
A contribution to scheduling jobs submitted
by finite-sources in computational clusters∗

Attila Kuki, Tamás Bérczes, Ádám Tóth, János Sztrik

University of Debrecen, Hungary
{kuki.attila,berczes.tamas,toth.adam,sztrik.janos}@inf.unideb.hu

Submitted: December 21, 2020
Accepted: March 17, 2021

Published online: May 18, 2021

Abstract

Data science and data processing are very popular topics nowadays. Un-
like a few years ago, everything is connected to data now and we have to
handle these kinds of large data well. Therefore the distributed heteroge-
neous resources of networks e.g. the computational grid, have attracted great
interest. It has become a challenge to schedule jobs in order to utilize the
available resources effectively. The allocation of arriving jobs has a great
impact on the efficiency and the energy consumption of the system.

A generalized finite source model is presented in this paper. Our main goal
is to build up models for the performance evaluation of scheduling compute-
intensive jobs with unknown service times in a computational cluster that
consists of servers of different types. For this purpose we determine various
performance measures for all combinations of three scheduling policies (two of
them are the novelty of this paper: the MRT and the MRTHP policies) which
can be used for assigning jobs to servers with three schemes for buffering
arriving jobs. Furthermore, we investigate the effect of switching off idle
servers on the energy consumption of the system under these combinations
of scheduling policies and buffering schemes.

Computational results obtained by simulation show that the choice of
the scheduling policy and the buffering scheme plays an important role in
ensuring the quality of service parameters such as the waiting time and the

∗The research work was supported by the construction EFOP - 3.6.3 - VEKOP - 16-2017-
00002. The project was supported by the European Union, co-financed by the European Social
Fund.
The research work was supported by the Austro-Hungarian Cooperation Grant No 106öu4, 2020.

Annales Mathematicae et Informaticae
53 (2021) pp. 201–218
doi: https://doi.org/10.33039/ami.2021.03.008
url: https://ami.uni-eszterhazy.hu

201

response time experienced in the case of arriving jobs. However, the energy
consumption is only affected by the scheduling policy and the energy saving
mode, while the buffering scheme does not have a significant impact.

Keywords: Computational cluster, performance evaluation, buffering scheme,
finite-source queueing systems

AMS Subject Classification: 68M10, 68M20

1. Introduction

This paper deals with scheduling jobs in heterogeneous resources of networks, e.g.
the computational clusters. In the literature various job allocation algorithms have
been proposed to schedule arriving jobs in computational clusters [1, 6, 7]. In
addition, some algorithms have been designed to consider knowledge about the
characteristics of jobs; these algorithms may be classified as either clairvoyant or
as non-clairvoyant [15–17].

Besides the effective scheduling, the energy consumption of such grid systems
turns into a crucial requirement due to the rapid increase of the size of the grid
and the goal of a green computational cluster. The most common techniques of
reducing energy consumption are related to the dynamic power management used
at runtime. It is therefore of interest to examine algorithms that offer the greatest
performance while using an amount of energy that is as low as possible.

Do introduced a generalized infinite model for the performance evaluation of
scheduling compute-intensive jobs with unknown service times in computational
clusters [2, 14]. In this paper we use a finite model instead of the infinite one [12]
to make the queueing model more realistic and we introduce two new scheduling
policies: in addition to the previously introduced High Performance priority policy,
we also consider a Mean Response Time priority and a Mean Response time with
High Performance priority policy. We investigate these policies with respect to
three schemes of buffering the arriving jobs: Separate Queue, Class Queue, and
Common Queue. The novelty of this paper is introducing these two new policies. To
our knowledge, this is the first time when such a detailed investigation of scheduling
policies of this kind has been performed. Among the three mentioned buffering
schemes the Common Queue proved to be the most efficient. The novelty of this
paper is to develop two new scheduling policies: the MRT and the MRTHP policies.
With these two new policies the performance measures reach and overcome the
characteristics of the Separate Queue.

