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Abstract

Jin [13] introduced the notion of non-metric ¢-symmetric connection on
semi-Riemannian manifolds and studied lightlike hypersurfaces of an indefi-
nite trans-Sasakian manifold with a non-metric ¢-symmetric connection [12].
We study further the geometry of this subject. In this paper, we study
generic lightlike submanifolds of an indefinite trans-Sasakian manifold with
a non-metric ¢-symmetric connection.
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1. Introduction
The notion of non-metric ¢-symmetric connection on indefinite almost contact

manifolds or indefinite almost complex manifolds was introduced by Jin [12, 13].
Here we quote Jin’s definition in itself as follows:
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A linear connection V on a semi-Riemannian manifold (M, g) is called a non-

metric ¢-symmetric connection if it and its torsion tensor 1" satisfy

(Vxg)(YV,Z) = —0(Y)o(X, Z) - 0(2)$(X.Y), (1.1)

T(X,¥)=0(Y)JX — 0(X)JY, (1.2)

where ¢ and J are tensor fields of types (0,2) and (1,1) respectively, and 6 is an
1-form associated with a smooth vector field ¢ by 6(X) = g(X,¢). Throughout
this paper, we denote by X, Y and Z the smooth vector fields on M.

In case ¢ = g in (1.1), the above non-metric ¢-symmetric connection reduces to
so-called the quarter-symmetric non-metric connection. Quarter-symmetric non-
metric connection was intorduced by S. Golad [7], and then, studied by many
authors [2, 4, 19, 20]. In case ¢ = g in (1.1) and J = I in (1.2), the above non-
metric ¢-symmetric connection reduces to so-called the semi-symmetric non-metric
connection. Semi-symmetric non-metric connection was intorduced by Ageshe and

Chafle [1] and later studied by many geometers.

The notion of generic lightlike submanifolds on indefinite almost contact man-
ifolds or indefinite almost complext manifolds was introduced by Jin-Lee [14] and
later, studied by Duggal-Jin [6], Jin [9, 10] and Jin-Lee [16] and several geometers.
We cite Jin-Lee’s definition in itself as follows:

A lightlike submanifold M of an indefinite almost contact manifold M is said
to be generic if there exists a screen distribution S(7'M) on M such that

J(S(TM)*) c S(TM), (1.3)

where S(T'M)* is the orthogonal complement of S(TM) in the tangent bundle
TM on M, i.e., TM = S(TM) @ypin, S(TM)*. The geometry of generic lightlike
submanifolds is an extension of that of lightlike hypersurfaces and half lightlike
submanifolds of codimension 2. Much of its theory will be immediately generalized
in a formal way to general lightlike submanifolds.

The notion of trans-Sasakian manifold, of type («, 8), was introduced by Oubina
[18]. If M is a semi-Riemannian manifold with a trans-Sasakian structure of type
(o, B), then M is called an indefinite trans-Sasakian manifold of type (a, 3). In-
definite Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of
indefinite trans-Sasakian manifolds such that

a=1, =0, a=0, f=1; a=p=0, respectively.

In this paper, we study generic lightlike submanifolds M of an indefinite trans-
Sasakian manifold M = (M, J, ¢, 6, §) with a non-metric ¢-symmetric connection,
in which the tensor field J in (1.2) is identical with the indefinite almost contact
structure tensor field J of M, the tensor field ¢ in (1.1) is identical with the
fundamental 2-form associated with .J, that is,

H(X,Y)=g(JX,Y), (1.4)
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and the 1-form 6, defined by (1.1) and (1.2), is identical with the structure 1-form
6 of the indefinite almost contact metric structure (J, ¢, 6, g) of M.

Remark 1.1. Denote V by the unique Levi-Civita connection of (M ) g) with respect
to the metric g. It is known [13] that a linear connection V on M is non-metric
¢-symmetric connection if and only if it satisfies

VgV =VgV +4(Y)JX. (1.5)

For the rest of this paper, by the non-metric ¢p-symmetric connection we shall mean
the non-metric ¢-symmetric connection defined by (1.5).

2. Non-metric ¢-symmetric connections

An odd-dimensional semi-Riemannian manifold (M, g) is called an indefinite trans-
Sasakian manifold if there exist (1) a structure set {J, ¢, 0, g}, where J is a (1,1)-
type tensor field, ¢ is a vector field and 0 is a 1-form such that

607 =0, g(JX, V) = §(X. T) — c0(X)0(T).

(2) two smooth functions « and 3, and a Levi-Civita connection V such that
(Vx )Y = afg(X,Y)¢ — e6(Y)X} + 5{g(JX, V)¢ — ef(Y)JX},

where € denotes € = 1 or —1 according as ( is spacelike or timelike respectively.
{J, ¢, 0, g} is called an indefinite trans-Sasakian structure of type («, 3).

In the entire discussion of this article, we shall assume that the vector field ( is
a spacelike one, i.e., € = 1, without loss of generality.

