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Abstract

In this paper, we define a Lucas-Lehmer type sequence denoted by (Ln)
∞
n=0,

and show that there are no integers 0 < a < b < c such that ab + 1, ac + 1
and bc+ 1 all are terms of the sequence.
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1. Introduction

A diophantinem-tuple consists ofm distinct positive integers such that the product
of any two of them is one less than a square of an integer. Diophantus found the first
four, but rational numbers 1/16, 33/16, 17/4, 105/16 with this property. Fermat
gave 1, 3, 8, 120 as the first integer quadruple. Hoggatt and Bergum [8] provided
infinitely many diophantine quadruples by F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3.
The most outstanding result is due to Dujella [3], who proved that there are only
finitely many quintuples. Recently He, Togbe, and Ziegler submitted a work which
solved the longstanding problem of the non-existence of diophantine quintuples [7].

There are several variations of the basic problem, most of them replace the
squares by a given infinite set of integers. For instance, Luca and Szalay studied
the diophantine triples for the terms of binary recurrences. They proved that there
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are no integers 0 < a < b < c such that ab+ 1, ac+ 1 and bc+ 1 all are Fibonacci
numbers (see [9]), further for the Lucas sequence there is only one such a triple:
a = 1, b = 2, c = 3 (see [10]). Fuchs, Luca and Szalay [4] gave sufficient and
necessary conditions to have infinitly many diophantine triples for a general second
order sequence.

For ternary recurrences Fuchs et al. [5] justified that there exist only finitely
many triples corresponding to Tribonacci sequence. This paper was generalized by
Fuchs et al. [6]. Alp and Irmak were the first who investigated the existence of
diophantine triples in a Lucas-Lehmer type sequence (see [2]). They showed that
there are no diophantine triples for the so-called pellans sequence.

In this paper, we study another Lucas-Lehmer sequence and prove the non-
existence of diophantine triples associated to it. Let (Ln)

∞
n=0 be defined by the

initial values L0 = 0, L1 = 1, L2 = 1 and L3 = 3, and by the recursive rule

Ln = 4Ln−2 − Ln−4. (1.1)

Our principal result is the following.

Theorem 1.1. There exist no integers 0 < a < b < c such that

ab+ 1 = Lx, ac+ 1 = Ly, bc+ 1 = Lz (1.2)

would hold for any positive integers x, y and z.

2. Preliminaries

The associate sequence of (Ln) is denoted by (Mn)
∞
n=0, which according to the

general theory of Lucas-Lehmer sequences satisfies M0 = 2, M1 = 2, M2 = 4,
M3 = 10, and Mn = 4Mn−2 −Mn−4. It is easy to see that Ln is divisible by 4
if and only if 4 | n, otherwise Ln is odd. Using the recurrence relation (1.1), for
negative subscripts M−n = (−1)nMn follows.

The zeros of the common characteristic polynomial x4 − 4x2 + 1 of (Ln) and
(Mn) are ω = (

√
3 + 1)/

√
2, ψ = (−

√
3 + 1)/

√
2, −ω and −ψ, further the initial

values provide the explicit formulae

Ln =
1 +
√
2

4
√
3

(ωn − ψn) + 1−
√
2

4
√
3

((−ω)n − (−ψ)n) ,

Mn =
1 +
√
2

2
(ωn + ψn) +

1−
√
2

2
((−ω)n + (−ψ)n) . (2.1)

It’s trivial from the recursive rules of both (Ln) and (Mn) that the subsequences
of terms with even resp. odd indices form second order sequences by the same
coefficients. The zeros of their companion polynomial are α = ω2 = 2 +

√
3 and

β = ψ2 = 2−
√
3, and the dominant root is α.

Generally the Lucas-Lehmer sequences are union of two binary recursive se-
quences. Many properties, which are well known for binary sequences with initial
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values 0 and 1, hold for Lucas-Lehmer sequences too (may be by a little mod-
ification). So the research of Lucas-Lehmer sequences is a new feature in the
investigations.

In the sequel, we prove a few lemma which will be useful in proving the main
theorem.

Lemma 2.1. If n = mt and t is odd, then Mm |Mn.

Proof. The statement is obvious for t = 1. Formula (2.1) admits

M6k =M2k(M4k − 1), (2.2)
M6k+3 =M2k+1(M4k+2 + 1), (2.3)

which proves the lemma for t = 3. It can be seen by induction on k that

Mn+k =

{
1
2MnMk +Mn−k, if n ≡ k ≡ 1 (mod 2),

MnMk − (−1)kMn−k, otherwise.
(2.4)

Finally, using (2.4), we can prove the lemma by induction on t.

Lemma 2.2. If n = mt and t is even, then gcd(Mn,Mm) = 2.

Proof. Put m = 2k. From (2.1) it follows that

M4k =M2
2k − 2. (2.5)

Subsequently, gcd(M2k,M4k) = 2. It can be seen that M2lk (l ≥ 3) can be
expressed as a polynomial of M2k, where the constant term is always 2. Thus
gcd(M2k,M2lk) = 2 (l ≥ 2).

