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Abstract

This paper explores the distribution of algebraic thickness of Boolean
functions (that is, the minimum number of terms in the ANF of the func-
tions in the orbit of a Boolean function, through all affine transformations),
in four and five variables, and the complete distribution is presented. Addi-
tionally, a complete analysis of some complexity properties (e.g., nonlinearity,
balancedness, etc.) of all relevant orbits of Boolean functions is presented.
Some properties of our notion of rigid function (which enabled us to reduce
significantly the computation) are shown and some open questions are pro-
posed, providing some further explanation of one of these questions.
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1. Introduction

In this paper, we deal with the concept of algebraic thickness, defined by Carlet
in [3, 4] as the minimum number of terms of all Boolean functions in the affine
equivalence orbit of a Boolean function – and aim to reveal the distribution of
algebraic thickness of all Boolean functions in four and five variables.

As will be discussed in the coming sections, by using an exhaustive search, the
calculation of this distribution for 𝑛 ≤ 4 variables is at best a straightforward,
and at worst, a lengthy – but manageable – endeavor. There are 22

𝑛

Boolean
functions in 𝑛 variables, which, for 𝑛 = 4, equals 65536. Since there are 322560
different affine transformations needed to be checked for each Boolean function,
the calculation of the algebraic thickness for all Boolean functions in four variables
is a time consuming task, albeit doable.

However, in moving from four to five variables, this number grows significantly.
The total number of unique Boolean functions is 4 294 967 296, and the number of
different affine transformations is 319 979 520. One of the sub-goals of the paper
was to find an efficient method able to handle the magnitude of the computation,
and another was to effectively handle and analyze the resulting data set for 𝑛 = 5.

Additionally, throughout the paper, when discussing functions 𝑛 ≤ 5, we omit
the trivial cases 𝑛 = 0, 1, unless specified. We used SageMath [9] for all computa-
tions in this paper.

A Boolean function 𝑓 in 𝑛 variables, where 𝑛 is any positive integer, is a function
from the vector space F𝑛

2 to the finite field F2, i.e. 𝑓 : F𝑛
2 → F2. The set of all

Boolean functions in 𝑛 variables is denoted by ℬ𝑛, and the symbol ⊕ denotes
addition modulo 2, in F2, F𝑛

2 , and ℬ𝑛.
Every Boolean function 𝑓 has a unique representation called its algebraic normal

form (ANF) as a polynomial over F2 in 𝑛 variables:

𝑓(x) =
⨁︁

u∈F𝑛
2

𝑐u

(︃
𝑛∏︁

𝑖=1

𝑥𝑢𝑖
𝑖

)︃
=
⨁︁

u∈F𝑛
2

𝑐ux
u,

where each 𝑐u ∈ F2, u = (𝑢1, . . . , 𝑢𝑛) and x = (𝑥1, . . . , 𝑥𝑛). The algebraic degree
of 𝑓 is the largest weight of u such that 𝑐u ̸= 0. A homogeneous function is a sum
of monomials of the same degree.

An affine function ℓu,𝑐 is a function with algebraic degree at most 1, which
takes the form

ℓu,𝑐(x) = u · x⊕ 𝑐 = 𝑢1𝑥1 ⊕ · · · ⊕ 𝑢𝑛𝑥𝑛 ⊕ 𝑐, (1.1)

where u = (𝑢1, . . . , 𝑢𝑛) ∈ F𝑛
2 and 𝑐 ∈ F2. If 𝑐 = 0, such that ℓu,0 only consists of

monomials of algebraic degree 1, and no constant, then it is a linear function. The
Hamming weight of a vector x ∈ F𝑛

2 is denoted by 𝑤𝑡(x) and is equal to the number
of 1’s in the vector x. For a Boolean function 𝑓 on F𝑛

2 , let Ω𝑓 = {x ∈ F𝑛
2 | 𝑓(x) = 1}

be the support of 𝑓 . The Hamming weight of 𝑓 is then |Ω𝑓 |, or equivalently,
the weight of the vector of its truth table. The Hamming distance between two
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functions 𝑓, 𝑔 : F𝑛
2 → F2, denoted by 𝑑(𝑓, 𝑔), is defined as 𝑑(𝑓, 𝑔) = 𝑤𝑡(𝑓 ⊕ 𝑔). A

balanced function on 𝑛 variables has weight exactly 2𝑛−1. For 𝑓 : F𝑛
2 → F2 we define

the Walsh-Hadamard transform to be the integer-valued function

𝒲𝑓 (u) =
∑︁

𝑥∈F2𝑛

(−1)𝑓(x)+ux, u ∈ F𝑛
2 .

The nonlinearity 𝒩𝑓 of a function 𝑓 is defined as

𝒩𝑓 = min
𝜑∈𝒜𝑛

𝑑(𝑓, 𝜑)

where 𝒜𝑛 is the class of all affine functions on F𝑛
2 . The largest nonlinearity, namely

2𝑛−1−2
𝑛
2 −1 is achieved by bent functions (they exist for even dimension 𝑛) and they

have only two values in their Walsh spectrum (the multiset of Walsh coefficients),
namely ±2

𝑛
2 . The semi-bent functions will have three values in their Walsh spec-

trum, namely, {0,±2
𝑛+2
2 }, {0,±2

𝑛+1
2 }, for 𝑛 even, respectively, odd, and they can

be balanced, as opposed to bent functions, whose weight can only be 2𝑛−1 ± 2
𝑛
2 −1.

For these definitions and to know more on Boolean functions, and their cryp-
tographic properties, the reader can consult [2, 5].

