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Abstract

Node localization and ranking is an essential issue in wireless sensor net-
works (WSNs). We model WSNs by communication graphs. In our inter-
pretation a communication graph can be directed, in case of heterogeneous
sensor nodes, or undirected, in case of homogeneous sensor nodes, and must
be strongly connected. There are many metrics to characterize networks,
most of them are either global ones or local ones. The local ones consider
only the immediate neighbors of the observed nodes. We are not aware of
a metric which considers a subgraph, i.e., which is between global and lo-
cal ones. So our main goal was to construct metrics that interpret the local
properties of the nodes in a wider environment. For example, how dense the
environment of the given node, or in which extent it can be relieved within its
environment. In this article we introduce several novel 𝑘-hop based density
and redundancy metrics: Weighted Communication Graph Density (𝒲𝒞𝒢𝒟),
Relative Communication Graph Density (ℛ𝒞𝒢𝒟), Weighted Relative Com-
munication Graph Density (𝒲ℛ𝒞𝒢𝒟), Communication Graph Redundancy
(𝒞𝒢ℛ), Weighted Communication Graph Redundancy (𝒲𝒞𝒢ℛ). We com-
pare them to known graph metrics, and show that they can be used for node
ranking.
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1. Introduction

The modeling and analysis of complex networks is an important interdisciplinary
field of science. The networks are mathematically related to graph theory. It is
known that topology represents the properties of the whole network structure. A
topology describes a real network (with constraints) and it can be converted to
an undirected or directed graph. The common property of topological models is
that they are usually calculated based on probabilities [2–4, 11]. The objects of
the model can be matched by the vertices of the graph. Edges can be used to
describe the relations between the objects. Graph-based modeling can be of two
types: ad-hoc or measurement-based. On large wireless networks the traditional
measurements based procedures can not be applied efficiently, but 𝑘-hop based
approaches can be computed effectively also for large networks.

There are many graph-based metrics for modeling complex networks [9]. Topo-
logical metrics commonly used on networks: number of nodes and edges, average
degree, degree distribution, connectedness, diameter, number of independent paths.
Parameters for measuring the effectiveness of wireless networks: scope and cover-
age, scalability, expected transmission number, hop count (number of hops), power
consumption / lifetime.

In graph theory, the density of a graph (𝒱; ℰ) can be calculated as |ℰ|
|𝒱|(|𝒱|−1) [6].

Since the number of edges for a complete directed graph is |𝒱| (|𝒱| − 1), the maxi-
mum density is 1. Clearly, the minimum density is 0 (for empty graphs). There are
two different approaches [13, 16], but there is no strict distinction between sparse
and dense graphs.

Distance-based metrics

The eccentricity of a node 𝑢 is defined as the longest hop count between the node
𝑢 and any other node in the graph.

Centralization [8] is a general method for calculating a graph-level centrality
score based on some node-level centrality metric. Centrality based metrics are the
following ones: degree centrality (based on degree), closeness centrality (based on
average distances), betweenness centrality (based on geodesics), eigenvector central-
ity (recursive: similar to page rank methods), eccentricity centrality. In the case of
eccentricity centrality, we not use the reciprocal to assure that more central nodes
have a higher value of eccentricity.

Connection-based metrics

The most basic connection-based metrics are the degree of a node, which is the
number of edges to other nodes, and the degree distribution. The degree distribu-
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tion 𝑃 (𝑘) of a graph is then defined to be the fraction of nodes in the network with
degree 𝑘. Thus if there are 𝑛 nodes in total in a graph and 𝑛𝑘 of them have degree
𝑘, we have 𝑃 (𝑘) = 𝑛𝑘/𝑛.

Clustering is a fundamental and important property of networks, just like degree
and degree distribution. Clustering coefficient is the measurement that shows the
opportunity of a graph to be divided into clusters. Clusters are disjoint subgraphs
of the graph. A cluster usually should be a complete subgraph, so in this way it
is similar to a clique, but a cluster may consists of one node, on the other hand a
clique is a complete subgraph which contains always at least two nodes in case of a
communication graph. The clustering coefficient can globally [12, 18] or locally [19]
characterize a graph. The global clustering coefficient is based on triplets of nodes.
The global clustering coefficient of a network, also known as transitivity 𝑇 , which is
the ratio of the number of loops of length three and the number of paths of length
two.

