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Abstract

The aim of the paper is to use some identities involving binomial co-
efficients to derive new combinatorial identities for balancing and Lucas-
balancing polynomials. Evaluating these identities at specific points, we can
also establish some combinatorial expressions for Fibonacci and Lucas num-
bers.
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1. Introduction

Balancing polynomials (𝐵𝑛(𝑥))𝑛≥0 and Lucas-balancing polynomials (𝐶𝑛(𝑥))𝑛≥0

are defined for 𝑥 ∈ C by the recurrences [17]

𝐵𝑛(𝑥) = 6𝑥𝐵𝑛−1(𝑥)−𝐵𝑛−2(𝑥), 𝑛 ≥ 2,

∗Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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with 𝐵0(𝑥) = 0, 𝐵1(𝑥) = 1 and

𝐶𝑛(𝑥) = 6𝑥𝐶𝑛−1(𝑥)− 𝐶𝑛−2(𝑥), 𝑛 ≥ 2,

with 𝐶0(𝑥) = 1, 𝐶1(𝑥) = 3𝑥.
(Lucas-) Balancing numbers and (Lucas-) balancing polynomials are related by

𝐵𝑛 = 𝐵𝑛(1) and 𝐶𝑛 = 𝐶𝑛(1). Sequences (𝐵𝑛)𝑛≥0 and (𝐶𝑛)𝑛≥0 are indexed in
On-Line Encyclopedia of Integer Sequences [19] (see entries A001109 and A001541,
respectively). The polynomials are interesting also due to their direct connection to
Fibonacci numbers, Lucas numbers and Chebyshev and Legendre polynomials [7].

These polynomials have been introduced recently as an extension of the popular
balancing and Lucas-balancing numbers 𝐵𝑛 and 𝐶𝑛, respectively, as presented by
Behera and Panda in [2].

Balancing polynomials (numbers) are members the Lucas sequence of the first
kind defined by the recurrence relation 𝑈0 = 0, 𝑈1 = 1, 𝑈𝑛 = 𝑝𝑈𝑛−1 + 𝑞𝑈𝑛−2

(𝑛 ≥ 2). Lucas-balancing polynomials (numbers) can also be defined using initial
values 𝐶0(𝑥) = 2 and 𝐶1(𝑥) = 6𝑥. In this case, Lucas-balancing polynomials
will belong to the Lucas sequence of the second kind defined by 𝑉0 = 2, 𝑉1 = 𝑝,
𝑉𝑛 = 𝑝𝑉𝑛−1 + 𝑞𝑉𝑛−2 (𝑛 ≥ 2). Such an approach would allow us to simplify some
formulas, but would complicate our comparative analysis with articles where these
polynomials are defined by initial values 𝐶0(𝑥) = 1 and 𝐶1(𝑥) = 3𝑥.

Solving the recurrences routinely we get the following closed forms for polyno-
mials 𝐵𝑛(𝑥) and 𝐶𝑛(𝑥) known as Binet formulas:

𝐵𝑛(𝑥) =
𝜆𝑛(𝑥)− 𝜆−𝑛(𝑥)

𝜆(𝑥)− 𝜆−1(𝑥)
, 𝐶𝑛(𝑥) =

𝜆𝑛(𝑥) + 𝜆−𝑛(𝑥)

2
, (1.1)

where 𝜆(𝑥) = 3𝑥+
√
9𝑥2 − 1.

Using (1.1), it is easy to see that

𝐵2𝑛(𝑥) = 2𝐵𝑛(𝑥)𝐶𝑛(𝑥), 𝑛 ≥ 0. (1.2)

Combinatorial expressions for balancing and Lucas-balancing polynomials are
[3, 15]

𝐵𝑛(𝑥) =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
(6𝑥)𝑛−1−2𝑘, 𝑛 ≥ 1, (1.3)

𝐶𝑛(𝑥) =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(6𝑥)𝑛−2𝑘, 𝑛 ≥ 1. (1.4)

The relations 𝐵𝑛(−𝑥) = (−1)𝑛+1𝐵𝑛(𝑥) and 𝐶𝑛(−𝑥) = (−1)𝑛𝐶𝑛(𝑥) follow from
𝜆(±𝑥) = −𝜆−1(∓𝑥).