Now let m = 2k + 1. Again by (2.1) we see that

M4k+2 =M2
2k+1/2 + 2 (2.6)

holds. Putting H2k+1 =M2
2k+1/2, it is trivial that H2k+1 and M2k+1 are divisible

by the same primes, and the exponent of 2 is 1 in both integers. So gcd(H2k+1, N) =
2 and gcd(M2k+1, N) = 2 are equivalent for an arbitrary integer N . Hence we have
M4k+2 = H2k+1 + 2, and it implies gcd(M4k+2, H2k+1) = 2. By induction and
(2.5) we can see that M2l(2k+1) can be written as a polynomial of H2k+1 for any
positive integer l, with constant term 2. Consequently, gcd(M2k+1,M2l(2k+1)) =
gcd(H2k+1,M2l(2k+1)) = 2. Together with Lemma 2.1, it shows immediately, that
gcd(Mm,Mtm) = 2 for arbitrary even t.

Lemma 2.3. For any n ≥ 0 we have

Ln − 1 =





Ln−1
2
Mn+1

2
, if n ≡ 1 (mod 4),

Ln+1
2
Mn−1

2
, if n ≡ 3 (mod 4),

1
2Ln+2

2
Mn−2

2
, if n ≡ 0 (mod 4),

Ln−2
2
Mn+2

2
, if n ≡ 2 (mod 4).

(2.7)
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Proof. To prove the statement one can use the explicit formulae for the terms
appearing in (2.7).

Lemma 2.4. The greatest common divisors of the terms of (Ln) and (Mn) satisfy

1. gcd(Lm, Ln) = Lgcd(m,n);

2. gcd(Mm,Mn) =

{
Mgcd(m,n), if m

gcd(m,n) ≡ 1 ≡ n
gcd(m,n) (mod 2),

2, otherwise;

3. gcd(Lm,Mn) =

{
µMgcd(m,n), if m

gcd(m,n) + 1 ≡ 1 ≡ n
gcd(m,n) (mod 2),

1 or 2, otherwise,
where µ = 1 or 1/2.

Proof. We omit the proof of the first statement, the easiest part, and start by
proving the second one. The main tool is a Euclidean-like algorithm. Assume that
m = nq + r, where q is an odd integer, and 0 ≤ r < 2n. By (2.4) we have

Mm = µMnqMr ±Mnq−r.

The terms of (Mn) is even, so µMr is an integer. Let d be an integer which divides
both Mm and Mn. Since q is odd, d divides Mnq, too. Thus d | Mnq−r holds.
On the other hand, if d | Mn and d | Mnq−r, then similarly d divides Mm. Hence
gcd(Mm,Mn) = gcd(Mn,Mnq−r).

Suppose now m > n and n - m. After the first Euclidean-like division by n,
replace m by nq − r, and continue with this, while the subscript is larger than n.
After the last step, nq − r might be negative. It is obvious that after two steps
m is decreased by 4n. The last term of the sequence coming from these steps
depends on the residue of the initial value of m modulo 4n. Let r1 ≡ m (mod n),
r2 ≡ m (mod4n), and 0 < r1 < n, 0 < r2 < 4n. In particular, for the last
subscript r′ we found

r′ =





r1, if 0 < r2 < n,
n− r1, if n < r2 < 2n,
−r1, if 2n < r2 < 3n,
r1 − n, if 3n < r2 < 4n.

Obviously, gcd(n, r1) = gcd(n, r′) and 0 < |r′| < n, further if d1 | m and
d1 | n, then d1 | nq − r. Moreover if d1 divides both n and nq − r, then it must
divide r and m = nq + r. This shows that gcd(m,n) = gcd(nq − r,m). Thus
gcd(m,n) = gcd(r′, n). Then apply this approach successively (replace the initial
values of m by n, and n by |r′|, and continue), and finish when the remainder is
zero. The last nonzero remainder is the gcd.

To complete the proof of the second case, suppose that gcd(m,n) = 1. By the
last division n = 1 follows, and denote the value of m by m1. The parities of
m = nq + r and nq − r coincide in each step. If both m and n are odd, then the
values of nq − r, r′ are odd, hence so is m1. If m is even and n is odd, then r′ is
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even, and then the next division-sequence begins with odd m and even n. By the
last division (where n = 1) it follows that m1 must be even. Similarly, if the initial
value of m is odd and n is even, then m1 is even, too.

Put d2 = gcd(m,n). It occurs if we multiply all the terms in the last para-
graph by d2. If both m/d2 and n/d2 are odd, then the quotient in the last
division (that is m1) is odd, and by the algorithm and Lemma 2.1, we have
gcd(Mm,Mn) = gcd(Mm1d2 ,Md2) =Md2 . If exactly one of m/d2 and n/d2 is even,
then the last quotient (m1) is even, and gcd(Mm,Mn) = gcd(Mm1d2 ,Md2) = 2 fol-
lows by Lemma 2.2.

Now prove the third statement. The explicite formulae provide

2µLm+n = LnMm + LmMn, (2.8)
2µMm+n = 12LnLm +MnMm, (2.9)

where µ = 2 if both m and n are odd, and µ = 1 otherwise.
First we show that gcd(Lk,Mk) = 2 if 4 | k, and gcd(Lk,Mk) = 1 otherwise. It

is clear for k = 1, 2, 3, 4. From (2.8) and (2.9) we obtain

Lk+4 =
1

2
(LkM4 + L4Mk) = 7Lk + 2Mk,

Mk+4 =
1

2
(12LkL4 +MkM4) = 24Lk + 7Mk.