2. Algebraic thickness

Carlet, in [3], defined algebraic thickness, and discussed lower and upper bounds.
His paper also includes further discussion on the relation that algebraic thickness
has with other complexity criteria (e.g., nonlinearity, algebraic degree, etc.). In [4],
Carlet improved some of the prior results, and further expanded on the properties
of algebraic thickness.

Definition 2.1 ([4]). The algebraic thickness 𝒯 (𝑓) of a Boolean function 𝑓 is
the minimum number of monomials with non-zero coefficients in the ANF of the
functions 𝑓 ∘ 𝒜, where 𝒜 ∈ GL(𝑛,F2) (the general affine group). When we want
to emphasize the number of variables, we shall write 𝒯𝑛(𝑓).

Surely, the algebraic thickness of affine functions is at most 1 [1, 4]. The
quadratic functions are also well understood, due to the well-known Dickson’s the-
orem (see MacWilliams and Sloane [8], or the simpler version below taken from
Boyar and Find [1]).

Theorem 2.2 (Dickson’s Theorem). If 𝑓 : F𝑛
2 → F2 is a quadratic Boolean func-

tion, then there exist an invertible 𝑛×𝑛 matrix 𝐴, b ∈ F𝑛
2 , 𝑡 ≤ 𝑛

2 , and 𝑐 ∈ F2 such
that for y = 𝐴x + b one of the following two equations holds:

𝑓(𝑥) = 𝑦1𝑦2 + 𝑦3𝑦4 + · · · + 𝑦𝑡−1𝑦𝑡 + 𝑐, or
𝑓(𝑥) = 𝑦1𝑦2 + 𝑦3𝑦4 + · · · + 𝑦𝑡−1𝑦𝑡 + 𝑦𝑡+1.

Furthermore 𝐴, b, and 𝑐 can be found efficiently.
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We also mention that we re-computed (see Table 4) the distribution of nonlin-
earities of all functions in 2 ≤ 𝑛 ≤ 5 variables, confirming known results (see, for
instance, the paper by Sertkaya and Doğanaksoy [10]).

For Boolean functions in 𝑛 variables, it is of interest to determine the maximum
value possible for the thickness, namely, 𝜏𝑛 = max𝑓∈ℬ𝑛

(𝒯 (𝑓)), and specifically, its
growth. Surely, we have the trivial upper bound 𝜏𝑛 ≤ 2𝑛, since the maximum
number of terms in the ANF of a function in 𝑛 variables is ≤ 2𝑛.

Regarding the lower bound of the thickness, Carlet showed in [3] that, for every
𝜆 < 1

2 and positive integer 𝑛, the density in ℬ𝑛 of the subset

{𝑓 ∈ ℬ𝑛 | 𝒯 (𝑓) ≥ 𝜆2𝑛}

is greater than 1−22
𝑛𝐻2(𝜆)−2𝑛+𝑛2+𝑛, where 𝐻2(𝑥) = −𝑥log2(𝑥)−(1−𝑥)log2(1−𝑥)

is the entropy function, and therefore almost all Boolean functions have algebraic
thickness greater than 𝜆2𝑛. This was improved in [4], showing that almost all
Boolean functions have algebraic thickness greater than 2𝑛−1 − 𝑛2

𝑛−1
2 . The best

upper bound on algebraic thickness is still the one in [3], namely,

𝒯 (𝑓) ≤ 2

3
2𝑛,

which is believed to be improvable.

3. Some theoretical results on thickness

Brute force computation is still possible for 𝑛 = 4, but for 𝑛 = 5 we need to find
some techniques to reduce the computational time, as it would take thousands of
years on a personal computer. The idea is that this new technique may be useful
in approaching the thickness distribution computation for 𝑛 = 6 (or at least for
some subclass of ℬ6).

For any Boolean function 𝑓 , we define its orbit or equivalence class as the set
of functions {𝑓 ∘ 𝒜 : 𝒜 ∈ GL(𝑛,F2)}.

Given a Boolean function 𝑓 , if 𝑓𝑚𝑖𝑛 is an element (not necessarily unique) of
its equivalence class with minimum number of terms, then the algebraic thickness
of 𝑓𝑚𝑖𝑛 is the number of terms in its ANF.

Definition 3.1 (Rigid Boolean functions). We call a Boolean function 𝑓 with
𝒯 (𝑓) monomials in its ANF, a rigid function. The set of all rigid functions will be
denoted by 𝒮𝑛.

Thus, a rigid Boolean function cannot be mapped to a function with lower
monomial count, through any affine transformation. Furthermore, any Boolean
function can be mapped to a rigid function. The reason for this should be clear,
but for completion, we state it as a lemma.

Proposition 3.2. Any Boolean function can be mapped to a rigid function, by an
affine transformation.
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Proof. Given a Boolean function 𝑓 ∈ ℬ𝑛, let 𝑔 be a function in the orbit of 𝑓
(through affine transformations), where the monomial count of 𝑔 is equal to 𝒯 (𝑓).
If 𝑔 is not a rigid function, then 𝑔 does not have the minimum monomial count
in its orbit. Suppose ℎ is in the orbit of 𝑔, and has lower monomial count than
𝑔. Since 𝑓 maps to 𝑔 and 𝑔 maps to ℎ, then by composition of transformations, 𝑓
maps to ℎ as well. Thus, we reach a contradiction.

Experimentally, it was found that 𝒮𝑛 ⊂ 𝒮𝑛+1, for small values of 𝑛, suggesting
that perhaps this is true in general, and will be shown next.

Theorem 3.3. All rigid functions in 𝑛 variables are also rigid functions in (𝑛+1)
variables, that is, 𝒮𝑛 ⊂ 𝒮𝑛+1.

Remark 3.4. As is customary in this area (for easy writing), in the following proof,
we disregard the usual linear algebra convention of matrix-vector multiplication
and regard x and b both as a row- and a column vector, when there is no danger
of confusion.