Let 𝑢 be a vertex with 𝑘 degree and given by the proportion of 𝑒 edges between
the 𝑣 within it is neighborhood 𝐺, then the Local clustering coefficient of 𝑢 in
𝐺 is given by 𝐶𝑢 = 2𝑒

𝑘(𝑘−1) . Thus, 𝐶𝑢 measures the ratio of the number of edges
between the neighbors of 𝑢 to the total possible number of such edges. The average
clustering coefficient is the average of local clustering coefficients.

Wireless sensor networks

The ad hoc wireless sensor networks (WSN) are used widely (for example in military
to observe environment). They have the advantage that they consist of sensors with
low energy consumption, which can be deployed easily in a cheap way on such areas
which are out-of-the-way. These sensors are the nodes of WSN. They are capable to
process some limited information and to use wireless communication. A big effort
is used to research how to deploy them in an optimal way to keep efficient energy
consumption and communication. Although there are many WSN solutions, the
deployment of a WSN is still an active research field [1].

One of the important property of an ad hoc wireless network is node density.
The dense layout makes the following properties available: high fault tolerance,
high-coverage characteristics, but also cause some problems. The interference is
high near to dense node areas, and there are a lot of collisions in case of message
passing, which requires complicated operations for routing protocols, because of
too many possible routes, routing needs lots of resources [5].

The aim of topology control techniques is to reduce the cost of the distributed
algorithms interpreted on the network. The graph, which represents a network, has
to be thinned because of cost-reduction by techniques like disconnection of nodes,
removing links, changing scopes, etc., but the network-quality characteristics (like
scalability, coverage, fault tolerance, etc.) must not fall below a required level. The
overall aim is to create a scalable, fault-tolerant sparse topology, where the degree
of the nodes are low, the maximum load is low, energy consumption is low and the
paths are short. The following techniques are used to create an optimal topology:
reducing the scope of nodes, removing some nodes, introducing a dominating set
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of nodes, clustering, and add some new nodes to gain all-all communication [15,
17].

In multi-hop networks one hop is the unit of the path between source and
destination. The hop count refers to the number of intermediate nodes through
which data must pass between source and destination. Networks can be classified
by the number of hops between source nodes, which measures their environment,
and a sink node, which collects data. In a single-hop network there is only one
(single) hop between the source nodes and the sink node. In a multi-hop network
a sensor can also transmit data from the source to the sink because there are more
than one hop from the source to the sink.

The rest of this article is organized as follows. In Section 2 we give some
preliminary definitions, like communication graph. In Section 3 we introduce the
new metrics, each of them are 𝑘-hop based. In Section 4 we compare existing
metrics and the new ones. In section 5 we show how to use this metrics to rank
nodes and Section 6 contains our conclusions.

2. Preliminaries

Given a randomly-deployed sensor network with homogeneous or heterogeneous
nodes. Also given a mapping which sensor is able to communicate with which sen-
sors directly. Accordingly, by communication graph we mean a weighted directed
graph 𝒟 = (𝒮; ℰ𝒞 ,𝒲), where 𝒮 is the set of nodes, which represents the sensors,
ℰ𝒞 ⊆ 𝒮 × 𝒮 is the set of edges, and 𝒲 is the set of weights. An edge (𝑥𝑖, 𝑥𝑗) ∈ ℰ𝒞
represents the possibility of messaging from node 𝑥𝑖 to 𝑥𝑗 in 𝒟, i.e., the sensor
represented by 𝑥𝑗 is in the transmission range of 𝑥𝑖. The 𝒲𝑖𝑗 denotes the com-
munication cost of the (𝑥𝑖, 𝑥𝑗) message. In the case of homogeneous sensors the 𝒟
graph is symmetric, accordingly 𝒟 = (𝒮; ℰ𝒞 ,𝒲) is equivalent to a simple weighted
undirected graph 𝒢 = (𝒮; ℰ𝒞 ,𝒲).

In case of an weighted undirected graph 𝒢 = (𝒮; ℰ𝒞 ,𝒲) we define a clique as
a subset of the node set 𝒞𝑙 ⊆ 𝒮, such that for every two nodes in 𝒞𝑙, there exists
an edge connecting the two. The weight of a 𝒞𝑙 is the sum of the weight of their
edges.

