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Abstract

“The transparent cup” is the title of pictures which show an interesting
phenomenon: The circular boundary c of the depicted plate appears as an
ellipse which seems to coincide with the view of the reflection of c in the
coffee-cup. Is this just by chance or is there a geometric theory behind?

In one example the circle c is the focal circle of the reflecting one-sheet
hyperboloid, and for this particular case the displayed phenomen is a con-
sequence of focal properties of quadratic surfaces. The tangent cones drawn
from a fixed point P to a family of confocal quadrics are confocal and have
therefore coinciding axes. These axes are the surface normals to the par-
ticular quadrics passing through P . Also the cones connecting P with the
focal conics are included in the considered set of confocal cones. Therefore,
all focal conics share the property: In each perspective, the images of these
curves and their reflections belong to the same conic.

The goal of the paper is to highlight the geometric background, i.e., to
focus on confocal conics and their spatial counterparts.
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1. Reflection in conics and vertical cylinders

The stimulus for this article is a photograph showing a coffee-cup, which is made
of ceramics and stands on a plate1. The cup looks transparent since the circular
boundary of the plate is completely visible, even its section behind the cup. This
apparent transparency is caused by the reflection in the cup: The mirror of the
plate’s visible boundary appears as an exact continuation of itself. Similar effects
can be seen in Figure 1. Is this incidental, or is there a theory behind?

Figure 1: Why does the bounding circle of the plate continue in
the reflection? (By courtesy of Kuno Knöbl [4])

Just to fix the terminology, we emphasize that under ‘reflection’ in a conic or
quadric we understand the physical reflection and not the projective inversion in
a quadric2. We study the physical reflection in its geometric idealization, which
is defined as a transformation applied, in general, to non-directed lines l in the
following way: at each point P of intersection with the mirror R, i.e., the reflecting
curve or surface, the line l is reflected in the tangent plane τP or the normal line
nP to R at P .3 The line l can have more than one point of intersection with R
and hence more than one image. Note that each tangent line at P to R remains
fixed.

To begin with, we recall the optical property of conics (see Figure 2, left).
The reflection in an ellipse transforms rays emanating from one focus onto rays
passing through the other focus. The same holds for hyperbolas when we ignore
the orientation of the line. And finally, this optical property is also valid for each
parabola when the ideal point of its axis is accepted as the second focus. Since
the tangents drawn from a point X to an ellipse share the angle bisectors with the
pair of lines connecting X with the focal points [1, p. 42], we can formulate a more
general optical property (see Figure 2, right).

1See http://imgur.com/N10ESfl, retrieved April 2017.
2The latter is also known under the name ‘projective inversion’; it is a rational transformation

where corresponding points are conjugate with respect to (‘w.r.t.’, in brief) a given quadric and
collinear with a given center.

3In the two-dimensional case, the reflection in any smooth curve preserves the density dp∧dϕ
of oriented lines (satisfying x cosϕ+ y sinϕ = p). For further details note [3, p. 6].
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Figure 2: Optical properties of ellipses
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Figure 3: Closed billiards with three or five reflections in an ellipse

Theorem 1.1. If any ray is reflected in a conic c then the incoming and the
outgoing ray are tangent to the same conic c0 being confocal with c.

We recall that two conics are called confocal if they share the focal points. If in
the family of confocal ellipses the minor semi-axis tends to zero the ellipse degener-
ates into the segment bounded by the two foci. This reveals that the statement of
Theorem 1.1 includes the original optical property, too. Analogous degenerations
show up as limits of confocal hyperbolas or parabolas.

Iterated reflections of any ray produce billiards. Due to Theorem 1.1, billiards
in an ellipse c are always circumscribed to another ellipse c0 being confocal with
c. If one billiard inscribed in c and circumscribed to c0 closes after n reflections
then all these billiards close, independently of the choice of the initial point on c
(Figure 3). This is a well known example of a Poncelet porism [1, p. 429ff]. All
these closed billiards have even the same length, due to Graves’ theorem (see [3] or
[9] with much more details on billiards and reflections). By the same token, similar
properties hold for billiards between two confocal ellipses (Figure 4).