By the Euclidean algorithm we have

gcd(Lk+4,Mk+4) = gcd(7Lk + 2Mk, 24Lk + 7Mk)

= gcd(7Lk + 2Mk, 3Lk +Mk)

= gcd(Lk, 3Lk +Mk) = gcd(Lk,Mk).

An induction implies the assertion for every k.
Now we show gcd(Mkn, Ln) = 1 or 2, again by induction for k. We have just

seen that it is true for k = 1. Now (2.9) implies

2µMkn+n = 12LknLn +MknMn.

Let d be an odd integer such that d | Mkn+n and d | Ln. In this case d | Lkn,
and we have shown that gcd(Lkn,Mkn) ≤ 2, so d is relatively prime to Mkn. Thus
d |Mn. Further gcd(Ln,Mn) ≤ 2, and d is odd, so d = 1. If n is not divisible by 4,
then Ln is odd, and gcd(Mkn+n, Ln) is necessarily 1. If 4 | n, then Mkn+n is not
divisible by 4, but Lkn+n is even, so gcd(Mkn+n, Ln) = 2.

We will show that if k is odd, then gcd(Mn, Lkn) = 1 or 2. Clearly, it is true
for k = 1. Suppose now that it holds for an odd k, and check it for k+2. It follows
from (2.8) that

2µLkn+2n = LknM2n +MknL2n.

Let be d an odd integer which divides both Lkn+2n and Mn. Then d | Mkn holds
since k is odd. But d is relatively prime to M2n, so d must divide Lkn. We know
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that gcd(Lkn,Mkn) ≤ 2, henceforward d = 1. If 4 - n, then odd k entails odd
L(k+2)n, and if 4 | n, then 4 -Mn. Hence gcd(Mn, Lkn+2n) is 1 or 2.

Assuming k is even, put k = 2lt, where t is odd. Then Mn divides Mtn, and
we have L2tn = µLtnMtn, where µ is 1 or 1/2. So Mtn/2 | L2tn, and by induction,
Mtn/2 divides L2ltn. Subsequently, gcd(Mn, Lkn) is Mn or Mn/2 for even k.

Thus the third statement is proven if one of n and m divides the other. For
general m and n, suppose m > n, and let m = nq + r, where q is odd, 0 < r < 2n.
From (2.8), 2µLnq+r = LnqMr +MnqLr follows. It is easy to see that for any odd
d the conditions (d | Lm and d |Mn), and (d |Mn and d |Mr) are equivalent (for
odd q use that Mn divides Mnq and gcd(Mnq, Lnq) is 1 or 2). So it is enough to
determine the greatest odd common divisior of Mn and Mr, for which we use the
second part of this lemma.

Trivially, gcd(n, r) = gcd(n,m). Denote this value by c. If m/c is even and
n/c is odd, then (because q is odd) r/c is odd (say this is case A). By the lemma,
gcd(Mn,Mr) = Mgcd(n,r). If m/c is odd and n/c is even, then r/c is odd. If both
m/c and n/c are odd, then r/c is even. In these two cases (we call them case B)
gcd(Mn,Mr) = 2 hold.

Clearly, Mn is not divisible by 8, moreover Lm and Mn are both divisible by 4
if and only if 4 | m and n ≡ 2 (mod 4). In this case the exponent of 2 in gcd(n,m)
is 1, m/c is even, and n/c is odd (this is case A), andMgcd(n,m) is divisible by 4. It
is easy to see that gcd(Lm,Mn) = Mgcd(n,m). In the remaining situations of case
A, Mgcd(m,n) is not divisible by 4. Thus gcd(Lm,Mn) is Mgcd(n,m) or one half of
it. In case B, 4 does not divide Lm andMn at the same time, so their gcd is 1 or 2.

If m < n, then n = mp + r. Now p is not necessarily odd, therefore we can
suppose 0 < r < m. Then from (2.9) we conclude gcd(Lm,Mn) = gcd(Lm,Mr).
To complete the proof we must use the previous case of this lemma.

The next lemma gives lower and upper bounds on the terms of (Ln) and (Mn)
by powers of dominant root α.

Lemma 2.5. Suppose n ≥ 3. We have

αn−0.944 < L2n < αn−0.943, αn−0.181 < L2n+1 < αn−0.180,

αn < M2n < αn+0.001, αn+0.763 < M2n+1 < αn+0.764.

Further, independently from the parity of the subscript k,

αk/2−0.944 < Lk < αk/2−0.680 and αk/2 < Mk < αk/2+0.264

hold.

Proof. Let n0 be a positive integer, and assume n ≥ n0. The explicit formula (2.1)
simplifies L2n = (αn − βn)/(α− β), which yields

L2n ≥
αn − βn0

α− β = αn
1− (βα )

n0αn0−n

α− β ≥ αn 1− (βα )
n0

α− β .
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Supposing n0 ≥ 3, together with 0 < β/α < 1 it leads to

1− (βα )
n0

α− β ≥ 1− (βα )
3

α− β = 0.28856 . . . > α−0.944.