Proof. Let 𝑓 ∈ 𝒮𝑛 with 𝒯 (𝑓) = 𝑡. We embed 𝑓 in 𝑛 + 1 variables, and we denote
its embedding by 𝑓 , such that 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) = 𝑓(𝑥1, . . . , 𝑥𝑛). Let a non-zero
affine transformation of the input of 𝑓 be given by x ↦→ 𝐴x̃ + b, where 𝐴 is an
(𝑛 + 1) × (𝑛 + 1) matrix and b = (𝑏1 . . . , 𝑏𝑛), and x̃ = (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1),x =
(𝑥1, . . . , 𝑥𝑛). We label the first 𝑛 rows and 𝑛 columns in 𝐴 by 𝐴 and so,

𝐴 =

⎛
⎜⎝

𝑎1,𝑛+1

𝐴
...

𝑎𝑛+1,1 · · · 𝑎𝑛+1,𝑛+1

⎞
⎟⎠ .

Thus,

𝐴x̃ + b =

⎛
⎜⎜⎜⎝

𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎟⎟⎟⎠ ,

and so

𝑓(𝐴x̃ + b) = 𝑓

⎛
⎜⎝𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

⎞
⎟⎠ ,

from which our claim is inferred.

In summary, the introduction of 𝑥𝑛+1 does not induce any further monomial
eliminations not already possible in 𝑛 variables. Therefore, for a rigid function 𝑓
with monomial count 𝑡,

𝒯𝑛(𝑓) = 𝑡 = 𝒯𝑛+1(𝑓).
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Corollary 3.5. For any Boolean function 𝑓 in 𝑛 variables,

𝒯𝑛(𝑓) = 𝒯𝑛+1(𝑓),

where 𝑓 is the embedding of 𝑓 in ℬ𝑛+1, such that

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1) = 𝑓(𝑥1, . . . , 𝑥𝑛).

Proof. Given a rigid Boolean function 𝑓 in 𝑛 variables, let 𝒜𝑛(𝑓) be the orbit of
𝑓 through all nonzero affine transformations, and let 𝒯𝑛(𝑓) = 𝑡. As we know,
from the definition of algebraic thickness, any Boolean function 𝑔 ∈ 𝒜𝑛(𝑓) satisfies
𝒯𝑛(𝑔) = 𝑡, as well. Since 𝑓 is rigid, 𝒯𝑛+1(𝑓) = 𝑡, by Theorem 3.3. Clearly, then,
𝒜𝑛(𝑓) ⊆ 𝒜𝑛+1(𝑓), by the very same affine transformations as in 𝑛 variables (leaving
the new variable 𝑥𝑛+1 mapped to itself), and therefore all functions in 𝒜𝑛(𝑓) have
thickness 𝑡 in 𝑛 + 1 variables, as well.

3.1. Multiplication by a new variable may conserve thickness
We showed in Theorem 3.3 that all rigid functions in ℬ𝑛 are also rigid functions in
ℬ𝑛+1. Moreover, 𝑓 ∈ ℬ𝑛, 𝒯𝑛(𝑓) = 𝒯𝑛+1(𝑓), as well. These properties give insight
into the distribution of algebraic thickness in (𝑛+1) variables, when the distribution
for 𝑛 variables is known. Surely, we cannot expect an inductive procedure for the
computation of thickness, but as observed already in Theorem 3.3, a connection
does exist that may decrease the complexity even further.

Proposition 3.6. Let 𝑓 ∈ ℬ𝑛 be a Boolean function in variables x = (𝑥1, ..., 𝑥𝑛)
vector, and let 𝑥𝑛+1 be a new variable. Then:

𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ≤ 𝒯𝑛(𝑓).

Proof. Given a Boolean function 𝑓 ∈ ℬ𝑛, with known algebraic thickness 𝒯𝑛(𝑓) = 𝑡,
on the variables (𝑥1, . . . , 𝑥𝑛), we let 𝑓min ∈ ℬ𝑛 be the representative function with
monomial count 𝑡 of the orbit of 𝑓 , and let 𝜋 denote the affine transformation such
that 𝜋(𝑓) = 𝑓min. As before, 𝑥𝑛+1 is the new variable introduced in ℬ𝑛+1.

In ℬ𝑛+1, then, 𝜋′(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝑓min(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1, by the trans-
formation 𝜋′(𝑥𝑗) = 𝜋(𝑥𝑗), for 𝑗 < (𝑛 + 1), and 𝜋′(𝑥𝑛+1) = 𝑥𝑛+1. Since 𝑓min has
monomial count 𝑡, 𝑓min(𝑥1, . . . , 𝑥𝑛) ·𝑥𝑛+1 also has monomial count 𝑡, and therefore
𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ≤ 𝒯𝑛(𝑓).

Based upon extensive computations (exhaustive for lower dimensions and ran-
dom for higher dimensions) and the previous proposition, we propose the following
question.

Open question 3.7 (Thickness conservation). Let 𝑓 ∈ ℬ𝑛 be a Boolean function
in variables x = (𝑥1, ..., 𝑥𝑛) vector, and let 𝑥𝑛+1 be a new variable. Is it true that

𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝒯𝑛(𝑓)?
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While this is not necessarily the goal of the paper, and we cannot provide
an answer to this question, we attempt to explain it further. Assume that there
exists a function 𝑓 in 𝑛 variables such that 𝒯𝑛(𝑓) > 𝒯𝑛+1(𝑓 · 𝑥𝑛+1) = 𝑡. Take an
affine transformation that brings 𝑓(𝑥1, . . . , 𝑥𝑛) ·𝑥𝑛+1 to its minimal thickness form,
transformation determined by the vector b = (𝑏1, . . . , 𝑏𝑛+1), and the matrix 𝐴 of
the form

𝐴 =

⎛
⎜⎝

𝑎1,𝑛+1

𝐴
...