The state space of the describing Markov chain is very large, thus it is rather
difficult to calculate the system measures in the traditional way of writing down
and solving the underlying steady-state equations. To obtain the performance mea-
sures we used SimPack, a collection of C/C++ libraries and executable programs
for computer simulation [3]. In this collection several simulation algorithms are
supported including discrete event simulation, continuous simulation, and com-
bined (multi-model) simulation. The purpose of the SimPack toolkit is to provide
the user a set of utilities that illustrate the basics of building a working simulation

202 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

from a model description. Simulation results show that between the newly applied
algorithms the MRTHP is capable of lessening the difference of the performance
measures of the buffering schemes. In the case of the Separate Queue, MRTHP sig-
nificantly decreases important factors such as the mean waiting time and the mean
response time. Furthermore, we study the effect of scheduling policies and buffer-
ing policies on the energy consumption of a system that switches off idle servers
with and without an energy saving mode. According to the obtained results, the
energy consumption of the different scheduling algorithms is relatively identical.

Some related investigations are described in [13]. Using the techniques described
in this paper, it would be worth applying finite-source models for those problems,
as well.

The rest of the paper is organized as follows: Section 2 describes the correspond-
ing queueing model with components to study the behavior of the computational
clusters and the derivation of the main steady-state performance measures. In
Section 3 we show some numerical results that were derived by simulation with
SimPack and subsequently visualized as diagrams. Section 4 presents our conclu-
sions.

2. System model

A cluster is considered that serves compute-intensive jobs according to the following
characteristics:

• Every job can be executed on any server.

• Jobs are served according to FIFO (first in, first out) policy.

• The service times of jobs are unknown to the local scheduler.

• Jobs under service cannot be interrupted (non-preemption);

• Jobs are atomic, i.e., they can not be divided into smaller pieces;

We assume, furthermore, that jobs arrive to the system from a finite number
𝑁 of sources and that each source generates jobs according to an exponential
distribution with parameter 𝜆; thus the maximum rate of the incoming jobs is
𝑁 · 𝜆. Servers are organized in 𝐼 classes with 𝐽 servers per class. Service times,
which denote the times required for the servers to execute jobs, are exponentially
distributed with rate 𝜇𝑖 in class 𝑖. The exponentiality is not a strict constraint here.
In real-life applications the arrival and service behaviours are often very close to
the exponential behaviour. The service rate 𝜇system of the whole system can be
thus defined as

𝜇system =

𝐼∑︁

𝑖=1

𝐽 · 𝜇𝑖.

A contribution to scheduling jobs submitted by finite-sources . . . 203

The system load 𝜌system, the total amount of traffic carried by the system, can be
written as the ratio of between the arriving and the service rate:

𝜌system =
𝜆 ·𝑁
𝜇system

,

where 𝑁 is the average number of jobs in the system. Because the numbers of
sources of the considered model is finite, the stationary distributions always exist,
which implies the stability of the system.

2.1. Scheduling policies
Furthermore, we assume that every server is attached to a queue that buffers
arriving jobs and from which the server removes jobs for execution (multiple servers
may share a queue, see Section 2.2 for the various buffering schemes considered).
We investigate in our model the following policies for scheduling arriving jobs to
server queues:

• HP (High Performance priority): This policy chooses the shortest queue in
the system. If there is more than one queue with this property, a queue whose
server has the highest performance is chosen.

• MRT (Mean Response Time priority): This policy first calculates the ex-
pected mean response time for every queue and then selects a queue where
this value is minimal.

• MRTHP (Mean Response Time with High Performance priority): This policy
is a combination of MRT and HP. If there is an idle server, it behaves like
the HP policy; if all servers are busy, it behaves like MRT.

The comparison of these policies and the effect of MRT and MRTHP policies
to the performance measures and the energy efficiency are discussed in sections 3.1
and 3.2.

In order to obtain the performance, mean response times, and energy consump-
tion of a server, we consider every server of the cluster to be of a specific type
(class). Let 𝑆 denote the set of server classes and 𝐼 = |𝑆| the size of 𝑆. Let 𝑠 ∈ 𝑆
be a server class which can be characterized by the following parameters:

• 𝐶𝑠: This is the throughput of the server i.e., the number of completed opera-
tions per time; it is measured in ssj_ops according to the SPECpower_ssj2008
benchmark [11].

• 𝑃ac,𝑠: This is the average active power of the server under full load; it is
measured in Watt according to the SPECpower_ssj2008 benchmark.

• 𝑃id,𝑠: This is the power consumption of the server in the idle state; it is
measured in Watt according to the SPECpower_ssj2008 benchmark.