Some examples of recent works involving balancing and Lucas-balancing poly-
nomials conclude [7–9, 16].
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The aim of the paper is to derive new combinatorial identities for polynomials
𝐵𝑛(𝑥) and 𝐶𝑛(𝑥). Evaluating these identities at specific points, we can also estab-
lish some interesting combinatorial identities as special cases, especially those with
Fibonacci and Lucas numbers.

2. Combinatorial identities using Waring’s formulas

Our first result provides two combinatorial identities for balancing and Lucas-
balancing polynomials involving binomial coefficients.

Theorem 2.1. Let 𝑚 ≥ 0. Then

𝐵(𝑛+1)𝑚(𝑥) = 𝐵𝑚(𝑥)

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚(𝑥))𝑛−2𝑘, 𝑛 ≥ 0, (2.1)

𝐶𝑛𝑚(𝑥) =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚(𝑥))𝑛−2𝑘, 𝑛 ≥ 1. (2.2)

Proof. We combine the Binet formulas (1.1) with the following combinatorial for-
mulas

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
(𝑋𝑌 )𝑘(𝑋 + 𝑌 )𝑛−2𝑘 =

𝑋𝑛+1 − 𝑌 𝑛+1

𝑋 − 𝑌
(2.3)

and
⌊𝑛

2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(𝑋𝑌 )𝑘(𝑋 + 𝑌 )𝑛−2𝑘 = 𝑋𝑛 + 𝑌 𝑛. (2.4)

To get (2.1), set 𝑋 = 𝜆𝑚(𝑥) and 𝑌 = 𝜆−𝑚(𝑥) in (2.3). Formula (2.1) is the
immediate result when replacing 𝑛 by 𝑛−1. To get (2.2) apply the same argument
to the formula (2.4).

Remark 2.2. Formulas (2.3) and (2.4) are well-known in combinatorics and called
Waring’s (sometimes Girard-Waring’s) formulas. In [12] the reader will find some
interesting remarks about the history and the use of these formulas and their
generalizations. The proof of these formulas can be seen, for example, in [4].

In view of (1.2), formulas (2.1) and (2.2) can be written entirely in terms of
balancing polynomials 𝐵𝑛(𝑥). Special cases of (2.1) and (2.1) for 𝑚 = 1 are
formulas (1.3) and (1.4), respectively.

Setting 𝑥 = 1 in (2.1), we immediately get

𝐵𝑚𝑛 = 𝐵𝑚

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
(2𝐶𝑚)𝑛−1−2𝑘.
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This result appears as Theorem 3.2 in [18]. Similarly, setting 𝑥 = 1 in (2.2) yields

𝐶𝑚𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
(2𝐶𝑚)𝑛−2𝑘. (2.5)

Special cases of (2.5) are

𝐶𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
6𝑛−2𝑘, (2.6)

𝐶2𝑛 =
𝑛

2

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
34𝑛−2𝑘,

and so on. Formula (2.6) may be found in [15]. More expressions of this kind can
be found in [10].

Next we are going to present some consequences of the above results to combi-
natorial sums involving Fibonacci numbers 𝐹𝑛 and Lucas numbers 𝐿𝑛. Recall that
both sequences satisfy the same recurrence relation 𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2 for 𝑛 ≥ 2,
but with initial conditions 𝐹0 = 0, 𝐹1 = 1 and 𝐿0 = 2, 𝐿1 = 1 (sequences A000045
and A000032 in [19], respectively).

Balancing and Lucas-balancing polynomials are linked to Fibonacci and Lucas
numbers via

𝐵𝑛

(︂
𝐿2𝑞

6

)︂
=

𝐹2𝑞𝑛

𝐹2𝑞
, 𝐶𝑛

(︂
𝐿2𝑞

6

)︂
=

𝐿2𝑞𝑛

2
, (2.7)

and
𝐵𝑛

(︂
𝐿2𝑞+1

6
𝑖

)︂
=

𝐹(2𝑞+1)𝑛

𝐹2𝑞+1
𝑖𝑛−1, 𝐶𝑛

(︂
𝐿2𝑞+1

6
𝑖

)︂
=

𝐿(2𝑞+1)𝑛

2
𝑖𝑛, (2.8)

where 𝑞 is an integer and 𝑖 is the imaginary unit; see [7].
Formulas (2.7) and (2.8), coupled with Theorem 2.1 above, yield the following

results, which are known.