𝑎𝑛+1,1 · · · 𝑎𝑛+1,𝑛+1

⎞
⎟⎠ ,

where 𝐴 is an 𝑛× 𝑛 matrix, and so,

𝐴x̃ + b =

⎛
⎜⎜⎜⎝

𝐴x + 𝑥𝑛+1

⎛
⎜⎝
𝑎1,𝑛+1

...
𝑎𝑛,𝑛+1

⎞
⎟⎠+

⎛
⎜⎝
𝑏1
...
𝑏𝑛

⎞
⎟⎠

𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎟⎟⎟⎠ ,

as in Theorem 3.3. We label 𝑟𝑖,𝐴, 𝑟𝑖,𝐴, the 𝑖th row of 𝐴, respectively 𝐴, and
x̃ = (𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1),x = (𝑥1, . . . , 𝑥𝑛). Thus, using “ ·” to denote the usual scalar
product,

(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ∘ (𝐴x̃ + b)

= 𝑓(𝑟1,𝐴 · x + 𝑎1,𝑛+1𝑥𝑛+1 + 𝑏1, . . . , 𝑟𝑛,𝐴 · x + 𝑎𝑛,𝑛+1𝑥𝑛+1 + 𝑏𝑛) (3.1)
· (𝑎𝑛+1,1𝑥1 + · · · + 𝑎𝑛+1,𝑛+1𝑥𝑛+1 + 𝑏𝑛+1).

We let 𝑏′𝑖 = 𝑏𝑖 + 𝑎𝑖,𝑛+1𝑥𝑛+1, 1 ≤ 𝑖 ≤ 𝑛 + 1 and b′ = (𝑏′1, . . . , 𝑏
′
𝑛). Since the first

factor is simply 𝑓(𝐴x + b′) (we regard its coefficients in F2[𝑥𝑛+1], and assume
that 𝐴 is invertible; again, it may happen that it is not), it must have more than
𝒯𝑛+1(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) = 𝑡 terms (call them 𝑇𝑖(𝑥1, . . . , 𝑥𝑛), of degrees deg 𝑇𝑖 =
𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑠, with 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑠), given our assumption. We thus write its
algebraic normal form as

𝑓(𝐴x + b′) = (𝛼1𝑥𝑛+1 + 𝛽1)𝑇1(𝑥1, . . . , 𝑥𝑛) + · · ·
+ (𝛼𝑠𝑥𝑛+1 + 𝛽𝑠)𝑇𝑠(𝑥1, . . . , 𝑥𝑛), 𝑠 > 𝑡,

(𝛼𝑖, 𝛽𝑖 are not zero simultaneously, since we need to have 𝑠 > 𝑡 terms in 𝑓(𝐴x+b′)),
and therefore Equation (3.1) becomes (for easy writing, we denote the (𝑛 + 1)st
row of 𝐴 by (𝛾1, . . . , 𝛾𝑛+1) and we will not write the input (𝑥1, . . . , 𝑥𝑛) for 𝑇𝑖),

𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝑇𝑖

⎛
⎝

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗 + 𝛾𝑛+1𝑥𝑛+1 + 𝑏𝑛+1

⎞
⎠

=
𝑛∑︁

𝑗=1

𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝛾𝑗𝑥𝑗𝑇𝑖(𝑥1, . . . , 𝑥𝑛)
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+
𝑠∑︁

𝑖=1

𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖)𝑥𝑛+1𝑇𝑖 +
𝑠∑︁

𝑖=1

(𝛼𝑖𝑥𝑛+1 + 𝛽𝑖)𝑏𝑛+1𝑇𝑖

=

𝑠∑︁

𝑖=1

𝑥𝑛+1𝑇𝑖

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠ (3.2)

+
𝑛∑︁

𝑗=1

𝑠∑︁

𝑖=1

𝛽𝑖𝛾𝑗𝑥𝑗𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛽𝑖𝑏𝑛+1𝑇𝑖.

=
𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑥𝑛+1𝑇𝑖

+

𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖.

We thus get

(𝑓(𝑥1, . . . , 𝑥𝑛) · 𝑥𝑛+1) ∘ (𝐴x̃ + b)

= 𝑥𝑛+1

𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

+
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖.

For the inequality to hold, we need to have enough cancellations in both sums

𝑆1 =
𝑠∑︁

𝑖=1

⎛
⎝𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

𝑆2 =
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝𝑏𝑛+1 +

𝑛∑︁

𝑗=1

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖,

for a total of more than (𝑠− 𝑡) terms. We let 𝐴𝑖 be the index support for 𝑇𝑖 (that
is, if 𝑇𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖1 · · ·𝑥𝑖ℓ , then 𝐴𝑖 = {𝑖1, . . . , 𝑖ℓ}). Therefore, the above
sums can be written as (we let |𝐽 |2 = |𝐽 | (mod 2), where 𝐽 = {𝑗|𝛾𝑗 ̸= 0}, and
|𝐽𝑖|2 = |𝐽𝑖| (mod 2), where 𝐽𝑖 = {𝑗 ∈ 𝐴𝑖|𝛾𝑗 ̸= 0}),

𝑆1 =
𝑠∑︁

𝑖=1

(𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖))𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛼𝑖

⎛
⎝|𝐽𝑖|2 +

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗

⎞
⎠𝑇𝑖

=

𝑠∑︁

𝑖=1

(𝛼𝑖𝑏𝑛+1 + 𝛾𝑛+1(𝛼𝑖 + 𝛽𝑖) + 𝛼𝑖|𝐽𝑖|2)𝑇𝑖 +

𝑠∑︁

𝑖=1

𝛼𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗
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=
𝑠∑︁