204 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

It is presumed that when a server of class 𝑠 is busy, then it works with through-
put 𝐶𝑠 and power consumption 𝑃ac,𝑠. According to SPECpower_ssj2008, the ratio
𝐶𝑠/𝑃ac,𝑠 describes the energy efficiency of the server; higher ratio means higher
efficiency. When the server becomes idle, the internal clock of the CPU is stopped
via software such that the server consumes power 𝑃id,𝑠 < 𝑃ac,𝑠; alternatively, idle
servers may be completely switched off such that they do not consume power at
all.

To choose a server with the highest performance in the HP respectively MRTHP
policy, a server of class 𝑠 with the highest value of 𝐶𝑠 is selected; to choose a server
with the smallest mean response time in the MRT respectively MRTHP policy, a
server of class 𝑠 with the smallest ratio 𝑞/𝐶𝑠 of queue length 𝑞 and throughput 𝑠
is selected.

2.2. Buffering schemes

In the following subsections, we present the various schemes for buffering arriving
jobs and how they implement the previously introduced scheduling policies.

2.2.1. Separate Queue

In the Separate Queue scheme, every server has its own queue as depicted in Fig-
ure 1. Jobs are scheduled to the queue of a specific server according to the chosen
policy, and they remain in that queue as long as the server is busy. If the server
becomes idle, then it receives the first waiting job from its queue.

Henceforth let 𝑐𝑖𝑗 denote the status of server 𝑗 in class 𝑖 (0 denotes idle, 1
denotes busy or not in class 𝑖), and let 𝑞𝑖𝑗 denote the number of jobs in the queue
of that server (which can range from 0 to 𝑁−𝐼 ·𝐽). The state of the cluster at time
𝑡 can be considered as a Continuous Time Markov Chain with dimension I ·J+ I ·J:
𝑋(𝑡) = (𝑐11(𝑡); . . . ; 𝑐IJ(𝑡); 𝑞11(𝑡); . . . ; 𝑞IJ(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ; 𝑞11; . . . ; 𝑞IJ) = lim
𝑡→∞

𝑃 ((𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ(𝑡) = 𝑐IJ;

𝑞11(𝑡) = 𝑞11; . . . ; 𝑞IJ(𝑡) = 𝑞IJ)

Since the state space of the describing Markov chain is very large, it is rather
difficult to calculate the system measures in the traditional way of writing down
and solving the underlying steady-state equations.

To obtain the performance measures we therefore used SimPack, a collection of
C/C++ libraries and executable programs for computer simulation [3].

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that the server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that the server 𝑗 in class 𝑖 is idle,

A contribution to scheduling jobs submitted by finite-sources . . . 205

• 𝑄𝑖𝑗 – The mean length of queue 𝑖𝑗,

• 𝑄 – The mean number of jobs in the queues: 𝑄 =
∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1𝑄𝑖𝑗 .

Figure 1. The Separate Queue scheme.

2.2.2. Class Queue

In the Class Queue scheme a buffer is assigned to each class (see Figure 2). Jobs
are scheduled to the queue of a specific class according to the chosen policy, and
they remain in that queue as long as all servers of the class are busy. If a server
becomes idle, then it receives the first waiting job from the queue of its class.

Henceforth, let 𝑐𝑖𝑗 denote the status of server 𝑗 in class 𝑖 (0 means idle and
1 means busy) and let 𝑞𝑖 denote the number of jobs in its queue (which can
range from 0 to 𝑁 − 𝐼 · 𝐽). The state of the cluster at time 𝑡 can be con-
sidered as a Continuous Time Markov Chain with dimension I · J + I: 𝑋(𝑡) =
(𝑐11(𝑡); . . . ; 𝑐IJ(𝑡); 𝑞1(𝑡); . . . ; 𝑞I(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ; 𝑞1; . . . ; 𝑞I) = lim
𝑡→∞

𝑃 ((𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ(𝑡) = 𝑐IJ;

𝑞1(𝑡) = 𝑞1; . . . ; 𝑞I(𝑡)) = 𝑞I)

206 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

Figure 2. The Class Queue scheme.

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is idle,

• 𝑄𝑖 – The mean length of queue 𝑖,

• 𝑄 – The mean number of jobs in the queues: 𝑄 =
∑︀𝐼
𝑖=1𝑄𝑖.

2.2.3. Common Queue

In the Common Queue scheme, only a single common buffer is available for all
servers (see Figure 3). If a job arrives, then its service begins immediately if at
least one server is idle. If more than one server is idle, then the local scheduler
chooses the server with the highest performance. If all the servers are busy, then
the local scheduler places the job into the queue and the job remains there until
one of the servers become idle.