We continue with a rather popular case of a reflection which is often used for
producing anamorphoses [5]: Let a right cylinder R in vertical position be the
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reflector. As illustrated in Figure 5, if observed from the center C, a point Q of
the horizontal ground plane is visible at P ∈ R. We call P an reflected image
of Q in R w.r.t. the center C. The surface normal nP to the cylinder at P is
horizontal. Therefore the two segments PQ and PC of the reflected ray have the
same inclination, and nP is the interior angle bisector of ∠QPC, also, when seen
in the top view.

As a consequence, for given center C and point Q, a reflected image P ∈ R has
its top view P ′ on a strophoid, a curve of degree 3 [7]. This is the locus of points X
in the ground plane such that a bisector of the angle QXC′ passes through a given
center M ′, which in our case coincides with the top view of the axis of R (Figure 6).
Obviously, there is a second point of intersection between the strophoid and the
cylinder R such that the interior angle bisector of ∠QP ′C′ passes through M ′.
This shows that point Q can (theoretically) have two reflected images P, P ∈ R;
the second one P lies on the back wall.

Figure 7 shows also the trajectory q of Q when a reflected image P on R runs
along the horizontal circle p ⊂ R. These trajectories are circular only in two
particular cases: Either P ∈ R lies in the ground plane or P has exactly half of the
height of C over the ground plane. Otherwise, the trajectories are Pascal limaçons.

This can be proved as follows (see Figure 7, left): The reflection at P ∈ R acts
like the reflection in the surface normal nP and maps the line PC onto the line
PQ. If P has the height z over the ground plane, then the reflection in nP maps Q
onto a point P2 in the height 2z on the line PC . Let P run with angular velocity
ω along the parallel circle p ⊂ R. Then the intersection point P2 of CP with the
plane in the height 2z runs with the same angular velocity ω on a horizontal circle
p2 with center M2 on the cone connecting p with C.

In the top view we obtain Q′ when P ′
2 ∈ p′2 is reflected in n′

P , which rotates with
angular velocity ω about M ′. This shows that the trajectory q of Q is traced when
a first bar M ′M ′

2 rotates about M ′ with angular velocity 2ω while a second bar

Figure 4: Closed billiards between confocal ellipses (20 reflections)
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Figure 5: Reflection in a right cylinder R: point Q in the ground
plane and a reflected image P (by courtesy of Georg Glaeser)

M ′
2Q

′
0 rotates with the (absolute) velocity ω. A dyad M ′M ′

2Q
′
0 moving this way

generates as path of its endpoint a particular trochoid, namely a Pascal limaçon q′

[10, p. 155], provided that no moving bar has length zero.

2. Confocal quadrics

The word ‘quadric’ stands now for regular surfaces of degree 2, i.e., for those of full
rank 4. Of course, surfaces of degree 2 can also be cylinders or cones (rank 3), pairs
of planes (rank 2), or double-counted planes (rank 1). In the projective setting,
when cones of degree 2 are regarded as sets of tangent planes, they are dual to
conics.

Definition 2.1. Two quadrics are called confocal if they have common axes and
they intersect each plane of symmetry along confocal conics.

Let E be a tri-axial ellipsoid with semiaxes a, b and c in standard position.
Then the one-parameter set of quadrics being confocal with E is given as

x2

a2 + k
+

y2

b2 + k
+

z2

c2 + k
= 1 for k ∈ R \ {−a2,−b2,−c2}. (2.1)

In the case a > b > c > 0 this family includes (see Figure 8)

for
−c2 < k < ∞ tri-axial ellipsoids E ,
−b2 < k < −c2 one-sheet hyperboloids H1,

−a2 < k < −b2 two-sheet hyperboloids H2.

Their intersections with the plane z = 0 share the focal points (±
√
a2 − b2, 0, 0).

In y = 0 the common foci are (±
√
a2 − c2, 0, 0), and in x = 0 (0,±

√
b2 − c2, 0).
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Figure 6: For a given center C and point Q in the ground plane
the top views of the reflected images P and P lie on a strophoid
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Figure 7: Parallel circles p on R are the reflected images of Pascal
limaçons q in the ground plane
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Figure 8: Confocal quadrics intersect mutually along their curva-
ture lines (by courtesy of Boris Odehnal)

As limits for k → −c2 and k → −b2 we obtain ‘flat’ quadrics, i.e., the

the focal ellipse fe :
x2

a2 − c2
+

y2

b2 − c2
= 1, z = 0 ,

the focal hyperbola fh :
x2

a2 − b2
− z2

b2 − c2
= 1, y = 0 .