If our communication graph is directed, we define a clique as a subset of the
node set 𝒞𝑙 ⊆ 𝒮, such that for every two nodes in 𝒞𝑙, there exists an edge from
the first one to the second one, and from the second one back to the fists one.
The weight of the 𝒞𝑙 is defined as above, considering that 𝒲𝑖𝑗 and 𝒲𝑗𝑖 are not
necessarily equal. A maximal clique is a clique which is not a proper subset of any
other clique. A 𝑛-clique is a clique which contains exactly 𝑛 vertices.

In this paper we assume that the communication graph is strongly connected,
the cost of communication between each node is constant (we do not use weights),
and the network consists of homogeneous nodes. To test the new metrics we used
our own representation [7] and SAT solver [10].
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3. k-hop based graph density and redundancy met-
rics

In this section we present some spanning tree and clique-based graph density met-
rics. With spanning tree-based metrics, we define graph density, whereas clique-
based redundancy metrics mean the degree of relieving in our interpretation. We
use the notion of 𝑘-hop environment of a node 𝑢, denoted by 𝒢[𝑛](𝑢), which is a
subgraph of graph 𝒢, which consists 𝑢 and the nodes which can be reached from
𝑢 from an path, which length is smaller or equal than 𝑘, and which contains edges
between these nodes from 𝒢. We compute local metrics for 𝑢 by computing a
graph metrics for 𝒢[𝑛](𝑢). The parameter 𝑘 should be a relatively small number
because otherwise 𝒢[𝑛](𝑢) could be the whole graph. The metrics over the 𝑘-hop
environment of a node can characterize the node more properly then considering
merely the node itself. On the other hand these metrics characterize not only the
node but its environment.

Taking into account the constraints mentioned in Section 2, the basic notations
are:

∙ 𝑢: the candidate node;

∙ 𝑘: the number of hops;

∙ 𝒩 , 𝒱: the number of nodes and edges of graph 𝒢;

∙ 𝒩 [𝑘](𝑢),𝒱 [𝑘](𝑢): the number of nodes and edges of graph 𝒢[𝑘](𝑢);

∙ 𝒞𝑙, ℳ: the set of maximum cliques of graph 𝒢 and the cardinality of this set;

∙ 𝒞𝑙[𝑘](𝑢), ℳ[𝑘](𝑢): the set of maximal cliques of graph 𝒢[𝑛](𝑢) and the cardi-
nality of this set;

∙ 𝒯 [𝑘](𝑢), 𝒯 : the number of edges of the minimum cost spanning tree of graph
𝒢[𝑘](𝑢) and 𝒢. Note, that in case of a communication graph we have that
𝒯 = 𝒩 − 1, regardless whether the graph is directed or undirected;

∙ 𝑠: the spreading factor, which is rather a technical value to enlarge small
differences in the metrics, in this article we set 𝑠 = 2.71;

∙ 𝑐𝑠: the clique size, minimum value is 2.

3.1. Spanning tree-based metrics
Sanning tree-based approaches can be found in the wide area of network protocols.
For example, a known technique is Time-To-Live (TTL). It works as follows, routing
methods try to find the best path for forwarding the collected data, the TTL
mechanism is used to limit the number of hops to avoid over-overlapping of paths
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and to balance the data load on the nodes and the energy consumption [14]. They
use also small 𝑘 values.

We define graph density of the graphs 𝒢 and 𝒢[𝑘](𝑢) as follows:

𝒢𝒟 =
𝒱
𝒯

𝒢𝒟[𝑘](𝑢) =
𝒱 [𝑘](𝑢)

𝒯 [𝑘](𝑢)
.

The graph density takes its maximum if the graph is complete. In case of undirected
graphs the maximum is: 𝒩 (𝒩−1)

2(𝒩−1) = 𝒩
2 . In case of directed graphs the maximum is:

𝒩 (𝒩−1)
𝒩−1 = 𝒩 . The graph density takes its maximum if the graph is a tree. In case

of undirected graphs the minimum is: 𝒩−1
𝒩−1 = 1, since the graph is a communication

graph, i.e., it is strongly connected. If the graph is directed, then the minimum is:
2(𝒩−1)
𝒩−1 = 2, because of the same reason.