Let V be a non-metric ¢-symmetric connection on (M, g). Using (1.5) and the
fact that 6 o J = 0, the equation in the item (2) is reduced to

(Vx )Y a{g(X,Y)( - 0(Y) X} (2.2)
B{g(JX,Y)¢ = 0(Y)JX} +0(Y){X — 0(X)C}

Replacing Y by ¢ to (2.2) and using J¢ = 0 and §(V () = 0, we obtain
V¢ = —(a— 1)JX +A{X — (X)) (23)

Let (M,g) be an m-dimensional lightlike submanifold of an indefinite trans-
Sasakian manifold (M, g) of dimension (m + n). Then the radical distribution
Rad(TM)=TMNTM* on M is a subbundle of the tangent bundle TM and the
normal bundle TM+*, of rank r (1 < r < min{m, n}). In general, there exist two
complementary non-degenerate distributions S(TM) and S(TM=) of Rad(TM)
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in TM and TM™' respectively, which are called the screen distribution and the
co-screen distribution of M, such that

TM = Rad(TM) @ora, S(TM), TM* = Rad(TM) @orar, S(TM™),

where @,,+;, denotes the orthogonal direct sum. Denote by F(M) the algebra of
smooth functions on M and by I'(E) the F(M) module of smooth sections of a
vector bundle E over M. Also denote by (2.1); the i-th equation of (2.1). We use
the same notations for any others. Let X, Y, Z and W be the vector fields on M,
unless otherwise specified. We use the following range of indices:

i, gy k, . € {1, ..., 7} a,bye,... €{r+1,..,n}

Let tr(TM) and ltr(TM) be complementary vector bundles to TM in TM)y,
and TM~ in S(TM)* respectively and let {Ni, ---, N,} be a lightlike basis of

Itr(T'M),,,, where U is a coordinate neighborhood of M, such that
g(Nivfj):(;iﬁ g(NlaNj):Ov
where {&1, -+, &} is a lightlike basis of Rad(TM),. Then we have

TM = TM @ tr(TM) = {Rad(TM) & tr(TM)} ®oren S(TM)
= {Rad(TM) & ltr(TM)} @open, S(TM) @open, S(TM™).
We say that a lightlike submanifold M = (M, g, S(TM), S(TM*)) of M is
(1) r-lightlike submanifold if 1 < r < min{m, n};
(2) co-isotropic submanifold if 1 <r =mn < m;
(3) isotropic submanifold if 1 <r=m < n;

)
)
)
(4) totally lightlike submanifold if 1 <r=m = n.

The above three classes (2)~(4) are particular cases of the class (1) as follows:
S(rM+)={0},  S(TM)={0},  S(TM)=S(TM")={0}

respectively. The geometry of r-lightlike submanifolds is more general than that
of the other three types. For this reason, we consider only r-lightlike submanifolds
M, with following local quasi-orthonormal field of frames of M:

{517 R 57”7 va Tty NT, FT+17 Y Fm) ET+17 Ty En}a
where {Fy41, -+, Fn} and {E,41, -+, E,} are orthonormal bases of S(T'M) and
S(TMH), respectively. Denote €, = §(Ey,, E,). Then €,6ap = §(Ea, Ep).

In the sequel, we shall assume that ¢ is tangent to M. Calin [5] proved that if ¢
is tangent to M, then it belongs to S(T'M) which we assumed in this paper. Let P
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be the projection morphism of TM on S(T'M). Then the local Gauss-Weingarten
formulae of M and S(T'M) are given respectively by

VxY = VxY + > hi(X,Y)Ni+ Y hi(X,Y)E,, (2.4)
=1 a=r+1
VxNi = =A, X+ 7;(X)N;+ > pia(X)Ea, (2.5)
Jj=1 a=r+1
VxEo = A, X+ XaiX)Ni+ Y 0up(X)Ey; (2.6)
=1 b=r+1
VxPY = VPY +) hi(X,PY)¢, (2.7)
=1
Vx& = —A X =Y mi(X)E, (2.8)
j=1

where V and V* are induced linear connections on M and S(T'M) respectively,
hY and h? are called the local second fundamental forms on M, h! are called the
local second fundamental forms on S(TM). Ay , A, and Af are called the shape
operators, and Ty, pia, Aai and o4y are 1-forms.

Let M be a generic lightlike submanifold of M. From (1.3) we show that
J(Rad(TM)), J(Itr(TM)) and J(S(TM+)) are subbundles of S(T'M). Thus there
exist two non-degenerate almost complex distributions H, and H with respect to
J, i.e, J(H,) = H, and J(H) = H, such that

S(TM) = {J(Rad(TM)) & J(Itr(TM))}
@orthJ(S(TML)) @orth Hoa
H = Rad(TM) ®open J(Rad(TM)) Sope, Ho.