Thus L2n > αn−0.944. To get an upper bound is easier, since β > 0 implies

L2n =
αn − βn
α− β <

αn

α− β = αn
1

2
√
3
< αn−0.943.

For odd subscripts a similar treatment is available by

L2n+1 =
1

α− β
[
(
√
3 + 1)αn + (

√
3− 1)βn

]
.

First we see

L2n+1 >
1 +
√
3

2
√
3
αn > αn−0.181.

Now assume n ≥ n0 ≥ 3. Consequently,

L2n+1 ≤
1

α− β
[
(
√
3 + 1)αn + (

√
3− 1)βn0

]

= αn

[√
3 + 1

2
√
3

+

√
3− 1

2
√
3

(
β

α

)n0

αn0−n
]

≤ αn
[√

3 + 1

2
√
3

+

√
3− 1

2
√
3

(
β

α

)3
]
= αn · 0.788753 . . . < αn−0.180.

The bounds for the terms Mn can be shown by an analogous way.

Lemma 2.6. Suppose that a, b, z, and the fractions appearing below are integers.
Then

1. if 3a 6= b, then gcd( z+a2 , 3z+b8 ) ≤
∣∣ 3a−b

2

∣∣,

2. if 2a 6= b, then gcd( z+a2 , 2z+b6 ) ≤
∣∣ 2a−b

2

∣∣,

3. if a 6= b, then gcd( z+a2 , z+b4 ) ≤
∣∣a−b

2

∣∣.

Proof. The statements follow by a simple use of the Euclidean algorithm.

Lemma 2.7. Supposing z ≥ 4, the following properties are valid.

1. If z ≡ 1 (mod 4), then M2
z−1
2

< 2Lz, further 3L2
z−1
2

< 2Lz.

2. If z ≡ 3 (mod 4), then M2
z−1
2

< 4Lz.

3. If z ≡ 2 (mod 4), then M2
z−2
2

< 2Lz.
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4. If z ≡ 0 (mod 4), then M2
z−2
2

< 4Lz.

Proof. Use (2.5), (2.6), and

Mn =

{
Ln−1 + Ln+1, if n is even,
2(Ln−1 + Ln+1), if n is odd.

(2.10)

Here (2.10) can be proven by induction.

Lemma 2.8. Suppose that a and b are positive real numbers and u0 is a positive
integer. Let κ = logα(a+

b
αu0

). If u ≥ u0, then

aαu + b ≤ αu+κ.

Proof. This is obvious by an easy calculation.

3. Proof of Theorem 1.1

The conditions 1 ≤ a < b < c entail 3 ≤ x < y < z. Obviously, c | Ly − 1 and
c | Lz − 1. Thus c ≤ gcd(Ly − 1, Lz − 1). Clearly, Lz = bc+ 1 < c2, which implies√
Lz < c. Combining this with Lemma 2.5, we see

α
z
4−0.472 = α

1
2 (

z
2−0.944) <

√
Lz < c < Ly < α

y
2−0.680,

and then z/4− 0.472 < y/2− 0.680 yields z < 2y − 0.832. Hence z ≤ 2y − 1.
Now we distinguish two cases.

Case I: z ≥ 117.
The key point of this case is to estimate G = gcd(Ly − 1, Lz − 1). Assume that

i, j ∈ {±1,±2}, and µ∗i , µ∗j ∈ {1, 1/2}. By Lemma 2.3,

G = gcd(µ∗iL y−i
2
M y+i

2
, µ∗jL z−j

2
M z+j

2
)

≤ gcd(L y−i
2
M y+i

2
, L z−j

2
M z+j

2
)

≤ gcd(L y−i
2
, L z−j

2
) gcd(L y−i

2
,M z+j

2
) gcd(M y+i

2
, L z−j

2
) gcd(M y+i

2
,M z+j

2
).

Let Q denote the last product. By Lemma 2.4

Q ≤ Lgcd( y−i
2 , z−j

2 )Mgcd( y−i
2 , z+j

2 )Mgcd( y+i
2 , z−j

2 )Mgcd( y+i
2 , z+j

2 )

follows. We define d1, d2, d3, d4 according to the relations

gcd

(
y − i
2

,
z − j
2

)
=
z − j
2d1

, gcd

(
y − i
2

,
z + j

2

)
=
z + j

2d2
,

gcd

(
y + i

2
,
z − j
2

)
=
z − j
2d3

, gcd

(
y + i

2
,
z + j

2

)
=
z + j

2d4
.
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Let d = min{d1, d2, d3, d4}.
First suppose d ≥ 5. Now Lemma 2.5, together with |i|, |j| ≤ 2 implies

α
z
4−0.472 < Q ≤ L z−j

2d
M z+j

2d
M z−j

2d
M z+j

2d
≤ L z−j

10
M z+j

10
M z−j

10
M z+j

10

< α
z+2
20 −0.680

(
α

z+2
20 +0.264

)3
= α

z+2
5 +0.112.

But z/4− 0.472 < (z + 2)/5 + 0.112 contradicting z ≥ 117.
Now let d = 4, that is one of d1, d2, d3, d4 equals 4. Assume that η1, η2 ∈ {±1}.