Communication and Weighted Communication Graph Density

We define the communication graph density of node 𝑢 in its 𝑘-hop environment as
follows:

𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢) .

The 𝒞𝒢𝒟[𝑘](𝑢) can be used also as a local metric for a node, and computed
quickly for all nodes and use to rank them.

We define the weighted communication graph density of node 𝑢 in its 𝑘-hop
environment as follows:

𝒲𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 .

The 𝒲𝒞𝒢𝒟[𝑘](𝑢) is no longer a purely local metric, but takes into account the
number of nodes in the 𝑘-hop environment.

Relative Communication Graph Density

We define the relative communication graph density of node 𝑢 in its 𝑘-hop envi-
ronment as follows:

ℛ𝒞𝒢𝒟[𝑘](𝑢) = 𝑠
𝒞𝒢𝒟[𝑘](𝑢)

𝒞𝒢𝒟 = 𝑠
𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱 .

It maximizes its value when the 𝑘-hop environment of 𝑢, i.e., 𝒢[𝑘](𝑢) is a complete
graph and the rest of the graph is a tree, or consists of several trees.

The minimum is - vice versa - assumes that the 𝑘-hop environment of 𝑢 is a
tree and the rest of the graph is a complete graph.

If we consider the two extremes, i.e., if the communication graph is a complete
graph or if it is a tree, interestingly enough, we get the same relative communication
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graph density, which is 𝑠. If the communication graph is a complete graph, then for
any 𝑘 >= 1 and for any node 𝑢 we have that 𝒢[𝑘](𝑢) is equal to 𝒢, so, 𝒱[𝑘](𝑢)

𝒯 [𝑘](𝑢)
= 𝒱

𝒯 ,

i.e., 𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱 = 1. On the other hand, if the communication graph is a tree, then

its communication graph density is a constant (1 if the graph is undirected, 2 if it
is directed) for any 𝑛 and 𝑢, so again 𝒱[𝑘](𝑢)𝒯

𝒯 [𝑘](𝑢)𝒱 = 1.
We get the same result for the two extreme cases, because this metric shows the

relative density of subgraph related to the whole graph. A tree has a very small
density, and a complete graph has a very high density, but if we take a subgraph
of a tree then it has the same density as the whole, and the same is true for a
complete graph. So they have the same relative density.

This metric shows whether the 𝑘-hop environment of a node is more dense as
the whole graph, or has the same density, or it is less dense. This means that if

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) = 𝑠, then 𝒢[𝑘](𝑢) has the same cgd as 𝒢;

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) < 𝑠, then 𝒢[𝑘](𝑢) has smaller cgd than 𝒢;

∙ ℛ𝒞𝒢𝒟[𝑘](𝑢) > 𝑠, then 𝒢[𝑘](𝑢) has bigger cgd than 𝒢;

where cgd means communication graph density.
Note, that this metric is computed by dividing a local property by a global one.

Weighted Relative Communication Graph Density

We define the weighted relative communication graph density of node 𝑢 in its 𝑘-hop
environment as follows:

𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) = ℛ𝒞𝒢𝒟[𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 = 𝑠
𝒱[𝑘](𝑢)𝒯
𝒯 [𝑘](𝑢)𝒱

𝒩 [𝑘](𝑢)

𝒩 .

Note, that this metric is computed as a multiplication of two numbers, which
are both computed by dividing a local property by a global one, so we have
(𝑙𝑜𝑐𝑎𝑙′/𝑔𝑙𝑜𝑏𝑎𝑙′) * (𝑙𝑜𝑐𝑎𝑙′′/𝑔𝑙𝑜𝑏𝑎𝑙′′).

This metric takes in consideration also how many nodes are in the 𝑛-hop en-
vironment of the node 𝑢. A node is more valuable if its 𝑘-hope environment is
bigger.

3.2. Clique-based metrics
During the work of a WSN the topology of the network may change because some
sensors may go wrong, or the transmission range can be less. If a node can be
found in a dense (redundant) environment then it may happen more often that
communication interference occurs and routing is more resource consuming; on the
other hand, the environment itself is more fault tolerant. In a sparse environment
routing is easier, communication interference is less frequent, but the environment
is less fault tolerant. The aim of topology control techniques is to reduce the cost
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of the distributed algorithms interpreted on the network. But the network-quality
characteristics (like scalability, coverage, fault tolerance, etc.) must not fall below a
required level. A clique is a complete subgraph, so they have high communication
redundancy, on the other hand they allow high fault tolerance, results in high
coverage, etc.