In this case, the tangent bundle TM on M is decomposed as follows:
TM =H & J(ltr(TM)) @orep, J(S(TM™)). (2.9)

Consider local null vector fields U; and V; for each 4, local non-null unit vector
fields W, for each a, and their 1-forms u;, v; and w, defined by

Ui = 7JN15 ‘/Z = 7<]€17 Wa = 7‘]E(La (210)
w(X)=9(X,V;), vi(X)=g9(X,U;), wa(X)=¢€,9(X,W,). (2.11)

Denote by S the projection morphism of TM on H and by F the tensor field of
type (1,1) globally defined on M by F = JoS. Then JX is expressed as

JX =FX+Y wi(X)Ni+ > wa(X)E,. (2.12)
i=1 a=r+1
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Applying J to (2.12) and using (2.1); and (2.10), we have

F2X = X +0(X CJrZuz YU; + Z Wa (X)W,. (2.13)
a=r+1

In the following, we say that F'is the structure tensor field on M.

3. Structure equations

Let M be an indefinite trans-Sasakian manifold with a non-metric ¢-symmetric
connection V. In the following, we shall assume that ¢ is tangent to M. Calin [5]
proved that if ¢ is tangent to M, then it belongs to S(T'M) which we assumed in
this paper. Using (1.1), (1.2), (1.4), (2.4) and (2.12), we see that

(Vxg) (Y, 2) =Y {hi(X,Y)n:(Z) + hi(X, Z)ni(Y)} (3.1)
—0(Y)0(X, Z) — 6(2)$(X,Y),

T(X,Y)=0(Y)FX — 0(X)FY,

hE(X,Y) = hi(Y, X) = 0(Y Jui(X) — 0(X)us(Y),

ho(X,Y) = By (Y, X) = 0(Y)wa(X) = 0(X )wa(Y),

S(X. &) =ui(X), (X, N) =vi(X), &(X,E,) = wa(X),

(b(Xv ‘/z) =0, ¢(X7 Uz) = —Th‘(X)» ¢(X7 Wa) =0,

—~ o~~~
SRS
NAANSANS TN

for all ¢ and a, where n;’s are 1-forms such that 7;(X) = (X, N;).

From the facts that hf(X,Y) = g(VxY,&) and €,h3(X,Y) = g(VxY, E,), we
know that hf and h? are independent of the choice of S(T'M). Applying Vx to
g(givfj) =0, g(&, Ea) =0, g(NmNj) =0, g(N;, Ea) = 0 and §(E,, Ep) = €dqp by
turns and using (1.1) and (2.4) ~ (2.6), we obtain

(X&) +h5(X,6) =0, ha(X,&) = —eadai(X),
nJ(ANLX) + Wi(ANj X) = 07 nl(AE{,X) = Gapia(X)v (36)
€0ab + €a0ba = 0;  hi(X,&) =0, hi(§,&) =0, AL& =0.
Definition 3.1. We say that a lightlike submanifold M of M is
(1) irrotational |17] if Vx& € T(TM) for alli € {1, ---, r},
(2) solenoidal [15] if A, and A, are S(T'M)-valued for all a and i.

From (2.4) and (3.1)q, the item (1) is equivalent to

hi(X,&) =0, (X, &) = Aai(X) = 0.
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By using (3.1)4, the item (2) is equivalent to

nj(ANiX):Ov Pz‘a(X):Th‘(AEaX):O-

The local second fundamental forms are related to their shape operators by

h{(X,Y) = g(AL, X,Y) +6(Y) th (X, &me(Y),  (37)
€hi(X,Y) = g(A,, X,Y) +0(Y Zxak LY,  (3.8)
hi(X,PY) = g(A, X,PY) + 0(PY )v;(X). (3.9)

Replacing Y by ¢ to (2.4) and using (2.3), (2.12), (3.7) and (3.8), we have

Vx¢(=—(a—1)FX + B(X — 0(X)(), (3.10)
(AL X) = —aui(X),  hi(X,() = —(a - Duy(X), (3.11)
0(A,, X) = ~{ea(a—1) + 1wy (X), (3.12)

ha(X, Q) = —(a = Dw,(X).
Applying Vx to g(¢, N;) and using (2.3), (2.5) and (3.9), we have
0(Ay, X) = —av(X) + Bni(X), (3.13)
hi (X, ) = —(a = 1)vi(X) + Bni(X).
Applying Vx to (2.10)1,2 3 and (2.12) by turns and using (2.2), (2.4) ~ (2.8),
(2.10) ~(2.12) and (3.7) ~(3.9), we have
RA(X,Up) = hi(X,V;),  eahi(X,Wa) = hi(X,Uy),
W (X, Vi) = hi(X, V), eahi(X,W,) = h3(X, Vi),  (3.14)
ths(X W, ) = 6ah (X Wb)

VxU; = F(A, X) +Z% WU, + Z pia( X)W, (3.15)
J=1 a=r+1
— {an;(X )"‘BW(X)}C»
VxV; = F(A; X Zrﬂ X)V;+ > hi(X,&)U; (3.16)

n

_ Z €adai(X)Wo — Bus (X)C,

a=r+1

VxW, = F(A,, X) +ZAM YU; + Z Tan (X)W, (3.17)
=1 b=r+1
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*51“(1( )¢,
(VxF)( Zuz Y)A, X + Z wa(Y)A,, X (3.18)
a=r+1
- th(x,mvr > h(X Y)W,
=1 a=r+1