Then |η1j|, |η2i| ≤ 2, and we can assume z+ η1j ≥ y+ η2i. Contrary, if it does not
hold, then by the definition of d the inequality 5/4(z − 2) ≤ y + 2 is true, which
together with z > y implies 5z ≤ 4y + 18 < 5y + 18. So z < 18, which is not the
case. Now we have only two possibilities:

z + η1j

8
=
y + η2i

2
or

z + η1j

8
=
y + η2i

6
.

In the first case we have z = 4y+(4η2i− η1j) ≥ 4y− 10, and by z ≤ 2y− 1 we get
4y − 10 ≤ 2y − 1, which implies y ≤ 4, and then z ≤ 7, a contradiction.

In the second case let η
′
1, η

′
2 ∈ {±1}, such that (η

′
1, η

′
2) 6= (η1, η2). Clearly,

y =
3z + 3η1j − 4η2i

4
, and

y + η
′
2i

2
=

3z + 3η1j + 4(η
′
2 − η2)i

8
.

Put t = 4(η
′
2 − η2). Thus t = 0 or ±8. Applying the first assertion of Lemma 2.6

with a = η
′
1j and b = 3η1j + ti, it gives

gcd

(
z + η

′
1j

2
,
y + η

′
2i

2

)
= gcd

(
z + η

′
1j

2
,
3z + 3η1j + ti

8

)
≤
∣∣∣∣∣
3η
′
1j − 3η1j − ti

2

∣∣∣∣∣ ,

which does not exceed 14. This conclusion is correct if 3a − b 6= 0, that is if
3η
′
1 − 3η1j − ti 6= 0. If 3a − b = 0, then 3 | t, and then t = 0. Thus η

′
1 must be

equal to η1, so (η
′
1, η

′
2) = (η1, η2), which has been excluded. Subsequently, three of

the four factors of Q is at most M14 (Mn ≥ Ln for any index n) and the fourth
factor is L z±j

8
or M z±j

8
, none of them exceeding M z+2

8
. So

Q ≤M3
14M z+2

8
= 100843M z+2

8
,

and then, by Lemma 2.5, we have

α
z
4−0.472 < Q < α21.003α

z+2
16 +0.264.

Now we conclude z < 116.7, and it is a contradiction with z ≥ 117.
Suppose d = 3. We have the two possibilities

z + η1j

6
=
y + η2i

2
and

z + η1j

6
=
y + η2i

4
.
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In the first case 2y − 1 ≥ z = 3(y + η2i) − η1j ≥ 3y − 8 implies y ≤ 7, and then
z ≤ 13, which is impossible.

In the second case we repeat the treatment of case d = 4, the variables η
′
1 and

η
′
2 satisfy the same conditions. Now y = (2z + 2η1j − 3η2i)/3 provides

y + η
′
2i

2
=

2z + 2η1j − 3η2i+ 3η
′
2i

6
=

2z + 2η1j + 3(η
′
2 − η2)i

6
.

Let be t = 3(η
′
2 − η2) with value 0 or ±6. Use the second assertion of Lemma 2.6

with a = η
′
1j, b = 2η1j + ti. If 2a− b 6= 0 then

gcd

(
z + η

′
1j

2
,
y + η

′
2i

2

)
= gcd

(
z + η

′
1j

2
,
2z + 2η1j + ti

6

)
≤
∣∣∣∣∣
2η
′
1j − 2η1j − ti

2

∣∣∣∣∣ ,

which is less then or equal to 10. If 2a− b = 0, that is if 2η
′
1j − 2η1j − ti = 0, then

3 | t and j - t show 3 | η′1 − η1, which can hold only if η
′
1 = η1. But in this case t

must be zero, too. So (η
′
1, η

′
2) = (η1, η2), which is not allowed. We have

α
z
4−0.472 < Q ≤M3

10M z+2
6
< 7243α

z+2
12 +0.264

by using Lemma 2.5. This implies z < 96, again a contradiction.
Now suppose d = 2. The only possibility is

z + η1j

4
=
y + η2i

2
.

(η
′
1 and η

′
2 are the same as in the previous cases.) It leads to y = (z+η1j−2η2i)/2,

and then to
y + η

′
2i

2
=
z + η1j − 2η2i+ 2η

′
2i

4
=
z + η1j + ti

4
,

where t = 2(η
′
2 − η2) ∈ {0,±4}. Let a = η

′
1j, b = η1j + ti. If a 6= b, then by the

third assertion of Lemma 2.6 we have

gcd

(
z + η

′
1j

2
,
y + η

′
2i

2

)
= gcd

(
z + η

′
1j

2
,
z + η1j + ti

4

)
≤
∣∣∣∣∣
η
′
1j − η1j − ti

2

∣∣∣∣∣ ≤ 6.

Thus
α

z
4−0.472 < Q ≤M3

6M z+2
4
< α9.003α

z+2
8 +0.264,

and we arrived at a contradiction via z < 80. If a − b = 0, then (η
′
1 − η1)j = ti.