Corollary 2.3. Let 𝑚 ≥ 0. Then

𝐹2𝑚(𝑛+1) = 𝐹2𝑚

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚 , 𝑛 ≥ 0, (2.9)

𝐹(2𝑚+1)(𝑛+1) = 𝐹2𝑚+1

⌊𝑛
2 ⌋∑︁

𝑘=0

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚+1, 𝑛 ≥ 0, (2.10)

𝐿2𝑚𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚 , 𝑛 ≥ 1, (2.11)

100 R. Frontczak, T. Goy



𝐿(2𝑚+1)𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
2𝑚+1, 𝑛 ≥ 1. (2.12)

The above results are rediscoveries of known identities. Formulas (2.9) and
(2.10) we can united as a single formula [13]

𝐹𝑚(𝑛+1) = 𝐹𝑚

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘(𝑚+1)

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
𝑚 , 𝑛,𝑚 ≥ 0. (2.13)

Also, formulas (2.11) and (2.12) may be written in the same manner as follows [13]

𝐿𝑚𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘(𝑚+1) 𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
𝐿𝑛−2𝑘
𝑚 , 𝑛 ≥ 1, 𝑚 ≥ 0. (2.14)

Since 𝐿𝑠 = 𝐹2𝑠/𝐹𝑠, formulas (2.13) and (2.14) can be written entirely in terms
of Fibonacci numbers.

Specific examples of (2.13) and (2.14) include the following combinatorial Fi-
bonacci and Lucas identities:

𝐹𝑛 =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(︂
𝑛− 1− 𝑘

𝑘

)︂
, (2.15)

𝐹2𝑛 =

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(−1)𝑘
(︂
𝑛− 1− 𝑘

𝑘

)︂
3𝑛−2𝑘−1, (2.16)

𝐹3𝑛 = 2

⌊𝑛−1
2 ⌋∑︁

𝑘=0

(︂
𝑛− 1− 𝑘

𝑘

)︂
4𝑛−2𝑘−1, (2.17)

𝐿𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
,

𝐿2𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

(−1)𝑘
𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
3𝑛−2𝑘,

𝐿3𝑛 =

⌊𝑛
2 ⌋∑︁

𝑘=0

𝑛

𝑛− 𝑘

(︂
𝑛− 𝑘

𝑘

)︂
4𝑛−2𝑘,

and so on. All identities in our list are know. For instance, identity (2.15) appears
as equation (1) in [11] and again as equation (5.1) in [5]. Identity (2.16) is equation
(2) in [11] and stated slightly differently equation (5.10) in [5].
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3. Combinatorial identities using Jennings’ formulas

Theorem 3.1. For 𝑚,𝑛 ≥ 0, we have

𝐵(2𝑛+1)𝑚(𝑥)

2𝑛+ 1
=

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(36𝑥2 − 4)𝑘

2𝑘 + 1
𝐵2𝑘+1

𝑚 (𝑥), (3.1)

𝐶(2𝑛+1)𝑚(𝑥)

2𝑛+ 1
=

𝑛∑︁

𝑘=0

(−1)𝑛−𝑘

(︂
𝑛+ 𝑘

2𝑘

)︂
4𝑘

2𝑘 + 1
𝐶2𝑘+1

𝑚 (𝑥). (3.2)

Proof. The following identities are from Jennings [14, Lemmas (i) and (ii)]:

𝑛∑︁

𝑘=0

2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂(︂
𝑧2 − 1

𝑧

)︂2𝑘

=
𝑧2(𝑛+1) − 𝑧−2𝑛

𝑧2 − 1
, (3.3)

𝑛∑︁

𝑘=0

(−1)𝑛−𝑘 2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂(︂
𝑧2 + 1

𝑧

)︂2𝑘

=
𝑧2(𝑛+1) + 𝑧−2𝑛

𝑧2 + 1
. (3.4)

To get (3.1), set 𝑧 = 𝑋/𝑌 in (3.3) to derive at

𝑛∑︁

𝑘=0

2𝑛+ 1

2𝑘 + 1

(︂
𝑛+ 𝑘

2𝑘

)︂
(𝑋𝑌 )𝑛−𝑘(𝑋 − 𝑌 )2𝑘+1 = 𝑋2𝑛+1 − 𝑌 2𝑛+1.

Now, we can insert 𝑋 = 𝜆𝑚(𝑥) and 𝑌 = 𝜆−𝑚(𝑥), and the statement follows. To
get (3.2) apply the same argument to formula (3.4).

