 0.91 for majority voting and 0.87 for the
interconnected model.

A similar approach was applied to the malaria dataset to see the three models’
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Table 2. Confusion matrix and classification report of chest X-ray
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 361 29 206 28 0.91 0.88 0.88

InceptionV3 345 45 179 55 0.84 0.80 0.76
MobileNet 370 20 195 39 0.91 0.90 0.95

Majority Voting 370 20 198 36 0.91 0.91 0.85
Interconnected 383 7 177 57 0.90 0.87 0.98

ability to predict new data. Different results were obtained from this experiment,
as shown in Table 3. This experiment gained an accuracy score for each pretrained
model, consisting of 0.87 for VGG19, 0.87 for InceptionV3, and 0.72 for MobileNet.
The abilities MobileNet was not optimum because there was a significant error
in predicting data in the positive class. In this experiment, the majority voting
method cannot provide maximum results, namely 0.86 accuracy. On the other
hand, the interconnected model can provide a proper weight, increasing the ac-
curacy score to 0.88. Furthermore, the interconnected model showed satisfying
performance on the positive class with a recall score of 0.82 compared to majority
voting with a recall score of 0.74. This value represented the number of images
identified with malaria that can be retrieved as many as 823 images with 177 errors
for the interconnected model. In comparison, majority voting found 737 images
with an error of 263 images. The Precision scores in Table 3 represent the level of
precision of each model. It is shown that all models have a good level of precision,
which is above 0.93.

Table 3. Confusion matrix and classification report of Malaria
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 798 202 938 62 0.87 0.93 0.80

InceptionV3 776 224 963 37 0.87 0.95 0.78
MobileNet 443 557 997 3 0.72 0.99 0.44

Majority Voting 737 263 988 12 0.86 0.98 0.74
Interconnected 823 177 942 58 0.88 0.93 0.82

The last experiment utilized the PatchCam dataset. Comparing the three sub-
network, the VGG19 model showed the best performance with an accuracy score
of 0.87, followed by the InceptionV3 model with an accuracy score of 0.70, and
the MobileNet with an accuracy score of 0.66. This experiment also produced one
dominant model. Thus, the majority voting method did not work optimally and
gained an accuracy score of 0.83. On the other hand, the interconnected model
can provide a suitable weight for each model to get an accuracy score of 0.87. As
seen in Table 4, the interconnected model has better Precision and Recall scores
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than the majority voting. Thus the interconnected model has better performance
in both classification classes, cancer and non-cancer images.

Table 4. Confusion matrix and classification report of PatchCam
dataset.

Model TP FN TN FP Accuracy Precision Recall
VGG19 6692 2199 12400 709 0.87 0.89 0.75

InceptionV3 6638 2253 8838 4271 0.70 0.61 0.75
MobileNet 2696 6195 11882 1227 0.66 0.69 0.30

Majority Voting 5902 2989 12342 767 0.83 0.88 0.66
Interconnected 6721 2170 12316 793 0.87 0.89 0.77

5. Conclusions

After training all pretrained models separately and simultaneously on the three
datasets, we concluded the interconnected model could be used when majority
voting did not work optimally. The results can be seen in the second and third ex-
periments using the Malaria and PatchCam dataset. Although the interconnected
model’s accuracy score slightly corrected the score of majority voting, in predicting
positive classes, the interconnected model worked better than other models on the
three datasets. The interconnected model worked by giving the submodels the best
weights without training them separately. This method was more efficient than first
training of the three submodels to determine their abilities and then consider their
appropriate weights.

Our work focused on the investigating of the interconnected model’s ability
versus majority voting, but not analyzing the individual optimization of each sub-
network’s architecture. It means that we used the transfer learning method without
adjustment. This can be confirmed by comparing our work’s accuracy with sev-
eral references which use the same dataset [11, 12, 15]. In this case, InceptionV3
and MobileNet’s pretrained models required adjustments in the depth and number
of layers. Therefore, in our future work we will examine each network’s further
optimization possibilities to help the developed system to be more accurate. In
addition, the usage of the imbalanced dataset also influences the model’s perfor-
mance. We consider using a method that can handle the imbalanced dataset’s
problem to increase the model’s accuracy.
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