𝑖=1

𝛼𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛼𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 + 𝛾𝑛+1

𝑠∑︁

𝑖=1

(𝛼𝑖 + 𝛽𝑖)𝑇𝑖,

𝑆2 =
𝑠∑︁

𝑖=1

𝛽𝑖𝑏𝑛+1𝑇𝑖 +
𝑠∑︁

𝑖=1

𝛽𝑖

⎛
⎝∑︁

𝑗∈𝐴𝑖

𝛾𝑗 +
∑︁

𝑗 ̸∈𝐴𝑖

𝛾𝑗𝑥𝑗

⎞
⎠𝑇𝑖

=

𝑠∑︁

𝑖=1

𝛽𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 +

𝑠∑︁

𝑖=1

𝛽𝑖𝑇𝑖

∑︁

𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 .

If 𝛾𝑛+1 = 0 then, for 𝑖 such that 𝑏𝑛+1 + |𝐽𝑖|2 ̸= 0, then either 𝛼𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖,
or 𝛽𝑖 (𝑏𝑛+1 + |𝐽𝑖|2)𝑇𝑖 survives. Similarly, assuming that for an 𝑖, 𝐽 ∖ 𝐽𝑖 ̸= ∅, then
either 𝛼𝑖𝑇𝑖

∑︀
𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 , or 𝛽𝑖𝑇𝑖

∑︀
𝑗∈𝐽∖𝐽𝑖

𝑥𝑗 survives. If it were true that for all 𝑖,
𝐽 ∖𝐽𝑖 ̸= ∅, then the inequality would be false and the conjecture would “hold” in this
case. However, at least 𝐽 ∖ 𝐽𝑠 = ∅, since otherwise our affinely equivalent function
would have degree higher than 𝑑𝑠 + 2 (recall that 𝑆1 is multiplied by 𝑥𝑛+1), and
that is impossible. If one would attempt to find a counterexample for a negative
answer to our open question, then one could take a matrix 𝐴 where the last row
is rather very sparse, along with 𝑏 such that 𝐴x + 𝑏′ has most of the 𝛽𝑖 = 0. Can
that be achieved? We do not know the answer to this question.

3.2. Gaps in thickness distribution
Noting the algebraic thickness distributions listed in Table 3, it is easy to see that,
for 𝑛 ≤ 5 and 𝑚 > 0, if there exists a representative with 𝒯𝑛 = 𝑚, then there exists
a representative with 𝒯𝑛 = 𝑚 − 1, and conversely: if there are no representatives
with 𝒯𝑛 = 𝑚 − 1, then there are no representatives with 𝒯𝑛 = 𝑚. The following
conjecture is an extension of Lemma 3.9.

Conjecture 3.8. For any 𝑛, in any given monomial count 𝑚 ≤ 2𝑛, if there are
no rigid functions with 𝑚 monomials, then for any 𝑓 ∈ ℬ𝑛,

𝒯𝑛(𝑓) < 𝑚.

The idea here is that if there are no rigid functions in a set monomial count
𝑚, then there are no rigid functions in any monomial count 𝑀 , where 𝑀 > 𝑚.
Proving this would have implications for further attempts at determining maximum
algebraic thickness (and the following thickness distribution) using the methods
described in this paper, as finding no rigid functions in 𝑛 variables with monomial
count (e.g.) 2𝑛−1 would imply there are no rigid functions with monomial count
greater than 2𝑛−1, thus eliminating half of the set of functions to search through.

The definition for rigid functions is closely related to Carlet’s definition for
algebraic thickness. We record that below.

Proposition 3.9. Given all Boolean functions in 𝑛 variables with monomial count
𝑘 in their ANF, if there are no rigid functions with 𝑘 monomials, then there are
no functions 𝑓 in 𝑛 variables with 𝒯𝑛(𝑓) = 𝑘.
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This simple proposition was the inception of the program described later to find
the thickness distribution.

𝑛 Number of rigid functions
0 2
1 3
2 6
3 28
4 588
5 211 259

Table 1: Number of rigid functions in 𝑛 ≤ 5 variables

The distribution of the number of rigid functions in 𝑛 ≤ 5 variables is listed in
Table 1, where: for 𝑛 ≤ 4 variables, these numbers were collected from analysis of
the data sets calculated by brute-force, and for 𝑛 = 5, the number was (along with
double-checking values for 𝑛 < 5) collected from analysis of the data sets calculated
by the program described later.

We hope that our methods will prove useful for 𝑛 > 5, as well, since an itera-
tive approach is impossible by modern computing standards for these dimensions.
Searching for rigid functions and – most importantly – disregarding non-rigid func-
tions, should improve the efficiency of any program (at the very least, it improves
the program given later).

Determining which functions are rigid functions in 𝑛 variables yields information
regarding the thickness distribution in 𝑛 + 1 variables as well, by Theorem 3.3.
Furthermore, by Corollary 3.5, unveiling the distribution of all functions in ℬ𝑛

immediately gives the distribution of 22
𝑛

functions in ℬ𝑛+1 – which may be a small
portion compared to 22

𝑛+1

, but is nonetheless a start.
The functions in 𝒮0,𝒮1,𝒮2 (i.e., the rigid functions in 𝑛 = 0, 1, 2 variables) are

listed below:

𝒮0 = {0, 1}
𝒮1 = {0, 1, 𝑥1}
𝒮2 = {0, 1, 𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥1𝑥2 + 1}

Since the sets 𝒮3,𝒮4 are of rather large sizes (28 and 588, respectively), they will
not be listed here (but the data can be found in [7]).