+{ag(X,Y) + Bg(JX,Y) = 0(X)0(Y)}¢
— (a=1DIY)X - pO(Y)FX

n

(Vxus)( Z ui(V)m5(X) = > wa(Y)Xai(X) (3.19)

a=r+1
—hf(X FY) = BO(Y )ui(X),

n

(Vxui)( ZUJ )T (X Z €aWe (Y ) pia(X) (3.20)

a=r+1

+ Z u; (V)mi(Ay, X) — g(Ay, X, FY)
j=r+1

= (a = 1)0(Y)ni(X) — BO(Y )vs(X).
Theorem 3.2. There exist no generic lightlike submanifolds of an indefinite trans-
Sasakian manifold with a non-metric ¢-symmetric connection such that ¢ is tangent
to M and F satisfies the following equation :
(VxF)Y =(VyF)X, VX, Y e(TM).
Proof. Assume that (VxF)Y — (VyF)X = 0. From (3.18) we obtain

D {wi(V) A, X —ui(X)A, Y} (3.21)

=1

+ Z {wa(Y)A,, X —wa(X)A, Y} —2B5(X,JY)¢

a=r+1
FH{OX)us (V) = 0(Y)ui(X)}Ui +{0(X)wa(Y) = 0(Y )wa(X)} W
+ (a—1D{O(X)Y —0(Y)X} + B{O(X)FY —O(Y)FX} = 0.

Taking the scalar product with ¢ and using (3.12); and (3.13);, we have
a Y {ui(V)oi(X) — ui(X)vi(Y)}
i=1

= 5Z{U1(Y)U¢(X) —uwi(X)ni(Y)} —289(X, JY).
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Taking X =V;, Y =U; and X =¢;, Y = Uj to this equation by turns, we obtain
a =0 and 8 = 0, respectively. Taking X = ¢; to (3.21), we have

n

0(X)&+ D u(X)A, &+ Y wa(X)A, & =0.
j=1

a=r+1
Taking X = Uy and X = W, to this equation, we have
Ay, &6 =0, A, & =0.

Therefore, we get 0(X)&; = 0. It follows that (X) =0 for all X e I'(TM). It is a
contradiction to 6(¢) = 1. Thus we have our theorem. O

Corollary 3.3. There exist no generic lightlike submanifolds of an indefinite trans-
Sasakian manifold with a non-metric ¢-symmetric connection such that ¢ is tangent
to M and F' is parallel with respect to the connection V.

Theorem 3.4. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M with a non-metric ¢-symmetric connection such that ¢ is
tangent to M. If U;s or V;s are parallel with respect to V, then o = = 0, i.e.,
M is an indefinite cosymplectic manifold. Furthermore, if U; is parellel, M is
solenoidal and 735 = 0, if V; is parallel, M is irrotational and 7;; = 0.

Proof. (1) If U; is parallel with respect to V, then, taking the scalar product with
¢, Vj, W, U;j and N; to (3.15) such that VxU; = 0 respectively, we get

o = ﬁ = O, Tij = 07 Pia = O7 nj(ANiX) = 0, h:(X, U]) =0. (322)

As a = f = 0, M is an indefinite cosymplectic manifold. As p;, = 0 and
n;i(Ay, X) = 0, M is solenoidal.

(2) If V; is parallel with respect to V, then, taking the scalar product with ¢,
Uj, Vj, W, and N; to (3.16) with VxV; = 0 respectively, we get
B=0, 7;;=0, Ry(X,&)=0, Xui=0, hi(X,U;)=0. (3.23)

As hﬁ(X7 &) =0and \;; =0, M is irrotational.

As hi(X,U;) = 0, we get h%(¢,U;) = 0. Taking X = U; and Y =  to (3.3),
we get ht(U;,¢) = ;. On the other hand, replacing X by U to (3.12);, we have
RE(Uj, ¢) = — (o —1)d;;. It follows that o = 0. Since o = 8 = 0, M is an indefinite
cosymplectic manifold. O

4. Recurrent and Lie recurrent structure tensors

Definition 4.1. The structure tensor field F' of M is said to be



94 D. H. Jin, J. W. Lee

(1) recurrent [11] if there exists a 1-form w on M such that
(VxF)Y = w(X)FY,
(2) Lie recurrent [11] if there exists a 1-form ¢ on M such that
(L, F)Y =9(X)FY,
where £, denotes the Lie derivative on M with respect to X, that is,
(L, P)Y =[X,FY] - F[X,Y]. (4.1)
In case ¥ =0, i.e., L, F =0, we say that I is Lie parallel.

Theorem 4.2. There exist no generic lightlike submanifolds of an indefinite trans-
Sasakian manifold with a non-metric ¢-symmetric connection such that ¢ is tangent
to M and the structure tensor field F' is recurrent.