These two conics form a pair of focal conics: each is the locus of apices of right
cones passing through the other conic [1, p. 137ff]. As a member of the confocal
family, the two focal conics have to be seen as sets of tangent planes. Then they
are rank 3 quadrics. According to this interpretation, all lines in space which meet
any focal conic f in at least one point, are tangent lines of f . When below we speak
of a proper tangent line, then we mean an ordinary tangent of the plane curve f .

The quadrics being confocal with an elliptic paraboloid Pe can be represented
as

x2

a2 + k
+

y2

b2 + k
− 2z − k = 0 for k ∈ R \ {−a2,−b2}. (2.2)

In the case a > b > 0 this one-parameter set includes

for
−b2 < k < ∞ or k < −a2 elliptic paraboloids Pe,

−a2 < k < −b2 hyperbolic paraboloids Ph.
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For all k, the vertices of the paraboloids have the coordinates (0, 0,−k/2). Point
(0, 0, b2/2) is the common focal point of the principal sections in the plane x = 0,
and (0, 0, a2/2) is the analogue for the sections with y = 0.

Ph

f1

f2

Figure 9: A hyperbolic paraboloid Ph together with its focal
parabolas f1 and f2 (by courtesy of Georg Glaeser)

The limits for k → −a2 or k → −b2 define the pair of focal parabolas

y2

a2 − b2
− 2z + b2 = 0, y = 0 ,

x2

a2 − b2
+ 2z + a2 = 0, x = 0

within the confocal family (Figure 9). For this pair of parabolas (compare with [1,
Fig. 4.15] holds the same as mentioned above for an ellipse and its focal hyperbola.

For the sake of brevity, we ignore here the special cases of confocal quadrics of
revolution. However, we recall that confocal quadratic cones can be given as

x2

a2 + k
+

y2

b2 + k
− z2

c2 − k
= 0, k ∈ R \ {−a2,−b2, c2}. (2.3)

Their intersections with the unit sphere result in confocal spherical conics. If
a > b > 0 then for k ≥ c2 and k ≤ −a2 the cones do not contain real points other
than the origin. The ‘flat’ limit for k → −b2 is a sector bounded by the lines

x√
a2 − b2

± z√
b2 + c2

= 0 (2.4)

in the plane y = 0. These lines g1, g2 are called focal lines or focal axes of the cones,
since they pass through the focal points of the corresponding spherical conics [1,
p. 436ff]. The optical property, as shown in Figure 2, left, is also valid for spherical
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conics. Therefore the reflection in a quadratic cone transforms planes through one
focal axis g1 into planes through the other axis g2.

In the case a = b we obtain confocal cones of revolution. Their focal axes
coincide in the common axis of revolution.

Theorem 2.2. In dual setting, confocal quadrics form a one-parametric linear
system (range) of quadrics sharing the isotropic tangent planes. Hence, the range
includes the absolute conic as a rank-3 dual quadric.
Similarily, confocal quadratic cones form a range, which includes the isotropic cone
with the same apex. Since pairs of isotropic tangent planes of a quadratic cone
intersect along a focal axis, confocal cones have common focal axes.

Proof. In order to obtain the tangential equations, we note that the plane satisfying

u0 + u1x+ u2y + u3z = 0

is tangent to any surface of the confocal family (2.1) if and only if

(−u2
0 + a2u2

1 + b2u2
2 + c2u2

3) + k(u2
1 + u2

2 + u2
3) = 0.

This is a linear combination of the homogeneous dual equation of E and that of
the set of isotropic planes. The homogeneous dual equations of confocal parabolas
satisfying (2.2) have a similar form, namely

(a2u2
1 + b2u2

2 − 2u0u3) + k(u2
1 + u2

2 + u2
3) = 0.

Finally, the dual equations of confocal cones, as given in (2.3), are

u0 = 0, (a2u2
1 + b2u2

2 − c2u2
3) + k(u2

1 + u2
2 + u2

3) = 0,

and they show again a range, spanned by the given cone (k = 0) and the isotropic
cone with their common apex at the origin.

Theorem 2.3. The cones or cylinders drawn from any finite or ideal point P
tangent to the quadrics of a confocal family or connecting P with one of the included
focal conics are confocal. For finite P , the common and mutually orthogonal planes
of symmetry of these confocal cones are tangent to one of the three quadrics passing
through P .