4. Representatives

By uncovering one function 𝜑 for each of these orbits, every function in 𝑛 variables
can be generated from a corresponding 𝜑, by iteration through all affine trans-
formations for each one. Calculating the algebraic thickness of each 𝜑 yields the
thickness distribution for all functions in ℬ𝑛, as 𝒯 is (trivially) an affine invariant.
Since these 𝜑 would be representing their orbits, the name representative function
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𝑛 Number of equivalence classes
1 3
2 5
3 10
4 32
5 382
6 15 768 919

Table 2: Number of affine equivalence classes of Boolean functions [6]

was chosen. As the rigid functions are the functions with the minimum number
of monomials in their ANF, these representative functions were chosen to be the
smallest rigid functions in their orbit (we call smallest, a function with a minimal
sum of the degrees of each monomial in its ANF, with lowest indexed variables, in
lexicographical order, in descending order by degree of monomials).

We give an example below.

Example 4.1. For 𝑛 = 3, 𝒯3 = 3, and there is a single orbit with maximum
thickness, containing 9 rigid functions, namely: 𝑥1𝑥2𝑥3 + 𝑥3 + 1, 𝑥1𝑥2𝑥3 + 𝑥2 + 1,
𝑥1𝑥2𝑥3 + 𝑥1 + 1, 𝑥1𝑥2𝑥3 + 𝑥2 + 𝑥3, 𝑥1𝑥2𝑥3 + 𝑥1 + 𝑥3, 𝑥1𝑥2𝑥3 + 𝑥1 + 𝑥2, 𝑥1𝑥2𝑥3 +
𝑥2𝑥3 +𝑥1, 𝑥1𝑥2𝑥3 +𝑥1𝑥3 +𝑥2, 𝑥1𝑥2𝑥3 +𝑥1𝑥2 +𝑥3. In the first three functions, the
sum of the monomial degrees for each function is 4, the next three functions have
this sum 5, and the last three, 6. We therefore, look at the first three functions,
and going through from the highest to the lowest degree monomials in the three
functions, and observing that 𝑥1 is smaller (lexicographically), we therefore choose
𝑥1𝑥2𝑥3 + 𝑥1 + 1 as a representative.

It is clear that the choice of a representative in any orbit is purely implemen-
tation specific and will not affect any properties related to algebraic thickness.
As with rigid functions, the set of all representative functions will be denoted as
ℛ𝑛 ⊆ 𝒮𝑛 for representatives in 𝑛 variables.

The number of Boolean functions in 𝑛 variables that have exactly 𝑚 monomials
in their ANF is

(︀
2𝑛

𝑚

)︀
, and so, the number of Boolean functions with at least 𝑚

monomials is the sum of the binomial coefficients
(︀
2𝑛

𝑖

)︀
, where 𝑖 ≥ 𝑚, that is,∑︀2𝑛

𝑖=𝑚

(︀
2𝑛

𝑖

)︀
.

Using Carlet’s upper-bound for algebraic thickness in 𝑛 variables, 𝒯 ≤
⌊︀
2
32𝑛
⌋︀
,

it follows that no rigid function will have more than
⌊︀
2
325
⌋︀

= 21 monomials in its
ANF. We checked and ultimately, the first monomial count where a rigid function
could be found, was 𝑚 = 8 (i.e., first, in descending order). Thus, the maximum
thickness of 𝑛 = 5 is 8, by Proposition 3.9.

Our code takes advantage of various “quality-of-life” method calls for printing
out current positions – and saving the positions of the iterations, in case of power
failure. Surely, the “bottleneck” of finding representatives of functions in five vari-
ables is the number of affine transformations to go through for each function –
but also the fact that the number of affine transformations is much larger than
the number of functions in any orbit (by the pigeonhole principle). This means

Thickness distribution of Boolean functions in 4 and 5 variables . . . 127



that there are several affine transformations that, for each 𝑓 , maps 𝑓 to the same
function. However, since there is no way of predicting, as far as we know, which
transformations will do this, it cannot be avoided. The final program used for
finding all 382 representatives in 𝑛 = 5 variables (and lower dimensions) can be
found in [7], which also includes a listing of these.

5. Distribution of thickness

The full distribution of algebraic thickness of the representative functions in 𝑛 ≤
5 variables is given in Table 3, summarizing the results of the data collection
conducted by our program. The distribution for number of functions within each
thickness value is further detailed and described later.

𝒯 𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 1 1 1 1 1 1
1 1 2 3 4 5 6
2 - - 1 4 10 19
3 - - - 1 10 46
4 - - - - 5 81
5 - - - - 1 111
6 - - - - - 81
7 - - - - - 33
8 - - - - - 4

Sum 2 3 5 10 32 382
max(𝒯𝑛) 1 1 2 3 5 8

Table 3: Distribution of representatives within each thickness value

While this is known, we re-checked the distribution of functions with a specific
nonlinearity 𝒩 for 𝑛 ≤ 5, confirming the results listed in [10]. Columns for 𝑛 = 2, 3
are not strictly relevant to the following property analysis, but are included for
completeness.

𝒩 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 8 16 32 64
1 8 128 512 2048
2 - 112 3840 31 744
3 - - 17 920 317 440
4 - - 28 000 2 301 440
5 - - 14 336 12 888 064
6 - - 896 57 996 288
7 - - - 215 414 784
8 - - - 647 666 880
9 - - - 1 362 452 480
10 - - - 1 412 100 096
11 - - - 556 408 832
12 - - - 27 387 136

max(𝒩 ) 1 2 6 12

Table 4: Distribution of number of 𝑓 ∈ ℬ𝑛 with given 𝒩 -value, 𝑛 ≤ 5

Furthermore, the distribution of the number of orbits within each possible 𝒩 -
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value (i.e., the distribution of nonlinearity of the representatives) is shown in Table 5
– recall that nonlinearity is an affine invariant. Note that there are 16 represen-
tatives (and therefore orbits) in 𝑛 = 5 variables where 𝒩 = 5. Further, we can
see that there are two orbits with maximum nonlinearity in 𝑛 = 4 (and therefore
two orbits that contain all bent functions in 𝑛 = 4), and 14 orbits with maximum
nonlinearity in 𝑛 = 5 (𝒩 = 6 and 𝒩 = 12, respectively; recall that the maximum
nonlinearity for 𝑛 = 5 is 2𝑛−1 − 2

𝑛−1
2 = 12, the well known bent concatenation

bound).