Proof. Assume that F is recurrent. From (3.18), we obtain

FY—Zul Y)A, X+Zwa

a=r+1

—Zh‘v’xy ZthY

a=r+1
{ag(X7 V) +Bg(JX,Y) = 0(X)0(Y)}¢
— (a—1)0(Y)X — BO(Y)FX

Replacing Y by &; to this and using the fact that F§; = =V}, we get
@W(X)WV; =Y m(X, )0k + Y hy(X, )Wy — Buy(X)C.
k=1 b=r+1

Taking the scalar product with U;, we get @ = 0. It follows that F' is parallel with
respect to V. By Corollary 3.2, we have our theorem. O

Theorem 4.3. Let M be a generic lightlike submanifold of an indefinite trans-
Sasakian manifold M with a non-metric ¢-symmetric connection such that ¢ is
tangent to M and F is Lie recurrent. Then we have the following results:

(1) F is Lie parallel,
(2) the function « satisfies o = 0,

(3) Ti; and piq satisfy 7,; 0 F =0 and p;jq o F = 0. Moreover,

i (X Zuk g(Ay, Vi, Ni) — BO(X)d;;
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Proof. (1) Using (2.13), (3.2), (3.18), (4.1) and the fact that 6 o F' = 0, we get
IX)FY = —VpyX + FVy X (4.2)

+ Zul Y)A, X+ Z W ( AEQX

a=r+1

_ Z{hf(X, Y) = 0(Y)u;(X)}U;

- Z {hZ(Xv Y) _0(Y)wa(X)}Wa

a=r+1
+a{g(X,Y)(-0V)X} —BO(Y)FX

Replacing Y by &; and then, Y by V; to (4.2), respectively, we have

—I(X)V; = Vy, X + FV¢, X (4.3)
—thxgj Zhsxgj
a=r+1
WXV = —Ve, X + FVy, X + au;(X)C (4.4)
B A SR E R
i=1 a=r+1

Taking the scalar product with U; to (4.3) and N; to (4.4) respectively, we get

0i9(X) = g(Vv, X, Us) — §(Ve, X, N;).

Comparing these two equations, we get ¥ = 0. Thus F' is Lie parallel.

(2) Taking the scalar product with ¢ to (4.4), we get g(V¢, X, () = au;i(X).
Taking X = U; to this result and using (3.15), we obtain a = 0.

(3) Taking the scalar product with N; to (4.3) such that X = W, and using
(3.4), (3.6)4, (3.8) and (3.17), we get h5(U;,V;) = pia(&;). On the other hand,
taking the scalar product with W, to (4.4) such that X = U; and using (3.15), we
have hj (Ui, V;) = —pia(&5). Thus pia(§;) = 0 and h3(U;,V;) =

Taking the scalar product with U; to (4.3) such that X = W and using (3.4),
(3.6)2,4, (3.8) and (3.17), we get €pia(V;) = Ag;(U;). On the other hand, taking
the scalar product with W, to (4.3) such that X = U; and using (3.1)5 and (3.15),
we get €4piq(Vy) = —Aa;(U;). Thus pio (V) = A (U;) = 0.

Taking the scalar product with V; to (4.3) such that X = W, and using (3.4),
(3.6)2, (3.14)4 and (3.17), we obtain Ay (V;) = —Aq;(Vi). On the other hand,
taking the scalar product with W, to (4.3) such that X = V; and using (3.6)2 and
(3.16), we have Ay (V;) = Ag;(V5). Thus we obtain Ay (V;) = 0.
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Taking the scalar product with W, to (4.3) such that X = ¢ and using (2.8),
(3.3), (3.6)2 and (3.7), we get hf(V;,W,) = Aui(&;). On the other hand, taking the
scalar product with V; to (4.4) such that X = W, and using (3.3) and (3.17), we
get hE(V;, Wo) = —Xai(&5). Thus A\si(€5) = 0 and hf(V;, W,) =0

Summarizing the above results, we obtain

Pm(fj) =0, Pia(v) 0, )‘al(U ) 0, AaZ(V) =0, Aaz(fg) =0, (4'5)
hZ(Ui)Vj):hg(Ui’Wa):Oa (VJaW)_hZ(VWVZ)_O'

Taking the scalar product with N; to (4.2) and using (3.1)4, we have
- g(VFyX Ni) + 9(Vy X, U;) — BO(Y )vi(X) (4.6)

n

+Zuk GAL X N+ Y eawa(Y)pia(X) =0.
a=r+1
Replacing X by V; to (4.6) and using (3.7), (3.16) and (4.5)2, we have
hS(FX,U;) + 7i5(X) + BO(X Zuk (A, Vi Ny). (4.7)
Replacing X by &; to (4.6) and using (2.8), (3.7) and (4.5)1, we have

he(X, ;) Zuk )3(Ay, &, Ni) + 735 (FX). (4.8)