Proof. The considered tangent cones share all isotropic planes which are common
to the confocal quadrics and pass through P . Hence, the cones are confocal, too.
This is a classical result attributed to C. G. J. Jacobi 1834 [8, p. 204] and a special
case of a theorem concerning ranges of surfaces of degree 2.

The tangent cone from P to a quadric Q splits into pencils of planes with two
real or complex conjugate axes if and only if Q passes through P . Then the two
axes are generators of Q and span the tangent plane at P . On the other hand, the
planes spanned by the axes of singular cones are the common planes of symmetry of
the confocal cones. This confirms that confocal quadrics form a triply-orthogonal
system of surfaces.
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Let a tangent line l of a quadric Q0 pass through any point P on the quadric Q
being confocal with Q0. Then, by virtue of Theorem 2.3, the reflection of l at P in
Q is again tangent to Q0, since the tangent plane τP to Q is a plane of symmetry
of the cone of tangents drawn from P to Q0. Thus we obtain the spatial analogue
of Theorem 1.1.

Corollary 2.4. Let Q and Q0 be two different quadrics in a confocal family. Then
the reflection in Q maps the line complex of tangents of Q0 onto itself. In particular,
the complex of lines meeting any focal conic f of Q remains fixed.

We only report that, in general, a given line contacts two surfaces of a confocal
family, and the tangent planes at the respective points of contact are orthogonal
(see, e.g., [9, p. 65]). This can be concluded from the spatial version of the De-
sargues involution theorem. However, there are exceptions, called focal axes [8,
pp. 205–206]: Such a line l has the property that the isotropic planes through l are
tangent to any quadric and therefore to all confocal quadrics.

Lemma 2.5. Each focal axis l of a quadric Q is either a generator of a ruled
quadric confocal with Q or a proper tangent of a focal conic of Q. At each point
P ∈ l, the focal axis l of Q is also a focal axis of the cone drawn from P tangent
to Q or to any other confocal quadric.

Proof. Each plane through a generator l of a ruled quadric is tangent to this quadric
at a particular point of l. Therefore also the isotropic planes through l touch the
quadric.
The tangent cone or cylinder with apex P comprises all tangent planes of Q which

E

f

Figure 10: The perspective of the focal hyperbola coincides with its
reflected image in the ellipsoid E (by courtesy of Boris Odehnal)
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pass through P . If l is a focal axis of such a cone or cylinder then the isotropic
planes through l are tangent to the cone and, hence, also to Q.

Corollary 2.4 is the main reason for the optical effects mentioned at the begin-
ning (Figure 1): Let a quadric Q and a central projection with center C be given.
If any line l of sight, which meets a focal conic f of Q at a point Q1, is reflected
at the point P 6= C in Q, then the transformed line still meets f at any point
Q2. Hence, the perspective images of point Q1 and P are coinciding, where P is
the reflected image of Q2 w.r.t. C. This holds for all Q1 ∈ f . Therefore in the
perspective the focal conic f and its reflected image in Q w.r.t. C belong to the
same conic (“Theorem of the Transparent Cup”).

The quadric in Figure 1 is a one-sheet hyperboloid of revolution, and f passes
through the focal points of the meridians. In Figure 10 we have a reflecting ellipsoid
E and its focal hyperbola f .

We can even replace the focal conic f by any other quadric in the confocal
family and claim, as given below.

Corollary 2.6. Let a reflecting quadric Q be given together with a confocal quadric
Q0. Then in a perspective with any center C, the quadric Q0 and its reflected image
in Q w.r.t. C have coinciding contours. This is also valid when Q0 degenerates into
a focal conic f : The perspective of f coincides with that of its reflected image in
Q.

3. Reflecting cones in a quadric

By virtue of Theorem 2.4, a line meeting a pair of focal conics f1 and f2 keeps this
property after reflection in any quadric being confocal with f1 and f2. The set of
such lines is the union of cones of revolution with apices on the focal conics. Now
we check what happens if the generators of one of these cones are reflected.

Theorem 3.1. Let Q be a quadric with focal conics f1 and f2. The cone C0 of
revolution, which connects any point S0 ∈ f1 with f2, intersects Q along two conics
c1 and c2. The reflection in Q along the conic ci, i = 1, 2 , transforms C0 again in
a cone Ci of revolution passing through f2 with an apex Si ∈ f1 (Figure 11).