Henceforth, let 𝑐ij denote server 𝑗 in class 𝑖 (0 means idle and 1 means busy),
and let 𝑞1 denote the number of jobs in the queue (which can range from 0 to
𝑁 − 𝐼 · 𝐽).

The state of the cluster at time 𝑡 can be considered as a Continuous Time
Markov Chain with dimension I · J + 1: 𝑋(𝑡) = (𝑐11(𝑡); . . . ; 𝑐IJ (𝑡); 𝑞1(𝑡)).

The system’s steady-state probabilities can be defined the following way:

𝑃 (𝑐11; . . . ; 𝑐IJ ; 𝑞1) = lim
𝑡→∞

𝑃 (𝑐11(𝑡) = 𝑐11; . . . ; 𝑐IJ (𝑡) = 𝑐IJ ; 𝑞1(𝑡) = 𝑞1).

A contribution to scheduling jobs submitted by finite-sources . . . 207

Figure 3. The Common Queue scheme.

Using the simulation program the following important performance measures
of the system can be calculated:

• R𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is busy,

• L𝑖𝑗 – The probability that server 𝑗 in class 𝑖 is idle,

• 𝑄 – The mean number of jobs in the queue:

𝑄 =
1∑︁

𝑐11=0

. . .
1∑︁

𝑐IJ=0

𝑁−𝐼·𝐽∑︁

𝑞1=0

𝑞1 · 𝑃 (𝑐11, . . . , 𝑐IJ; 𝑞1).

2.3. Generic performance measures

For all three buffer schemes, the following further performance measures can be
obtained by the help of the previously calculated measures:

• 𝑅 – The mean number of jobs at the servers: 𝑅 =
∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1𝑅𝑖𝑗

• 𝑂 – The mean number of jobs in the system: 𝑂 = 𝑄+𝑅

• 𝑁 – The mean number of jobs in the queue: 𝑁 = 𝑁 −𝑄−𝑅

• 𝜆 – The mean generating intensity: 𝜆 = 𝜆𝑁

• 𝜆 – The mean response time: 𝑇 = 𝑂
𝜆

• 𝑊 – The mean waiting time: 𝑊 = 𝑄

𝜆

208 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

It is worth mentioning that practical implementation of the Separate queue
scheme is the easisest because waiting jobs can be placed inside each physical
server. For example jobs and parameters can be allocated in the local disk of each
physical server.

The common queue scheme can be used in MaaS (Message Queueing as a
Service) in the cloud computing paradigm. A possible example of the compute-
intensive services of unknown service times is AWS cloud lambda service [4, 5].

2.4. Energy metrics

Let 𝑃id,𝑖 and 𝑃ac,𝑖 denote the active power consumption of server 𝑖 when idle
respectively busy. Furthermore, 𝑅𝑖,𝑗 denotes the probability that server 𝑖 in class
𝑗 is busy and 𝐿𝑖,𝑗 denotes the probability that it is idle. Then the average energy
consumption of the whole system can be defined in the following way depending
on whether idle servers are switched off or not:

• AEno-switch – The mean energy consumption of the system when idle servers
are not switched off:

AEno-switch =

𝐼∑︁

𝑖=1

⎛
⎝𝑃ac,𝑖

𝐽∑︁

𝑗=1

𝑅𝑖,𝑗 + 𝑃id,𝑖

𝐽∑︁

𝑗=1

𝐿𝑖,𝑗

⎞
⎠ .

• AE switch-off – The mean energy consumption of the system when idle servers
are switched off:

AE switch-off =

𝐼∑︁

𝑖=1

⎛
⎝𝑃ac,𝑖

𝐽∑︁

𝑗=1

𝑅𝑖,𝑗

⎞
⎠ .

3. Numerical results

We have implemented the models introduced in Section 2 with the help of the
SimPack package and now we present results on the comparison of scheduling
algorithm. For this purpose, we have modeled three classes of Commercial Off-
The-Shelf (COTS) servers with different types of processors (Intel Xeon E5-2670,
Intel Xeon E5-2660, and Intel Xeon E5-4650L) whose characteristics are depicted
in Table 1.