𝒩 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

0 3 3 3 3
1 2 4 4 4
2 - 3 5 5
3 - - 6 6
4 - - 8 12
5 - - 4 16
6 - - 2 31
7 - - - 46
8 - - - 68
9 - - - 72
10 - - - 73
11 - - - 32
12 - - - 14

Table 5: Distribution of number of orbits with given 𝒩 -value, 𝑛 ≤ 5

6. Conclusions

Table 3 summarizes the outcome of our computation to find the number of orbits in
each thickness class, for 𝑛 ≤ 5 variables, with the number of orbits and maximum
thickness listed. As a double check, the number of equivalence classes (orbits) in
ℬ𝑛 matches the one of Harrison [6].

By using the concepts of rigid and representative functions defined in Sections 3
and 4, the thickness distribution of 𝑛 ≤ 5 can be calculated in significantly less
time than the time estimation of a brute-force application, by (roughly) 2 · 106

years. The case of 𝑛 = 4 took little time compared to 𝑛 = 5 (we display in Table 6
the time our computation took; iterations stand for the number of parallel sessions
we ran).

Mon. count Functions/Iterations Min. time Max. time Total time (add.)
2 28 / 3 4h 4h 12h
3 134 / 4 6h 12h 1d 12h
4 625 / 4 1d 3h 1d 7h 4d 21h
5 2674 / 8 4d 10h 5d 5h 38d 14h
6 10 195 / 14 1d 14h 3d 19h 39d 17h
7 34 230 / 15 1d 4h 3d 15h 36d 16h
8 100 577 / 20 24s 5d 1h 11d 20h

Total 19d 15h 131d 16h

Table 6: Execution time of the iterations completed by our program
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We display in Appendices A and B, the distribution of various cryptographic
properties (bentness and semi-bentness, balancedness, etc.) as they relate to thick-
ness, for 𝑛 = 4, respectively, 𝑛 = 5. Three physical computers were used for
these computations (which took about 35 days): 1) a dedicated Windows server
with Intel(R) Xeon(R) E5-2690 v2 3.00 GHz CPU, 20 cores, and 128 GiB RAM,
responsible for the bulk of the calculations, 2) a desktop running Ubuntu with
Intel(R) Core(TM) i7-6800K 3.40 GHz CPU, 8 cores, and 32 GiB RAM, and fi-
nally 3) a desktop running Windows 10 with Intel(R) Core(TM) i5-4460 3.20 GHz
CPU, 4 cores, and 16 GiB RAM. The program iterations referenced in Table 6
were run simultaneously and each program was continually updated whenever new
representatives were found.

Acknowledgements. The authors would like to thank the referee for the com-
ments and the editors for the prompt handling of our paper.
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Appendix A: Property distribution in n = 4, sorted
by thickness

We include here the comparison between various cryptographic properties (homo-
geneous, rigid, balanced, bentness, nonlinearity, degree) of Boolean functions as
related to thickness for 𝑛 = 4 variables. Table 7 is a summary of all the property
distributions of Tables 8–12 (independent on algebraic thickness).

Properties Total number
Number of functions 65536
Homogeneous functions 96
Rigid functions 588
Balanced functions 12 870
Bent functions 896
Orbits 32
Bent orbits 2
Balanced orbits 4

Table 7: Summary of the property distribution of n = 4

Properties Nonlinearity Degrees
Number of functions 307 0 31 0 1
Homogeneous functions 52 1 16 1 30
Rigid functions 16 2 120 2 140
Balanced functions 30 3 0 3 120
Bent functions 0 4 140 4 16
Orbits 5 5 0
Bent orbits 0 6 0
Balanced orbits 1

Table 8: Property distribution of functions in ℬ4 with 𝒯4 = 1

Properties Nonlinearity Degrees
Number of functions 6804 0 0 0 0
Homogeneous functions 42 1 256 1 0
Rigid functions 64 2 2880 2 1428
Balanced functions 2760 3 560 3 4560
Bent functions 448 4 2660 4 816
Orbits 10 5 0
Bent orbits 1 6 448
Balanced orbits 2

Table 9: Property distribution of functions in ℬ4 with 𝒯4 = 2
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Properties Nonlinearity Degrees
Number of functions 33 448 0 0 0 0
Homogeneous functions 1 1 240 1 0
Rigid functions 188 2 840 2 448
Balanced functions 10 080 3 8960 3 19 320
Bent functions 448 4 18 480 4 13 680
Orbits 10 5 4480
Bent orbits 1 6 448
Balanced orbits 1

Table 10: Property distribution of functions in ℬ4 with 𝒯4 = 3

Properties Nonlinearity Degrees
Number of functions 22 288 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 271 2 0 2 0
Balanced functions 0 3 8400 3 6720
Bent functions 0 4 6720 4 15 568
Orbits 5 5 7168
Bent orbits 0 6 0
Balanced orbits 0

Table 11: Property distribution of functions in ℬ4 with 𝒯4 = 4

Properties Nonlinearity Degrees
Number of functions 2688 0 0 0 0
Homogeneous functions 0 1 0 1 0
Rigid functions 48 2 0 2 0
Balanced functions 0 3 0 3 0
Bent functions 0 4 0 4 2688
Orbits 1 5 2688
Bent orbits 0 6 0
Balanced orbits 0

Table 12: Property distribution of functions in ℬ4 with 𝒯4 = 5

Appendix B: Property distribution in n = 5, sorted
by thickness

The cryptographic properties dealt with and the goals of the comparison for 𝑛 = 5
are the same as for 𝑛 = 4.