First of all we define the average clique size as follows:

𝒞ℒ =
1

ℳ
ℳ∑︁

𝑖=1

|𝒞𝑙𝑖|>=𝑐𝑠 .

The average clique size is maximal, if the graph is complete. Its minimum is 𝑐𝑠
if all maximal cliques have the size 𝑐𝑠. It is not defined if there is no clique with size
at least 𝑐𝑠. Its maximum is 𝒩 if the communication graph is complete, because
then we have only one maximal clique, the graph itself. The clique problem, the
problem of finding all maximal size cliques, is a well-known NP-complete problem.
It meas that is not feasible to find all maximal cliques in a large graph. So one
can not use clique based metrics to guide topology control techniques, except if we
work with relatively small graphs, like in the 𝑘-hop environment of a node.

Clique size-based metrics

So we define the clique size-based communication graph redundancy of node 𝑢
within 𝑘-hop environment as follows:

𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) =

1

ℳ[𝑘](𝑢)

ℳ[𝑘](𝑢)∑︁

𝑖=1

⃒⃒
⃒𝒞𝑙[𝑘](𝑢)𝑖

⃒⃒
⃒
>=𝑐𝑠

It only shows the average clique size within 𝑘-hop environment of node 𝑢, but it
ignores the number of nodes within the 𝑘-hop environment.

We define weighted communication graph redundancy of node 𝑢 within 𝑘-hop
environment as follows:

𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) = 𝒞𝒢ℛ𝑠𝑏

[𝑘](𝑢)
𝒩 [𝑘](𝑢)

𝒩 .

This metric uses also the number of nodesThis can be considered to be a local
metric, because the computationally intensive tasks (find cliques) typically occur
in a 𝑘-hop environment.

Clique value-based metrics

Since a clique of size 4 is more valuable in a graph than 6 in a graph with 100
nodes, we shall take into consideration the number of nodes in the graph, which is
denoted by 𝒩 , to compute the value of a clique. We also use the average clique
size to normalize this value.
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So we define the value of a clique as follows:

𝒞ℒ𝑉 =
|𝒞𝑙|>=𝑐𝑠

𝒩 𝑠
|𝒞𝑙|>=𝑐𝑠

𝒞ℒ .

We define also the average value of cliques as follows:

𝒞ℒ𝑉 =
1

ℳ
ℳ∑︁

𝑖=1

|𝒞𝑙𝑖|>=𝑐𝑠

𝒩 𝑠
|𝒞𝑙𝑖|>=𝑐𝑠

𝒞ℒ

We define also the average value of cliques within the 𝑘-hop environment, also
called clique value-based communication graph redundancy as follows:

𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢) =

1

1
ℳ[𝑘](𝑢)

∑︀ℳ[𝑘](𝑢)
𝑖=1

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒩 [𝑘](𝑢)
𝑠

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒞ℒ[𝑘](𝑢)

.

This metric is the pair of 𝒞ℒ𝑉 in case of 𝒢[𝑘](𝑢). This is a local metric, but
this notion does not takes into consideration the number of nodes in the 𝑘-hop
environment of 𝑢. Without reciprocal, the peripheral but relievable nodes are
ranked in advance.

After considerating the number of nodes in the 𝑘-hop and conversion we define
weighted clique value-based communication graph redundancy as follows:

𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢) =

1

𝒞𝒢ℛ𝑣𝑏
[𝑘](𝑢)

𝒩 [𝑘](𝑢)

𝒩 =

=
1

ℳ[𝑘](𝑢)

ℳ[𝑘](𝑢)∑︁

𝑖=1

𝒩 [𝑘](𝑢)|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒩 2
𝑠

|𝒞𝑙[𝑘](𝑢)𝑖|>=𝑐𝑠

𝒞ℒ[𝑘](𝑢)

This metric is the pair of 𝒞ℒ𝑉 in case of 𝒢[𝑘](𝑢).