The simulations were performed with the parameters depicted in Table 2. Jobs
are generated according to an exponential distribution with parameter 𝜆 from a
source of 𝑁 components and are routed to 𝐼 classes of servers with 𝐽 servers per
class; the servers in class 𝑠 process jobs according to an exponential distribution
with parameter 𝜇𝑠; for this purpose, the performance 𝐶𝑠 with maximum value
6419263 ssj_ops is adjusted to a service rate 𝜇𝑠 with maximum value 1 (i.e., every
job is assumed to require 1 second on an Intel Xeon E5-2670 processor).

A contribution to scheduling jobs submitted by finite-sources . . . 209

Table 1. Server classes.

Type of server 𝐶𝑠 (ssj_ops) 𝑃ac,𝑠 (W) 𝐶𝑠/𝑃ac,𝑠 𝑃id,𝑠 (W)
Acer AW2000h-Aw170h F2 6419263 1700 3776 364(Intel Xeon E5-2670)[9]
Acer AW2000h-Aw170h F2 5286503 1275 4146 331(Intel Xeon E5-2660)[8]

PowerEdge R820 2790966 457 6102 108(Intel Xeon E5-4650L)[10]

Table 2. Simulation parameters.

Notation Parameter Value

𝑁 Number of jobs in the source 150

𝐼 Number of server classes 3

𝐽 Number of servers per class 8

𝜆 Job generation rate 0.07–0.18

𝜇𝑠 Service rates of servers in class 𝑠 1; 0,82; 0,43

3.1. Performance measures
To evaluate the performance of the system, we analyze the mean service time,
the mean waiting time, and the mean response time. Several figures are devoted
to service, waiting, and response times. Though, response times can be more
important, than service times, figures with service times are are also presented.
At most of the investigated cases, the waiting times and response times provide
almost the same characteristics, thus due to the range constraint of the paper, only
one of them is presented here. The service times have different characteristics, so
beside the figures of response and/or waiting times, service times figures are also
included.

Figure 4 shows the mean service time as a function of the generation rate 𝜆
using the HP policy for all buffering schemes. We see that as the generation rate
increases, the mean service time also increases. This phenomenon can be explained
by that jobs are first scheduled to the servers with highest performance. It also
can be observed that for every buffering scheme the mean service times are almost
the same, independently of the loads of the servers.

Furthermore, we can observe that, as the arrival rate starts to increase, slower
servers start to play a more and more important role in the mean service time.
Hereby the execution of the jobs become slower, thus jobs spend more time at
the server. Of course, this is true only for a specific generation rate, because the
more jobs arrive in the system, the higher the system load is. As we can see,

210 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

if the generation rate is greater then 0.16, we reach the maximum system load.
This means that eventually every server becomes busy and the mean service time
becomes constant.

Figure 4. The mean service time applying the HP policy.

Figure 5. The mean response time applying the HP policy.

Figure 5 shows the mean response time and as a function of the generation rate
using the HP policy (the same result can be obtained for the mean waiting time).
On close inspection, the Common Queue scheme performs best but the difference
to the Class Queue scheme is very small. As long as the generation rate does not
reach 0.1, we cannot observe major differences between both schemes. But in the

A contribution to scheduling jobs submitted by finite-sources . . . 211

range from 0.1 to 0.18 the difference appears vigorously, especially between the
Separate Queue scheme and the other ones. In case of the Separate Queue scheme,
the values of the mean waiting time and response time are the highest among the
schemes. The reason why the Common Queue scheme ensures the lowest values
for both the mean waiting and response times is that this model is able to utilize
the available resources in the most efficient way. However, it has to be considered
that the realization of Common Queue scheme is the most complicated one among
the applied buffering schemes.

Figure 6 demonstrates the effect of the new policies MRT and MRTHP on the
mean service time for the Separate Queue scheme. It is clearly visible that the
MRT policy gives much smaller values as well as a relatively smaller system load.
Comparing the HP and the MRTHP policy, we see that there is a slight difference
discernible between them which starts to manifest when the system load gets high.

Figure 6. The effect of HP, MRT and MRTHP on the mean service
time in case of Separate Queue.

Figure 7 shows the effect of the HP, MRT, and MRTHP policies on the mean
waiting time using the Separate Queue scheme. A similar figure can be generated
for mean response time. We can observe that the MRT policy is still the worst
among the three policies. But the significant difference is that the MRTHP policy
provides the most preferential values and not the HP policy. This is especially true
when the system load is in the medium range.