Taking X = Uy, to this equation and using (3.14);, we have
h;(Uk’Vj) :g(Angj’Ni)' (4.9)
Taking X = U; to (4.2) and using (2.13), (3.3), (3.4) and (3.15), we get

Zuk AU+Zwa VA, Ui— A, Y (4.10)
a=r+1
— F(Ay FY) =Y 7j(FY)U; = > pia(FY)W, =0.
j=1 a=r+1

Taking the scalar product with V; to (4.10) and using (3.8), (3.9), (3.14)1, (4.5)¢
and (4.9), we get

he(X, Uy) Zuk )g(Ay, & Ni) — 73 (FX).
Comparing this equation with (4.8), we obtain

7;(FX) —|—Zuk )3(Ay, &, Ni) = 0.
k=1
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Replacing X by Up, to this equation, we have g(ANk &, N;) = 0. Therefore,
7i;(FX) =0, (X, U;) = 0. (4.11)

Taking X = FY to (4.11), we get h? (FX,U;) =0. Thus (4.7) is reduced to

i (X Z ur(X)g(Ay, Vi, Ni) — BO(X)dy;
Taking the scalar product with U; to (4.10) such that ¥ = W, and using (3.4),
(3.8), (3.9) and (3.14)2, we have
hi(Wa,Uj) = eahig (Ui, Uy) = €ahy (U;, Ui) = hii (U, Wa). (4.12)
Taking the scalar product with W, to (4.10), we have
€apia(FY) = —h*(Y Wa)

n

Zuk ViU, Wa) + Y evwy (V)R (Ui, Wa).

b=r+1

Taking the scalar product with U; to (4.2) and then, taking X = W, and using
(3.4), (3.6)4, (3.8), (3.9), (3.14)2, (3.17) and (4.12), we obtain

€apia(FY) = hi (Y, W,)

= > w (V) (Us, Wa) = > eqwn(Y)hi (U, W),
k=1 b=r+1
Comparing the last two equations, we obtain p;,(FY') = 0. O

5. Indefinite generalized Sasakian space forms

Definition 5.1. An indefinite trans-Sasakian manifold M is said to be a indefinite
generalized Sasakian space form and denote it by M(f1, fa, f3) if there exist three
smooth functions f1, fo and f3 on M such that

RXTVZ = flaV. D)X g%, 27} (5.1)

+ f{9(X,JZ)JY (Y JZ) JX +29(X,JY)JZ}
+ [{0(X)0(2)Y - 0(Y)0(Z)X

+9(X,2)0(Y)¢ —g(Y,2)0(X)C},
where R is the curvature tensor of the Levi-Civita connection V.

The notion of generalized Sasakian space form was introduced by Alegre et. al.
[3], while the indefinite generalized Sasakian space forms were introduced by Jin
[8]. Sasakian space form, Kenmotsu space form and cosymplectic space form are
important kinds of generalized Sasakian space forms such that
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fi=L fo=f3=5% fi=3 fo=fs=

respectively, where c¢ is a constant J-sectional curvature of each space forms.

_ Denote by R the curvature tensors of the non-metric ¢-symmetric connection
V on M. By directed calculations from (1.2), (1.5) and (2.1), we see that

R(X,Y)Z = R(X,Y)Z + (Vg0)(2)JY — (Vy0)(Z)JX (5.2)
—0(Z){af(V)X - 0(X)Y]+ BO(Y)IX - 6(X)JY]
+289(X, JY)C}.

><

Denote by R and R* the curvature tensors of the induced linear connections V
and V* on M and S(T M) respectively. Using the Gauss-Weingarten formulae, we
obtain Gauss-Codazzi equations for M and S(TM) respectively:

R(X,Y)Z =R(X,Y)Z (5.3)

+ D AB(X, 2)A, Y —hi(Y, Z)A X}
=1
+ jg: {hZ@szjAEa}f_'hZ(Y;Z)AEa)(}

a=r+1
s

+ Y {(Vxh)(Y, 2) = (Vyh)(X, 2)

=1

s fjmxmﬁm Z) = 1 (V)X 2)]

+ Z X)he(Y,Z) = Xai(Y)ho (X, Z)]
a=r+1
—0(X)hi(FY, Z) + 0(Y)hi(FX, Z)}N;

+ ) {(Vxh)(Y.2) — (Vyh)(X, Z)

a=r+1
+ Z pia(X)W{(Y, Z) = pia(Y)R{(X, Z)]
+ Z b0 (X3 (Y, Z) — 00a(Y)B3 (X, Z))]

b=r+1
—0(X)h3(FY, Z) + 0(Y ) (FX, Z)} B,

R(X,Y)PZ = R*(X,Y)PZ (5.4)

+ > {hi (X, PZ)ALY — hi(Y, PZ)Ae, X}

i=1
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+ > A(Vxhi)(Y, PZ) — (Vyhi)(X, PZ)

=1

n Z Tie(Vhi(X, PZ) — 7 (X)R}(Y, PZ)]