4. Comparisons with other metrics

In this article we considered networks with 200-500 nodes at 15-40% densities. The
𝑘 value in each case is less than 3. An important constraint was that the largest
𝑘-hop environment must be smaller than the quarter of a complete graph.

For simulating and analyzing networks we used a self-developed Python tool
based on NetworkX 1. For computing pairwise correlation of metrics we used pan-
das2. Many metrics are only implemented for undirected graphs in NetworkX,
therefore, the comparisons were done only on undirected graphs.

The results of the correlation analysis are presented in Table 1–3 (average values
of 1000 runs), shows some interesting phenomena and experience. The abbrevation
c. means centrality.

1https://networkx.github.io
2https://pandas.pydata.org
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4.1. 1-hop based environment

𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. 0,06 0,19 0,00 0,37 -0,17 0,14
Eccentricity -0,07 -0,21 -0,24 -0,15 -0,31 -0,21
Betweenness c. -0,04 -0,05 0,06 -0,12 0,22 -0,01
Degree c. 0,54 0,87 0,94 0,76 0,84 0,83
Closeness c. 0,05 0,23 0,28 0,17 0,37 0,23
Eigenvector c. 0,67 0,61 0,64 0,49 0,28 0,68

Table 1: Correlations with other metrics, where 𝑘 is 1

It can be seen from the Table 1 that within 1-hop environment the defined
metrics show their most significant correlation with degree centrality. The correla-
tion is the strongest between 𝒲ℛ𝒞𝒢𝒟 and degree centrality, the correlation is over
90%. 𝒲𝒞𝒢𝒟, ℛ𝒞𝒢𝒟, 𝒲ℛ𝒞𝒢𝒟 and 𝒲𝒞𝒢ℛ𝑣𝑏 metrics are also strongly correlated
with the eigenvector centrality.

4.2. 2-hop based environment

𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. -0,07 0,04 -0,15 0,08 -0,26 -0,06
Eccentricity -0,15 -0,24 -0,38 -0,22 -0,45 -0,33
Betweenness c. 0,06 0,03 0,22 0,05 0,32 0,17
Degree c. 0,54 0,78 0,83 0,72 0,67 0,72
Closeness c. 0,08 0,26 0,44 0,24 0,53 0,36
Eigenvector c. 0,87 0,68 0,67 0,57 0,26 0,71

Table 2: Correlations with other metrics, where 𝑘 is 2

It can be seen from the Table 2 that the defined metrics within 2-hop envi-
ronment showed a weaker correlation with the degree centrality and stronger with
the eigenvector centrality, since the degree of neighbors of the examined node also
affects the density and redundancy of the environment. The strongest correlation
with the degree centrality is still shown with 𝒲ℛ𝒞𝒢𝒟, while with the eigenvector
centrality correlats best with𝒲𝒞𝒢𝒟.

4.3. 3-hop based environment
The correlations in the 3-hop environment are shown in the Table 3. In general, the
correlations with the degree centrality and the eigenvector centrality are no longer
significant, the eccentricity and the closeness centraliy correlations are reinforced.

In the following, we will analyze in detail the relationship between the new and
already known metrics.
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𝑘-hop based metrics

𝒲𝒞𝒢𝒟[𝑘] ℛ𝒞𝒢𝒟[𝑘] 𝒲ℛ𝒞𝒢𝒟[𝑘] 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘] 𝒞𝒢ℛ𝑣𝑏

[𝑘] 𝒲𝒞𝒢ℛ𝑣𝑏
[𝑘]

Clustering coeff. 0,12 0,03 -0,20 0,03 -0,24 -0,19
Eccentricity -0,27 -0,18 -0,55 -0,30 -0,56 -0,51
Betweenness c. 0,18 0,07 0,36 0,14 0,38 0,29
Degree c. 0,46 0,55 0,63 0,56 0,54 0,62
Closeness c. 0,38 0,25 0,63 0,34 0,67 0,54
Eigenvector c. 0,72 0,55 0,52 0,52 -0,26 0,59

Table 3: Correlations with other metrics, where 𝑘 is 3

Weighted Communication Graph Density

The metric 𝒲𝒞𝒢𝒟[𝑘](𝑢) correlats strongly with eigenvector centrality. There is a
not too strong but significant correlation with degree centrality also, and there is
no relevant correlation with other metrics. If we want to characterize this metric
on the basis of the above, then a high 𝒲𝒞𝒢𝒟[𝑘](𝑢) value node has the following
properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ high probability of high degree of neighbors,

∙ weak probability of central location.