In Figure 8 we can see the effect of the scheduling policies on the mean service
time for the Class Queue scheme. It is clearly visible that the MRT policy gives
much smaller values than the HP and the MRTHP policies, but the difference is
here smaller than for the Separate Queue scheme (compare to Figure 6). We can
observe that there is no difference between the HP and the MRTHP policies.

Figure 9 shows that using a higher generation rate the mean waiting time (and

212 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

similarly, the mean response time) become higher. We can see that the MRT policy
gives the highest values and that there is only a very small difference between the
HP and the MRTHP policies. It is worth noting that using MRT/MRTHP policy
for the Common Queue scheme we get back the results of the HP policy.

Figure 7. The effect of HP, MRT and MRTHP on the mean waiting
time in case of Separate Queue.

Figure 8. The effect of HP, MRT and MRTHP on the mean service
time in case of Class Queue.

So all in all, we can observe that the significance of MRTHP is higher for
the Separate Queue scheme than for the Class Queue scheme and is negligible

A contribution to scheduling jobs submitted by finite-sources . . . 213

for the Common Queue scheme. Furthermore, while the MRTHP policy brings
the Separate Queue scheme and the Class Queue scheme closer to the Common
Queue scheme, the Common Queue scheme still seems to be the best to choose.
However, the practical implementation of the Separate Queue scheme is the easiest
and cheapest among all schemes; since the application of the MRT policy also
makes the Separate Queue scheme competitive with the Common Queue Scheme,
the combination of MRT policy and Separate Queue scheme may be preferred.

Figure 9. The effect of HP, MRT and MRTHP on the mean waiting
time in case of Class Queue.

3.2. Energy consumption

Figures 10 and 11 demonstrate for the Separate Queue scheme the mean energy
consumption in cases when idle servers are not switched off (𝐴𝐸no-switch) respec-
tively are switched off (𝐴𝐸switch-off). As we can see, we get the highest energy
consumption with the MRT policy and the lowest one with the HP policy; be-
tween the HP policy and the MRT policy there is only a small difference in case
of 𝐴𝐸switch-off and higher generation rates. As it can be expected, the difference
between all policies disappears for high generation rates, because all servers be-
come permanently busy, such that the energy consumption converges to around
1520 W.s/job.

Figures 12 and 13 demonstrate the mean energy consumption for the Class
Queue scheme. In both cases we get the highest energy consumption using the
MRT policy, and there is not any noticeable difference between the HP policy
and the MRTHP policy. Again for high generation rates, the energy consumption
converges for all policies to around 1520 W.s/job.

Finally, Figure 14 demonstrates how much energy can be saved by switching
off the idle servers (for the Separate Queue scheme and the HP policy). Since

214 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

the saving decreases for higher generation costs and switching servers off and on
involves extra costs, the choice to switch off servers must be clearly taken with
care.

Figure 10. 𝐴𝐸no-switch vs. generation rate using Separate Queue.

Figure 11. 𝐴𝐸switch-off vs. generation rate using Separate Queue.

A contribution to scheduling jobs submitted by finite-sources . . . 215

Figure 12. 𝐴𝐸no-switch vs. generation rate using Class Queue.

Figure 13. 𝐴𝐸switch-off vs. generation rate using Class Queue.

4. Conclusions

So far the High Performance priority policy was considered in similar investiga-
tions. In this paper we have introduced and considered two new scheduling policies,
namely the Mean Response Time priority and the Mean Response Time with High
Performance priority policies. We investigate these policies with respect to three
schemes of buffering the arriving jobs: Separate Queue, Class Queue, and Common

216 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

Figure 14. Mean energy consumption in case of switch off and
switch on using HP policy.

Queue. Furthermore, we study the effect of scheduling policies and buffering poli-
cies on the energy consumption of a system that switches off idle servers with and
without an energy saving mode. Since the state space of the describing Markov
chain is very large, for that reason we used SimPack, a collection of C/C++ li-
braries and executable programs for computer simulation in order to obtain the
performance measures.

The results described in this paper show that in the case of Separate and Class
Queue the Mean Response time with High Performance priority policy improves
the performance measures preeminently, in particular the mean sojourn time and
the mean waiting time, compared to High Performance priority policy. As the
Common Queue scheme operates with only one queue, we gain the same results with
the application of the proposed new algorithms in the case of High Performance
priority policy. Utilizing the MRHP priority policy the difference between the
performance metrics of Separate and Common Queue decreases significantly; the
numerical results show that the buffering schemes do not affect significantly the
energy consumption of the investigated clusters. Accordingly selecting a good
scheduling policy can augment the overall cluster performance without increased
power consumption whenever the buffering scheme possesses more than one queue
altogether.

