Annales Mathematicae et Informaticae 49 (2018) pp. 199-201 DOI: 10.33039/ami.2018.06.001 http://ami.ektf.hu

Addendum and corrigenda to the paper "Infinitary superperfect numbers"

Tomohiro Yamada

Center for Japanese language and culture, Osaka University, 562-8558, 8-1-1, Aomatanihigashi, Minoo, Osaka, Japan tyamada1093@gmail.com

Submitted March 30, 2018 — Accepted June 13, 2018

Abstract

We shall give an elementary proof for Lemma 2.4 and correct some errors in Table 1 of the author's paper of the title. Moreover, we shall extend this table up to integers below 2^{32} .

Keywords: Odd perfect numbers, infinitary superperfect numbers, unitary divisors, infinitary divisors, the sum of divisors

MSC: 11A05, 11A25

In p. 215, Lemma 2.4 of the author's paper "Infinitary superperfect numbers", this journal 47 (2017), 211–218, it is stated that, if $p^2+1 = 2q^m$ with $m \ge 2$, then a) m must be a power of 2 and, b) for any given prime q, there exists at most one such m. Here the author owed the former to an old result of Størmer [5] that the equation $x^2 + 1 = 2y^m$ with m odd has only one positive integer solution (x, y) = (1, 1) and the latter to Ljunggren's result [2] that the equation $x^2 + 1 = 2y^n$ has only two positive integer solutions (x, y) = (1, 1) and (239, 13). However, Ljunggren's proof is quite difficult. Steiner and Tzanakis [3] gave a simpler proof, which uses lower bounds for linear forms in logarithms and is still analytic.

We note that the latter fact on $p^2 + 1 = 2q^m$ mentioned above can be proved in a more elementary way. In his earlier paper [4], Størmer proved that, if x, y, A, tare positive integers such that $x^2 + 1 = 2A, y^2 + 1 = 2A^{2^t}$ and $x \pm y \equiv 0 \pmod{A}$, then (x, y, A, 1) = (3, 7, 5, 2) or (5, 239, 13, 2). We can easily see that if A is prime and $x^2 + 1 \equiv y^2 + 1 \equiv 0 \pmod{A}$, then we must have $x \pm y \equiv 0 \pmod{A}$. Now the latter fact for $p^2 + 1 = 2q^m$ mentioned above immediately follows. Moreover, the above-mentioned result for $x^2 + 1 = 2y^m$ with m odd had also already been proved in [4]. Hence, the above statement follows from results in [4]. The most advanced method used in [4] is classical arithmetic in Gaussian integers.

Moreover, we can prove the latter fact on $p^2 + 1 = 2q^m$ in a completely elementary way. Applying Théorème 1 of Størmer [5] to $x^2 - 2q^2y^2 = -1$, we see that if $(x, y) = (x_0, y_0)$ is a solution of $x^2 - 2q^2y^2 = -1$ and y_0 is a power of q, then (x_0, y_0) must be the smallest solution of $x^2 - 2q^2y^2 = -1$. Hence, for any give prime q, $x^2 + 1 = 2q^{2^t}$ can have at most one positive integer solution (x, t).

Anothor elementary way is to use a theorem of Carmichael [1] (a simpler proof is given by Yabuta [6]). Let $(x, y) = (x_1, y_1)$ be the smallest solution of $x^2 - 2y^2 = -1$ with y divisible by q. Carmichael's theorem applied to the Pell sequence implies that, if $(x, y) = (x_2, y_2)$ is another solution of $x^2 - 2y^2 = -1$ with y divisible by q, then y_2 must have a prime factor other than q. Hence, y_2 cannot be a power of q.

Corrigenda to p. 213, Table 1, the right row for N:

- The fifth column should be $856800 = 2^5 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 17$.
- The sixth column should be $1321920 = 2^6 \cdot 3^5 \cdot 5 \cdot 17$.
- The twelfth column should be $30844800 = 2^7 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 17$.
- Moreover, we extended our search limit to 2^{32} and found four more integers N dividing $\sigma_{\infty}(\sigma_{\infty}(N))$:

N	k
$1304784000 = 2^7 \cdot 3^2 \cdot 5^3 \cdot 13 \cdot 17 \cdot 41$	7
$1680459462 = 2^9 \cdot 3^3 \cdot 11 \cdot 43 \cdot 257$	5
$4201148160 = 2^8 \cdot 3^3 \cdot 5 \cdot 11 \cdot 43 \cdot 257$	6
$4210315200 = 2^6 \cdot 3^5 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17$	8

References

- R. D. CARMICHAEL, On the numerical factors of the arithmetic forms αⁿ±βⁿ, Ann. of Math. Vol. 15(1) (1913-1914), 30–70. https://doi.org/10.2307/1967797
- [2] W. LJUNGGREN, Zur theorie der Gleichung X² + 1 = DY⁴, Avh. Norske, Vid. Akad. Oslo Vol. 1, No. 5 (1942).
- [3] RAY STEINER AND NIKOS TZANAKIS, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory Vol. 37(2) (1991), 123–132. https://doi.org/10.1016/s0022-314x(05)80029-0
- [4] CARL STØRMER, Solution compléte en nombres entiers m, n, x, y, k de l'équation $m \arctan \frac{1}{x} + n \arctan \frac{1}{y} = k \frac{\pi}{4}$, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1895), Nr. 11, 21 pages. https://doi.org/10.24033/bsmf.603

- [5] CARL STØRMER, Quelques théorèmes sur l'équation de Pell $x^2 Dy^2 = \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.
- [6] MINORU YABUTA, A simple proof of Carmichael's theorem on primitive divisors, *Fibonacci Quart.* Vol. 39(5) (2001), 439–443.