Proof. The tangent cones drawn from point S0 ∈ f1 to the quadrics of the given
confocal family are confocal with the cone C0 connecting S0 with f2. Since the
latter one is a cone of revolution, they all are cones of revolution with the proper
tangent tS0 to f1 at S0 as their common axis. These cones are tangent to the
isotropic planes through tS0 ; the respective lines of contact are isotropic lines in
the plane orthogonal to tS0 through S0.
On the other hand, the poles of a fixed plane w.r.t. the quadrics of a range are
collinear. For each isotropic plane through tS0 , which touches all quadrics confocal
with Q, the points of contact are alined with two points: S0 as the touching point
with f1, and the respective absolute point as the touching point with the absolute
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Figure 11: The reflection in the quadric Q transforms the right
cone with apex S0 ∈ f1 onto two right cones with apices S1, S2 ∈ f1

conic. Hence, the quadric Q, like any other confocal quadric, contacts the cone C0
at two points. Consequently, the curve of intersection Q∩C0 splits into two conics
c1 and c2, both passing through the points of contact on the line t∗S0

, polar to tS0

w.r.t. Q. Figure 11 shows the scene after being orthogonally projected into the
plane of the focal conic f1.

Let Pi denote the apex of the tangent cone Ci of Q along ci for i = 1, 2 . In
accordance with Lemma 2.5, the two proper tangents drawn from Pi to f1 are
the focal axes of Ci. One of them is tS0 , the other contacts f1 at Si (Figure 11).
As already noted, the reflection in Ci transforms planes through tS0 into planes
through PiSi. Due to the contact between Ci of Q along ci, for each point X ∈ ci
the reflection in Q maps the line S0X onto a line meeting the axis PiSi. On the
other hand, by virtue of Corollary 2.4, the reflected line must also meet f1 (and f2).
Hence, the reflection of S0X coincides with SiX , as stated in Theorem 3.1. For all
X ∈ ci, the planes spanned by the incoming and outgoing ray, which contain also
the surface normal nX to Q, have the common trace S0Si in the plane of f1.

The given proof reveals that Theorem 3.1 can be generalized by replacing the
focal conic f2 with any confocal quadric Q0.

Theorem 3.2. Let Q and Q0 be two confocal quadrics. Then the reflection in Q
transforms each cone of revolution, which is tangent to Q0, into two cones of the
same type.
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Remark 3.3. It can be shown that, conversely, the only smooth cones which by
reflection in a general quadric correspond again to a cone, are those mentioned in
Theorem 3.2.

From a limiting case of Theorem 3.1 we learn how the well known reflecting
property of a satellite-TV receiving dish changes when the paraboloid of revolution
is replaced with a general elliptic paraboloid.

F

S0

S1

P1

P2

f1

f2

c1

c2
ε

a

tS0

P

Figure 12: The reflection in the elliptic paraboloid P transforms
the right cone with apex S0 ∈ f1 onto the right cone with apex
S1 ∈ f1 and a pencil of lines parallel to the axis a in the plane ε

Theorem 3.4. Let P be any paraboloid other than a paraboloid of revolution.
Then the reflection in P maps all lines l being parallel to the axis a of P onto
lines meeting both focal parabolas f1 and f2 of P. The pencil of those parallels l to
a, which lie in a plane ε orthogonal to the plane of f1, is mapped onto a cone of
revolution with apex S0 ∈ f1.

The latter can also be concluded as follows (see Figure 12). Let c2 denote the
parabola P ∩ ε. The tangent cone of P along c2 is a parabolic cylinder C2 with
apex P2 at infinity. After an orthogonal projection with center P2 the cylinder C2
appears as a parabola Cn

2 . In this view the reflection in Q along c2 is seen as a
planar reflection in Cn

2 which transforms lines parallel to the parabola’s axis onto
lines through the focus of Cn

2 . This focus coincides with the view of S0, which is
the point of f1 with the proper tangent tS0 passing through P2.
Remark 3.5. The bundle of parallels to the axis a of the paraboloid P consists of
all lines orthogonal to a plane. By virtue of the Theorem of Malus and Dupin [6,
p. 446], the property of being a normal line congruence is preserved under reflection
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in a surface. The surfaces orthogonal to the lines meeting the pair of focal parabolas
of P are parabolic Dupin cyclides [1, p. 147ff]. We recall that the surfaces, whose
normals intersect an ellipse and its focal hyperbola, are general Dupin cyclides.
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