Relative Communication Graph Density

The metric ℛ𝒞𝒢𝒟[𝑘](𝑢) has average correlation with degree centrality and eigen-
vector centrality, weak but significant contact with closeness centrality, and there
is no relevant correlation with other metrics. So a high ℛ𝒞𝒢𝒟[𝑘](𝑢) value node has
the following properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors.

Weighted Relative Communication Graph Density

The metric 𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) has an average linear correlation with degree centrality,
closeness centrality, and eigenvector centrality, and suggests a weak correlation
with betweenness centrality, but with eccentricity shows an average but inverse
correlation. So a high 𝒲ℛ𝒞𝒢𝒟[𝑘](𝑢) value node has the following properties (in
𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of central location,

∙ average probability of high degree of neighbors,

∙ weak probability of high geodesic distance from any other node.
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Weighted Communication Graph Redundancy (size-based)

The metric 𝒲𝒞𝒢ℛ𝑠𝑏
[𝑘](𝑢) has average correlation with degree centrality and eigen-

vector centrality. It suggests a weak but significant correlation with closeness cen-
trality and inverse correlation with eccenticity. There is no relevant correlation
with other metrics. So a high 𝒲𝒞𝒢ℛ[𝑘]

𝑠𝑏 (𝑢) value node has the following properties
(in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors,

∙ weak probability of central location.

Communication Graph Redundancy (value-based)

The metric 𝒞𝒢ℛ[𝑘]
𝑣𝑏 (𝑢) has an average linear correlation with degree centrality and

closeness centrality. It suggests a weak correlation with betweenness centrality.
It shows shows an average but inverse correlation with eccentricity. So a high
𝒞𝒢ℛ[𝑘]

𝑣𝑏 (𝑢) value node has the following properties (in 𝑘-hop environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of central location,

∙ weak probability of great geodesic distance from any other node.

Weighted Communication Graph Redundancy (value-based)

The metric 𝒲𝒞𝒢ℛ[𝑘]
𝑣𝑏 (𝑢) has an average linear correlation with degree centrality,

closeness centrality, and eigenvector centrality. It suggests a weak correlation with
betweenness centrality, but with eccentricity shows an average but inverse corre-
lation. So a high 𝒲𝒞𝒢ℛ[𝑘]

𝑣𝑏 (𝑢) value node has the following properties (in 𝑘-hop
environment, if 𝑘 = 3):

∙ average probability of high number of direct connections,

∙ average probability of high degree of neighbors,

∙ average probability of central location,

∙ weak probability of great geodesic distance from any other node.
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5. Node ranking

In this section we show how to use the different metrics to make node ranking (top
30 selection). The generated network (shown in Fig. 1 ) contains 100 randomly
deployed and homogeneous sensor nodes (vertices) with 926 connections (edges).
The density is 18.7%, the transmission range is 55 m, the area is 300m×300m and
the 𝑘-hop number is 3. The communication graph of the exemplary network are
shown Fig. 2.

Figure 1: Randomly Deployed Sensor Network

Both the spanning tree and the clique based metrics show the denser environ-
ments of the network. Since this network consists of only 100 nodes it does not
give a real picture of the metrics, but we can still see the tendencies.

Spanning tree-based metrics (density)

Figures 3–5 show how to use the spanning tree based metrics to make ranking nodes.
The task of all three metrics is to designate the densest environments. Based on
the comparisons, the most significant feature of 𝒲𝒞𝒢𝒟 is that the neighbors and
the neighbors’ neighbors have a high degree. Figure 3 shows that the top 3 node
and the at least 40% of the selected nodes are centrally located. The metric ℛ𝒞𝒢𝒟
showed no significant correlation with the closeness centrality and eccentricity. In
Figure 4 we can see that among the selected nodes there are only few nodes in
central position. The metric ℛ𝒞𝒢𝒟 primarily marks the nodes within the densest
areas. The metric 𝒲𝒞𝒢𝒟 selects those nodes whose density is high within their
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Figure 2: Communication Graph

𝑘-hop environment and centrally located. Figure 5 shows that the top 3 node and
the at least 80% of the selected nodes are centrally located.