Now, if j = ±1, then (because t is divisible by 4) 4 | η′1−η1 must hold. This occurs
only if η

′
1 = η1, hence t = 0, so η

′
2 = η2, which has been excluded. Thus we may

suppose j = ±2 and η
′
1 6= η1. In this case η

′
1 − η1 = ±2, and i = ±1. The factors

of Q belong to (−η1, η2) and (η1,−η2) can be estimated by M6. If (η1, η2) = (1, 1),
then this factor is gcd(M y+i

2
,M z+j

2
), which is 2 via (z + j)/4 = (y + i)/2 and
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Lemma 2.4. If (η1, η2) = (1,−1), then similarly gcd(L y−i
2
,M z+j

2
) ≤ 2. In this two

cases we have

α
z
4−0.472 < Q ≤ 2M2

6M z+2
4
< α6.527α

z+2
8 +0.264,

and then z ≤ 60, a contradiction.
Let (η1, η2) = (−1,−1) or (−1, 1). From (z + η1j)/4 = (y + η2i)/2 and |j| = 2,

|i| = 1 it is easy to see that (z − η1j)/2 = 2(y − η2i)/2 or (z − η1j)/2 = 2(y −
η2i)/2± 4. If the first case holds, then gcd((z − η1j)/2, (y− η2i)/2) = (z − η1j)/4.
Further if (η1, η2) = (−1,−1), then the factor of Q belonging to (−η1,−η2) is
gcd(M y+i

2
,M z+j

2
) = 2 (by Lemma 2.4). If (η1, η2) = (−1, 1), then the factor

gcd(L y−i
2
,M z+j

2
) = 1 or 2. If (z − η1j)/2 = 2(y − η2i)/2± 4 holds, it can be seen

by the Euclidean algorithm that gcd((z − η1j)/2, (y − η2i)/2) ≤ 4, and the factor
of Q is at most M4 = 14. So in these cases we conclude

α
z
4−0.472 < Q ≤M4M

2
6M z+2

4
< α8.005α

z+2
8 +0.264,

and this implies z < 72.
Assume d = 1. Now

z + η1j

2
=
y + η2i

2
,

where η1, η2 = ±1, and it reduces to z ± j = y ± i with i, j ∈ {±1,±2} According
to Lemma 2.3 the values depend of the residue y and z modulo 4. Altogether, it
means that we need to verify 16 cases.

1. y ≡ z ≡ 1 (mod 4). Clearly, now i = j = 1, so z ± 1 = y ± 1. The
condition y ≡ z (mod 4) leads immediately to y = z, a contradiction.

2. y ≡ 1, z ≡ 2 (mod 4). Now i = 1, j = 2. Thus z ± 2 = y ± 1, and then
z = y±3 or z = y±1. Considering them modulo 4, the only possibility is z = y+1.
By Lemma 2.3, we conclude

Ly − 1 = L y−1
2
M y+1

2
= L z−2

2
M z

2
, and Lz − 1 = L z−2

2
M z+2

2
.

The common factor L z−2
2

together with gcd(M z
2
,M z+2

2
) = 2 and by Lemma 2.5

provides a contradiction again, since

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) = 2L z−2

2
< α0.527α

z−2
4 −0.680 = α

z
4−0.653.

3. y ≡ 1, z ≡ 3 (mod 4). Here i = 1, j = −1, and the only possibility is
z = y + 2. It follows that

Ly − 1 = L y−1
2
M y+1

2
= L z−3

2
M z−1

2
, Lz − 1 = L z+1

2
M z−1

2
,

where gcd(L z+1
2
, L z−3

2
) = 1. Now

c| gcd(Ly − 1, Lz − 1) =M z−1
2

= c1c > c1
√
Lz
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holds with an appropriate integer c1. By Lemma 2.7, M z−1
2
< 2
√
Lz. So we have

c1
√
Lz < M z−1

2
< 2
√
Lz, which implies c1 < 2, i.e. c1 = 1. Thus c = M z−1

2
, and

we can see from the factorization of Ly − 1 and Lz − 1 that a = L z−3
2
, b = L z+1

2
.

Lemma 2.5 shows

α
x
2−0.680 > Lx = ab+ 1 = L z−3

2
L z+1

2
+ 1 > L z−3

2
L z+1

2
> α

z−3
4 −0.944α

z+1
4 −0.944.

Clearly, x > z− 3.416, and then x ≥ z− 3. In our case x < y = z− 2 holds, so x =
z− 3. This implies Lz−3− 1 = Lx− 1 = L z−3

2
L z+1

2
, which entails L z−3

2
| Lz−3− 1.

Combining it with L z−3
2
| Lz−3, we have L z−3

2
= 1, and z is too small.

4. y ≡ 1, z ≡ 0 (mod 4). In this case z = y + 3, and

Ly − 1 = L y−1
2
M y+1

2
= L z−4

2
M z−2

2
, Lz − 1 =

1

2
L z+2

2
M z−2

2
.

The distance of the subscripts of the appropriate terms of (Ln) is 3, so
gcd(L z−4

2
, 12L z+2

2
) ≤ gcd(L z−4

2
, L z+2

2
) = 1 or 3. So gcd(Ly − 1, Lz − 1) | 3M z−2

2
.

Therefore there exist a positive integer c1 such that

c | gcd(Ly − 1, Lz − 1) | 3M z−2
2

= c1c > c1
√
Lz.