References

[1] M. Cankar, M. Artač, M. Šterk, U. Lotrič, B. Slivnik: Co-Allocation with Collective
Requests in Grid Systems, Journal of Universal Computer Science 19.3 (2013), pp. 282–300,
doi: https://doi.org/10.3217/jucs-019-03-0282.

A contribution to scheduling jobs submitted by finite-sources . . . 217

[2] T. V. Do, B. T. Vu, X. T. Tran, A. P. Nguyen: A generalized model for investigating
scheduling schemes in computational clusters, Simulation Modelling Practice and Theory
37.0 (2013), pp. 30–42.

[3] P. A. Fishwick: Simpack: Getting Started With Simulation Programming In C And C++,
in: WSC ’92 Proceedings of the 24th Conference on Winter Simulation, ed. by J. S. et al.,
ACM, New York, 1992, pp. 154–162.

[4] K. Salah: A queuing model to achieve proper elasticity for cloud cluster jobs, International
Journal of Cloud Computing 1.1 (2013), pp. 755–761.

[5] K. Salah, K. Elbadawi, R. Boutaba: Performance modeling and analysis of network
firewalls”, IEEE Transactions on network and service management 9.1 (2012), pp. 12–21.

[6] A. Tchernykh, J. Ramírez, A. Avetisyan, N. Kuzjurin, D. Grushin, S. Zhuk: Two
level job-scheduling strategies for a computational grid, in: Proceedings of the 6th Inter-
national Conference on Parallel Processing and Applied Mathematics (PPAMA05), 2006,
pp. 774–781.

[7] G. Terzopoulos, H. D. Karatza: Performance evaluation of a real-time grid system using
power-saving capable processors, The Journal of Supercomputing 61.3 (2012), pp. 1135–1153.

[8] The Standard Performance Evaluation Corporation: Acer Incorporated Acer AW2000
h-AW170h F2 (Intel Xeon E5-2660),
url: https : / / www . spec . org / power _ ssj2008 / results / res2012q4 / power _ ssj2008 -
20120918-00546.html.

[9] The Standard Performance Evaluation Corporation: Acer Incorporated Acer AW2000
h-Aw170h F2 (Intel Xeon E5-2670),
url: https : / / www . spec . org / power _ ssj2008 / results / res2013q1 / power _ ssj2008 -
20121212-00590.html.

[10] The Standard Performance Evaluation Corporation: Dell Inc. PowerEdge R820 (In-
tel Xeon E5-4650L),
url: https : / / www . spec . org / power _ ssj2008 / results / res2012q4 / power _ ssj2008 -
20121113-00586.html.

[11] The Standard Performance Evaluation Corporation: SPECpower_ssj2008 Result
File Fields,
url: https://www.spec.org/power/docs/SPECpower_ssj2008-Result_File_Fields.html.

[12] Á. Tóth, T. Bérczes, A.Kuki, B. Almási, W. Schreiner, J. Wang, F. Wang: Analysis
of finite-source cluster networks, CREATIVE MATHEMATICS AND INFORMATICS 2
(2016), pp. 223–235.

[13] X. T. Tran, T. V. Do, C. Rotter, D. Hwang: A New Data Layout Scheme for Energy-
Efficient MapReduce Processing Tasks, Journal of Grid Computing 16.2 (2018), pp. 285–
298.

[14] X. T. Tran, T. V. Do, B. T. Vu: New Algorithms for Balancing Energy Consumption and
Performance in Computational Clusters, Computing and Informatics 36.2 (2017), pp. 307–
330.

[15] S. Zikos, H. D. Karatza: A clairvoyant site allocation policy based on service demands
of jobs in a computational grid, Simulation Modelling Practice and Theory 19.6 (2011),
pp. 1465–1478.

[16] S. Zikos, H. D. Karatza: Communication cost effective scheduling policies of nonclair-
voyant jobs with load balancing in a grid, Journal of Systems and Software 82.12 (2009),
pp. 2103–2116.

[17] S. Zikos, H. D. Karatza: The impact of service demand variability on resource allocation
strategies in a grid system, ACM Transactions on Modeling and Computer Simulation 20
(2010), 19:1–19:29.

218 A. Kuki, T. Bérczes, Á. Tóth, J. Sztrik