9( VoI (FY,PZ)+ 0(Y)hi(FX,PZ)}¢;,

Taking the scalar product with & and N; to (5.2) by turns and then, substituting
(5.3) and (5.1) and using (3.6)4 and (5.4), we get

(VXh‘*)(Y Z) — (Vyhi)(X, 2) (5.5)

+ Z{TJ, X)RY(Y, Z) — 73:(Y)RE(X, Z)}

+ Z i (X)RE(Y, Z) — Aai (V)RE(X, Z)}
a=r+1

— O(X)WE(FY,Z) + 0(Y)hi(FX, Z)
— (Vx0)(Z)ui(Y) + (Vy8)(Z)ui(X)
+ BO(Z){0(Y )ui(X) — 0(X)u; (Y)}

= folw;(Y)9(X,JZ) — ui(X)g(Y, JZ) + 2u;(Z)g(X, JY)},

(Vxh )Y, PZ) = (Vyhi)(X, PZ) (5.6)

- Z {ri;(X)h3(Y, PZ) — 7;(Y)W}(X, PZ)}

Y (XY PZ) — pu(YIR(X. PZ)}
a=r+1
# 3 (05 P2 Y) = B0, P24, X))
—0(X)h(FY,PZ)+0(Y)h;(FX,PZ)
— (Vx0)(PZ)vi(Y) + (Vy0)(PZ)vi(X)
+ ab(PZ){0(Y)ni(X) — 6(X)n:(Y)}
+ BO(PZ){0(Y)vi(X) — 0(X)vi(Y)}
= f{g(Y, PZ)n(X) — g(X, PZ)n;(Y)}
+ fo{viY)g(X,JPZ) — v;(X)g(Y,JPZ) + 2v,(PZ)g(X, JY)}
+ f3{0(X)n: (V) = 0(Y)ni (X)}0(PZ).
Theorem 5.2. Let M be a generic lightlike submanifold of an indefinite generalized

Sasakian space form M(f1, f2, f3) with a non-metric ¢-symmetric connection such
that ¢ is tangent to M. Then «, B, f1, fo and f3 satisfy
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(1) « is a constant on M,
(2) af =0, and

(3) i —fa=0® =B and f1 — f3 =a® = f* = (f.
Proof. Applying Vx to 6(U;) = 0 and 6(V;) = 0 by turns and using (2.4), (3.15),
(3.16) and the facts that F'¢ = 0 and ¢ belongs to S(T'M), we get
(Vx0)(Ui) = ani(X) + fui(X), (Vx0)(Vi) = Bui(X). (5.7)

Applying Vx to (3.14);: hf(Y, U;) = h}(Y,V;) and using (2.1), (2.12), (3.7), (3.9),
(3.11), (3.12), (3.14)1.2.4, (3.15) and (3.16), we obtain

(Vxh)(Y,Ui) = (Vxh)(Y,Vj)

—2}% Vi (Y, Us) + i (X)R(Y, V) }

Z {Aaj (X)hfz(ya Uz) + eapia(X)hZ(K ‘/})}

a=r+1

+ Y R (Y UG (X, &) + bl (X, Up) b (Y. €,)}
k=1
— (AL, X, F(AY)) — g(ALY, F(A, X))

— Y hS(X, Vimk(A,Y)

k=1
= Bla = D{u;(Y)vi(X) — u; (X)vi(Y)}
— oo — D)u; (V)i (X) — Bu; (X )n; (Y).

Substituting this equation into the modification equation, which is change i into j
and Z into U; from (5.5), and using (3.6)s and (3.14)3, we have

(Vxhi) (Y, Vi) = (Vyhi)(X, V;)

= DI CORE(Y, V) = mae(Y) R (X, V) }
k=1

= Y cadpiORLY,V)) = pia(Y)RE(X, V))}

a=r+1

+ ) AR (X Vmi(Ay, Y) = hi (Y, Vi)mi(Ay, X))}
k=1
— O(X)RI(FY,V;) + 0(Y)h; (FX, V)
(

— BR2a = D{u;(Y)vi(X) — u;(X)vi(Y)}
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= (a® = B2){u; (V)mi(X) — w;(X)mi(Y)}
= fafu; (Y)mi(X) = u; (X)mi(Y) + 2059(X, JY) }.

Comparing this equation with (5.6) such that PZ =V}, we obtain

{f1 = f2— 0+ B (VI (X) =y (X)mi(V)}
— 20B{u; (V)0,(X) — ul X)ui(V)}.