In these figures we use the following colour codes: top 1 rank node is red, top
2 is green, top 3 is yellow, top 4–10 are blue, top 11–20 are pink, top 21–30 are
orange, the rest is cyan.

Figure 3 shows the top 30 ranked nodes based on the Weighted Communication
Graph Density metric. In 3-hop environments, the highest weighted communication
graph density has nodes 77, 68, and 26.

Figure 3: Weighted Communication Graph Density
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Figure 4 shows the top 30 ranked nodes based on the Relative Communication
Graph Density metric. In 3-hop environments, the highest relative communication
graph density has nodes 30, 79, and 71.

Figure 4: Relative Communication Graph Density

Figure 5 shows the top 30 ranked nodes based on the Weighted Relative Com-
munication Graph Density metric. In 3-hop environments, the highest weighted
relative communication graph density has nodes 68, 77, and 26.

Figure 5: Weighted Relative Communication Graph Density
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Clique-based metrics (degree of relieving)

Figures 6–8 show how can we use the clique based metrics to make ranking nodes.
The task of all three metrics is to designate the degree of relieving nodes within
their 𝑘-hop environment. Figure 6 shows node ranking created by 𝒲𝒞𝒢ℛ𝑠𝑏. In
case of 𝒲𝒞𝒢ℛ𝑠𝑏 only the size of cliques in the 𝑘-hop environment of the examined
node is relevant. 𝒲𝒞𝒢ℛ𝑠𝑏 marks primarily the nodes within the densest areas,
just lik ℛ𝒞𝒢𝒟. Figure 7 shows node ranking created by 𝒲𝒞𝒢ℛ𝑣𝑏. The significant
difference between 𝒲𝒞𝒢ℛ𝑣𝑏 and 𝒲𝒞𝒢ℛ𝑠𝑏 is that 𝒲𝒞𝒢ℛ𝑣𝑏 takes into consideration
also the degree of neighbors. Figure 8 clearly shows that 𝒞𝒢ℛ𝑣𝑏 primarily focuses
on centrally located nodes so the top 3 node and the at least 80% of the selected
nodes are centrally located.

Figure 6 shows the top 30 ranked nodes based on the Clique size-based Weighted
Communication Graph Redundancy metric. In 3-hop environments, the most re-
lieved nodes has nodes 79, 30, and 81.

Figure 6: Clique size-based Weighted Communication Graph Re-
dundancy

Figure 7 shows the top 30 ranked nodes based on the Clique value-based Com-
munication Graph Redundancy metric. In 3-hop environments, the most relieved
nodes has nodes 68, 77, and 26.
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Figure 7: Clique value-based Communication Graph Redundancy

Figure 8 shows the top 30 ranked nodes based on the Clique value-based Weight-
ed Communication Graph Redundancy metric. In 3-hop environments, the most
relieved nodes has nodes 77, 68, and 26.

Figure 8: Clique value-based Weighted Communication Graph Re-
dundancy

These figures show that 1-1 densities and redundancy-based metrics similarly
rank the nodes. Why? The first reason is that the two concepts are closely related,
if the density is high, then the redundancy is high, too. However, if the test is
performed with directed graphs, there will be significant differences, because if
node 𝑢 can send a message to node 𝑣, then 𝑣 may not be able to send a message to
𝑢, which means that high density does not mean necessarily also high redundancy.
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6. Conclusions and Future work

In this paper we introduced several novel 𝑘-hop based density and redundancy
metrics. We compared them to well-known graph metrics and we showed how can
them be used for node ranking. Our primary goal was to define metrics that are
able to rank nodes depending on their immediate environment within the whole
network. Based on the results, we think that more sophisticated node ranking
can be given using the new metrics. We primarily focused on modelling small
heterogeneous networks. Metrics are defined so that they can be used also on
networks where communication costs are different (weighted directed graphs). Our
further goal is to investigate also such networks. An interesting questions is how to
use these metrics to increase the efficiency of different (Tx range-based, hierarchical)
topology control methods and how to use them in different hierarchical topological
models (e.g. clustering, cluster head selection).
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