Lemma 2.7 implies M z−2
2

< 2
√
Lz, and so 6

√
Lz > 3M z−2

2
> c1

√
Lz hold. Thus

c1 < 6. Since L z+2
2

is odd, M z−2
2

does not divide Lz − 1. So we have gcd(Ly −
1, Lz − 1) = λM z−2

2
/2, where λ = 1 or 3.

When λ = 1, c divides M z−2
2
/2 = 3M z−2

2
/6, which implies c1 ≥ 6, a contradic-

tion.
Assuming λ = 3, it yields c | 3M z−2

2
/2. Thus either c = 3M z−2

2
/2 (c1 = 2) or

c = 3M z−2
2
/4 (c1 = 4) holds. We can exclude the second case, because (z − 2)/2

is odd, and so M z−2
2

is not divisible by 4. In the first case b = L z+2
2
/3 and

a = 2L z−4
2
/3 follow from

bc = Lz − 1 =
1

2
M z−2

2
L z+2

2
and ac = Ly − 1 =M z−2

2
L z−4

2
,

respectively.
Using the fact that L2k−2L2k+1+1 = L2k−1L2k holds for every positive integer

k (this comes from the explicit formula (2.1)), we can write

Lx = ab+ 1 =
2

9
L z−4

2
L z+2

2
+ 1 =

2

9
(L z−2

2
L z

2
− 1) + 1 =

2

9
L z−2

2
L z

2
+

7

9
.

By Lemma 2.5 we obtain

α
x
2−0.680 > Lx =

2

9
L z−2

2
L z

2
+

7

9
>

2

9
L z−2

2
L z

2
> α−1.143α

z−2
4 −0.681α

z
4−0.944

(since (z − 2)/2 is odd). It implies x > z − 5.176, so x ≥ z − 5 holds.
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We will reach the contradiction by showing ab + 1 < Lz−5. Knowing that z is
even, Lz−5 > α

z−5
2 −0.681 = α

z
2−3.181 follows from Lemma 2.5. Since

L z−2
2
L z

2
> α

z−4
2 −0.681α

z
4−0.944 = α

z
2−2.125

and z ≥ 16, the exponent of α is at least 5.875. Applying Lemma 2.8 with u0 = 5,
we have κ = logα((2 + 7α−5)/9) < −1.138, and then

ab+ 1 =
2

9
L z−2

2
L z

2
+

7

9
< α−1.138α

z−2
4 −0.68α

z
4−0.943 = α

z
2−3.261.

From these inequalities

Lz−5 > α
z
2−3.181 > α

z
2−3.261 > ab+ 1

follows, and the proof of this part is complete.
5. y ≡ 2, z ≡ 1 (mod 4). Now z = y + 3, further

Ly − 1 = L y−2
2
M y+2

2
= L z−5

2
M z−1

2
, Lz − 1 = L z−1

2
M z+1

2
.

It is easy to see from Lemma 2.4 that gcd(L z−5
2
, L z−1

2
) = 1, gcd(M z+1

2
,M z−1

2
) = 2,

gcd(L z−5
2
,M z+1

2
) ≤M3 = 10, gcd(M z−1

2
, L z−1

2
) ≤ 2. Consequently,

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 40 < α2.802,

and then z < 14, a contradiction again.
6. y ≡ z ≡ 2 (mod 4). In this case i = j = 2. Then z = y + 4 follows. The

identities

Ly − 1 = L y−2
2
M y+2

2
= L z−6

2
M z−2

2
, Lz − 1 = L z−2

2
M z+2

2

and gcd(L z−6
2
, L z−2

2
) = 1, gcd(M z−2

2
,M z+2

2
) = 2 (because both terms cannot be

divisible by 4), gcd(L z−6
2
,M z+2

2
) ≤ M4 = 14, gcd(M z−2

2
, L z−2

2
) ≤ 2 (see Lemma

2.4) induce
α

z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 56 < α3.057,

which gives z < 15.
7. y ≡ 2, z ≡ 3 (mod 4). Here z = y + 1, moreover we have

Ly − 1 = L y−2
2
M y+2

2
= L z−3

2
M z+1

2
, Lz − 1 = L z+1

2
M z−1

2
.

Again by Lemma 2.4,

gcd(L z−3
2
, L z+1

2
) = 1, gcd(M z+1

2
,M z−1

2
) = 2,

gcd(L z−3
2
,M z−1

2
) ≤ 2, gcd(M z+1

2
, L z+1

2
) ≤ 2.
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Thus
α

z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 8 < α1.579

follows, which implies z < 9.
8. y ≡ 2, z ≡ 0 (mod 4). Now i = 2, j = −2, and y ± 2 = j ∓ 2 cannot

hold modulo 4.
9. y ≡ 3, z ≡ 1 (mod 4). In this case the only possibility is z = y + 2.