Properties Total amount
Number of functions 4 294 967 296
Homogeneous functions 2111
Rigid functions 211 259
Balanced functions 601 080 390
Semi-Bent functions 14 054 656
Number of orbits 382
Semi-Bent orbits 9
Balanced orbits 38

Table 13: Summary of the property distribution of n = 5
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Properties Nonlinearity Degrees
Number of 𝑓 2451 0 63 0 1
Homogeneous 𝑓 203 1 32 1 62
Rigid 𝑓 32 2 496 2 620
Balanced 𝑓 62 3 0 3 1240
Semi-Bent 𝑓 0 4 1240 4 496
Orbits 6 5 0 5 32
Semi-Bent orbits 0 6 0
Balanced orbits 1 7 0

8 620
9 0
10 0
11 0
12 0

Table 14: Property distribution of functions in ℬ5 with 𝒯5 = 1

Properties Nonlinearity Degrees
Number of 𝑓 695 796 0 0 0 0
Homogeneous 𝑓 987 1 1024 1 0
Rigid 𝑓 336 2 23 808 2 23 188
Balanced 𝑓 84 072 3 4960 3 466 736
Semi-Bent 𝑓 13 888 4 104 160 4 194 928
Orbits 19 5 0 5 10 944
Semi-Bent orbits 1 6 45 136
Balanced orbits 3 7 4960

8 180 420
9 0
10 317 440
11 0
12 13 888

Table 15: Property distribution of functions in ℬ5 with 𝒯5 = 2

Properties Nonlinearity Degrees
Number of 𝑓 31 424 328 0 0 0 0
Homogeneous 𝑓 859 1 992 1 0
Rigid 𝑓 2480 2 7440 2 41 664
Balanced 𝑓 4 228 896 3 158 720 3 7620792
Semi-Bent 𝑓 874 944 4 1 536 360 4 22 119 120
Orbits 46 5 34 720 5 1 642 752
Semi-Bent orbits 3 6 2 138 752
Balanced orbits 6 7 853 120

8 15 323 920
9 317 440
10 9 900 160
11 277 760
12 874 944

Table 16: Property distribution of functions in ℬ5 with 𝒯5 = 3
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Properties Nonlinearity Degrees
Number of 𝑓 240 101 200 0 0 0 0
Homogeneous 𝑓 61 1 0 1 0
Rigid 𝑓 11 520 2 0 2 0
Balanced 𝑓 15 582 336 3 153 760 3 23 290 176
Semi-Bent 𝑓 2 499 840 4 659 680 4 168 597 840
Orbits 81 5 1 416 576 5 48 213 184
Semi-Bent orbits 2 6 10 731 952
Balanced orbits 6 7 17 541 536

8 112 334 080
9 18 213 120
10 63 162 624
11 10 888 192
12 4 999 680

Table 17: Property distribution of functions in ℬ5 with 𝒯5 = 4

Properties Nonlinearity Degrees
Number of 𝑓 1 086 598 112 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 47 220 2 0 2 0
Balanced 𝑓 187 210 240 3 0 3 27 664 896
Semi-Bent 𝑓 2 666 496 4 0 4 763 701 120
Orbits 111 5 7 936 992 5 295 232 096
Semi-Bent orbits 1 6 42 413 952
Balanced orbits 11 7 53 524 352

8 364 837 760
9 193 162 240
10 375 614 848
11 40 608 512
12 8 499 456

Table 18: Property distribution of functions in ℬ5 with 𝒯5 = 5

Properties Nonlinearity Degrees
Number of 𝑓 1 842 215 424 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 59 760 2 0 2 0
Balanced 𝑓 308 646 912 3 0 3 7 999 488
Semi-Bent 𝑓 7 999 488 4 0 4 951 105 792
Orbits 81 5 3 499 776 5 883 110 144
Semi-Bent orbits 2 6 2 666 496
Balanced orbits 9 7 96 827 136

8 154 990 080
9 694 122 240
10 788 449 536
11 88 660 992
12 12 999 168

Table 19: Property distribution of functions in ℬ5 with 𝒯5 = 6
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Properties Nonlinearity Degrees
Number of 𝑓 935 273 472 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 64 470 2 0 2 0
Balanced 𝑓 85 327 872 3 0 3 0
Semi-Bent 𝑓 0 4 0 4 174 655 488
Orbits 33 5 0 5 760 617 984
Semi-Bent orbits 0 6 0
Balanced orbits 2 7 46 663 680

8 0
9 436 638 720
10 174 655 488
11 277 315 584
12 0

Table 20: Property distribution of functions in ℬ5 with 𝒯5 = 7

Properties Nonlinearity Degrees
Number of 𝑓 158 656 512 0 0 0 0
Homogeneous 𝑓 0 1 0 1 0
Rigid 𝑓 25 440 2 0 2 0
Balanced 𝑓 0 3 0 3 0
Semi-Bent 𝑓 0 4 0 4 0
Orbits 4 5 0 5 158 656 512
Semi-Bent orbits 0 6 0
Balanced orbits 0 7 0

8 0
9 19 998 720
10 0
11 138 657 792
12 0

Table 21: Property distribution of functions in ℬ5 with 𝒯5 = 8
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