Note that identity (3.3) also appears in [1] to prove some Fibonacci identities.

Corollary 3.2. For 𝑛 ≥ 0,

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(−4)𝑘

2𝑘 + 1
=

(−1)𝑛

2𝑛+ 1
.

Proof. Set 𝑥 = 0 in (3.1) and use

𝐵𝑛(0) =

{︃
0, if 𝑛 is even,
(−1)

𝑛−1
2 , if 𝑛 is odd.

Corollary 3.3. For 𝑛,𝑚 ≥ 0,

𝐵(2𝑛+1)𝑚 = (2𝑛+ 1)

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
32𝑘

2𝑘 + 1
𝐵2𝑘+1

𝑚 ,

𝐶(2𝑛+1)𝑚 = (2𝑛+ 1)
𝑛∑︁

𝑘=0

(−1)𝑛−𝑘

(︂
𝑛+ 𝑘

2𝑘

)︂
4𝑘

2𝑘 + 1
𝐶2𝑘+1

𝑚 .
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Proof. Set 𝑥 = 1 in (3.1) and (3.2), respectively.

Corollary 3.4. For 𝑛,𝑚 ≥ 0,

𝐹2𝑚(2𝑛+1) = (2𝑛+ 1)

𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
5𝑘

2𝑘 + 1
𝐹 2𝑘+1
2𝑚 , (3.5)

𝐹(2𝑚+1)(2𝑛+1) = (2𝑛+ 1)(−1)𝑛
𝑛∑︁

𝑘=0

(︂
𝑛+ 𝑘

2𝑘

)︂
(−5)𝑘

2𝑘 + 1
𝐹 2𝑘+1
2𝑚+1. (3.6)

Proof. Insert 𝑥 = 𝐿2𝑞/6 and 𝑥 = 𝑖𝐿2𝑞+1/6 in (3.1), use (2.7) and (2.8), and simplify
using 𝐿2

𝑛 = 5𝐹 2
𝑛 + (−1)𝑛4.

Remark 3.5. Equations (3.5) and (3.6) are rediscoveries of Theorem 1 in [14].

4. Combinatorial identities using Toscano’s identity

Theorem 4.1. For 𝑛 ≥ 1 and 𝑚 ≥ 0, we have the following combinatorial identity:

22𝑛−1𝐶2𝑛
𝑚 (𝑥) =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘𝐶𝑘

𝑚(𝑥)𝐶𝑚𝑘(𝑥). (4.1)

Proof. Combine the Binet formula for 𝐶𝑛(𝑥) with combinatorial identity
𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
(𝑋𝑘 + 𝑌 𝑘)

(︂
𝑋𝑌

𝑋 + 𝑌

)︂𝑛−𝑘

= (𝑋 + 𝑌 )𝑛,

which have been proved in [20] by Toscano.

Setting 𝑥 = 1 in (4.1) immediately gives the next relation.

Corollary 4.2. For 𝑛 ≥ 1 and 𝑚 ≥ 0,

22𝑛−1𝐶2𝑛
𝑚 =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘𝐶𝑘

𝑚𝐶𝑚𝑘.

The next two identities are special instances of the previous corollary for 𝑚 = 0
and 𝑚 = 1, respectively:

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
2𝑘 = 22𝑛−1

and

2
𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
6𝑘𝐶𝑘 = 36𝑛.

Focusing on Lucas numbers we obtain the following known combinatorial iden-
tities [6].
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Corollary 4.3. For 𝑛 ≥ 1 and 𝑚 ≥ 0, Lucas numbers satisfy

𝐿2𝑛
2𝑚 =

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘
2𝑚𝐿2𝑚𝑘,

and

𝐿2𝑛
2𝑚+1 =

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘
2𝑚+1𝐿(2𝑚+1)𝑘.

The next evaluation are consequences of Corollary 4.3:

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿𝑘 = 1,

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿2𝑘

32𝑛−𝑘
= 1,

𝑛∑︁

𝑘=1

(−1)𝑛−𝑘

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿3𝑘

42𝑛−𝑘
= 1,

𝑛∑︁

𝑘=1

(︂
2𝑛− 𝑘 − 1

𝑛− 1

)︂
𝐿4𝑘

72𝑛−𝑘
= 1.
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