Obviously,

Ly − 1 = L y+1
2
M y−1

2
= L z−1

2
M z−3

2
, Lz − 1 = L z−1

2
M z+1

2

hold. Beside the common factor, we get gcd(M z−3
2
,M z+1

2
) = 2 (because the sub-

scripts are odd). Hence gcd(Ly − 1, Lz − 1) = 2L z−1
2
, further we see

c| gcd(Ly − 1, Lz − 1) = 2L z−1
2

= c1c > c1
√
Lz

with an appropriate c1. By the second assertion of case (1) in Lemma 2.7,
√
Lz >√

3/2L z−1
2
, subsequently

2L z−1
2
> c1

√
Lz > c1

√
3

2
L z−1

2

holds, providing c1 < 2
√
2√
3
< 2. So only c1 = 1 is possible. Thus c = 2L z−1

2
, and

from the factorizations

ac = Ly − 1 = L z−1
2
M z−3

2
, bc = Lz − 1 = L z−1

2
M z+1

2

we obtain
a =

1

2
M z−3

2
and b =

1

2
M z+1

2
.

Finally, we show that c < b. (2.10) yields M2k+1 = 2L2k + 2L2k+2 > 4L2k. Now
(z − 1)/2 is even, so 2L z−1

2
< 1

2M z+1
2
. Thus c < b, contradicting the condition

a < b < c.
10. y ≡ 3, z ≡ 2 (mod 4). We find z = y + 3, and

Ly − 1 = L y+1
2
M y−1

2
= L z−2

2
M z−4

2
, Lz − 1 = L z−2

2
M z+2

2
.

By Lemma 2.4, gcd(M z−4
2
,M z+2

2
) = 2 follows (not M3 = 10, because if the sub-

scripts are divisible by 3, dividing them by 3 exactly one of the integers will be
odd). Now

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) = 2L z−2

2
< α0.527α

z−2
4 −0.680

leads to a contradiction.
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11. y ≡ z ≡ 3 (mod 4). In this case, i = j = −1 implies y = z, which is a
contradiction.

12. y ≡ 3, z ≡ 0 (mod 4). Here z = y + 1, further

Ly − 1 = L y+1
2
M y−1

2
= L z

2
M z−2

2
, Lz − 1 =

1

2
L z+2

2
M z−2

2

hold. Lemma 2.4 provides gcd(L z
2
, L z+2

2
) = 1, and we obtain gcd(Ly−1, Lz−1) =

1
2M z−2

2
(because L z+2

2
is odd). Hence

c| gcd(Ly − 1, Lz − 1) =
1

2
M z−2

2
= c1c > c1

√
Lz.

By Lemma 2.7 we have M z−2
2
< 2
√
Lz. Thus M z−2

2
> 2c1

√
Lz > c1M z−2

2
, which

implies c1 < 1, an impossibility.
13. y ≡ 0, z ≡ 1 (mod 4). In this case z = y + 1, moreover

Ly − 1 =
1

2
L y+2

2
M y−2

2
=

1

2
L z+1

2
M z−3

2
, Lz − 1 = L z−1

2
M z+1

2
.

By Lemma 2.4, we obtain gcd(L z+1
2
, L z−1

2
) = 1, gcd(M z−3

2
,M z+1

2
) = 2,

gcd(L z+1
2
,M z+1

2
) ≤ 2, gcd(M z−3

2
, L z−1

2
) ≤ 2. Then

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 8 < α1.579

implies z < 9.
14. y ≡ 0, z ≡ 2 (mod 4). Now, by Lemma 2.3, i = −2, j = 2, and

y ∓ 2 = z ± 2 follow, which is not possible.
15. y ≡ 0, z ≡ 3 (mod 4). In this case z = y + 3, and

Ly − 1 =
1

2
L y+2

2
M y−2

2
=

1

2
L z−1

2
M z−5

2
, Lz − 1 = L z+1

2
M z−1

2
.

Via Lemma 2.4 we see gcd(L z−1
2
, L z+1

2
) = 1, gcd(M z−5

2
,M z−1

2
) = 2,

gcd(L z−1
2
,M z−1

2
) = 1, (because z−1

2 , and so L z−1
2

is odd), gcd(M z−5
2
, L z+1

2
) ≤

M3 = 10. These lead to a contradiction via

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 20 < α2.275.

16. y ≡ z ≡ 0 (mod 4). In the last case the only possibility is z = y + 4.
We have

Ly − 1 =
1

2
L y+2

2
M y−2

2
=

1

2
L z−2

2
M z−6

2
, Lz − 1 =

1

2
L z+2

2
M z−2

2
.

By Lemma 2.4, we get

gcd(L z−2
2
, L z+2

2
) = 1,
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gcd(M z−6
2
,M z−2

2
) = 2,

gcd(L z−2
2
,M z−2

2
) = 1 (because (z − 2)/2 is odd),

gcd(M z−6
2
, L z+2

2
) ≤M4 = 14.

Then we obtain z < 10 from

α
z
4−0.472 < gcd(Ly − 1, Lz − 1) ≤ 14 < α2.004.

Case II: z ≤ 116. The proof of Theorem 1 will be complete, if we check the finitely
many cases 3 ≤ x < y < z ≤ 116. It has been done by a computer verification
based on the following observation. The equations (1.2) imply

(Lx − 1)(Ly − 1) = a2bc = a2(Lz − 1).

Thus √
(Lx − 1)(Ly − 1)

Lz − 1
(3.1)

must be an integer. Checking the given range we found that (3.1) is never an
integer.
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