Taking Y = U;, X =& and Y = U;, X = V] to this by turns, we have

fi— fa=0a® =B af = 0.
Applying Vx to 6(¢) = 1 and using (2.3) and the fact: § o J = 0, we get
(Vx0)(¢) = 0. (5.8)

Applying Vx to n;(Y) = g(Y, N;) and using (1.1) and (2.5), we have

(Vaxn)(Y) = =g(Ay, X, Y) + > 73, (X)n;(Y) = 0(Y)vi(X). (5.9)

j=1

Applying Vx to hi(Y,() = —(a — 1)v;(Y) + Bn:(Y) and using (3.9), (3.10),
(3.20), (5.9) and the fact that a8 = 0, we get

(Vxhi)(Y,¢) = =(Xa)vi(Y) + (XB)n:(Y)
+ (= 1D{g(Ay, X, FY) +g(A,,Y, FX)
- Zvj i (X) = Y eawa(Y)pia(X)
r+

a=r+1

quJ J1i(Ay, X) = (@ = 1)O(Y)mi(X)}

— B{g(A, X,Y) +g(A, Y, X) ZT,J
= BOX)m:(Y)}-
Substituting this and (3.13)3 into (5.6) with PZ = ¢ and using (5.8), we get

{XB+(fi—f3—a®+BHOX)In(Y)
—{YB+(fi — f3— &+ B)O(Y)}mi(X)
= (Xa)v(Y) — (Ya)v;(X).

Taking X = (,Y =¢&; and X = U;, Y = V; to this by turns, we have

fi—fs=a"—pB*— (B, Uja = 0.
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Applying Vy to (3.11)2 and using (3.10) and (3.19), we get
(Vxh)(Y,¢) = ~(Xa)ui(Y)

n

(a—1) {Z u; (V)7 (X Z €aWq (Y) i (X)

a=r+1
+ (X, FY) + hi(Y, FX)}
= BLRL(Y, X) + 0(Y Jui(X) = 0(X)us(Y)}.
Substituting this into (5.5) such that Z = ¢ and using (3.3) and (5.8), we have
(Xa)u; (V) = (Ya)u (X).

Taking Y = U; to this result and using the fact that U;a = 0, we have Xa = 0.
Therefore « is a constant. This completes the proof of the theorem. O

Theorem 5.3. Let M be a generic lightlike submanifold of an indefinite generalized
Sasakian space form M(f1, f2, f3) with a non-metric ¢-symmetric connection such
that ¢ is tangent to M. If F' is Lie recurrent, then

a=0, fi=-p% fa=0, J3=—(B.

Proof. By Theorem 4.2, we shown that « = 0 and we have (4.11),. Applying Vx
0 (4.11)2: AE(Y,U;) = 0 and using (3.11)2, (3.15) and (4.11),, we have

(Vxh)(Y,Uj) = —hi(Y, F(Ay X)) — Z Pia(X)hi (Y, Wa)
a=r+1

+ fu;(Y)v; (X).
Substituting this into (5.5) with Z = U; and using (5.7)1, we obtain

Wi (X, F(AyY)) = hi(Y, F(A, X))

- Z {pja(Y)R{ (X, Wa) — pja(X)RE(Y, Wa)}
a=r+1

+ Z P (OR (Y, Uy) = Xas (Y)R(X, Uj) }
a=r+1

= fo{ui(Y)n;(X) = wi(X)n; (V) + 20;59(X, JY)}.
Taking Y = U; and X = ¢; to this and using (3.3) and (4.5)1, 3,5, we have

n

3fo = h{(&, F(Ay,U)) + D pjalUi)hi (&, Wa). (5.10)

a=r+1

In general, replacing X by &; to (3.7) and using (3.3) and (3.6)7, we get
RE(X, &) = 9(AZ &5, X). From this and (3.6)1, we obtain Af {; = —Ag &. Thus
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Agigj are skew-symmetric with respect to ¢ and j. On the other hand, in case M
is Lie recurrent, taking Y = U; to (4.10), we have A, U; = Ay, Ui. Thus A, Uj
are symmetric with respect to i and j. Therefore, we get
B, F(Ay Un) = g(ALE, F(A,, U)) = 0.
Also, by using (3.4), (3.6)2, (3.14)4 and (4.5)4, we have
R (&5, Wa) = €ahiy (€. Vi) = €aliy (Vi, &) = —Aja(Vi) = 0.
Thus we get fo = 0 by (5.10). Therefore, f; = —32 and f3 = —(J3. O

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite general-
ized Sasakian space form M(f1, f2, f3) with a non-metric ¢-symmetric connection
such that ¢ is tangent to M. If U;s or V;s are parallel with respect to V, then
M(f1, fa2, f3) is a flat manifold with an indefinite cosymplectic structure ;

a=p3=0, fi=fo=f3=0.

Proof. (1) If U;s are parallel with respect to V, then we have (3.22). As o =0, we
get f1 = fo = f3 by Theorem 5.2. Applying Vy to (3.22)5, we obtain

(Vxhi)(Y,U;) = 0.
Substituting this equation and (3.22) into (5.6) with PZ = U,, we have
Ji{v; (V)i (X) — v (X)n:(Y) } 4 fo{ws(Y)n;(X) — 0i(X)n; (Y)} = 0.
Taking X = ¢; and Y = Vj to this equation, we get fi + fo = 0. Thus we see that
fi= fo= fs =0 and M is flat.
(2) If V;s are parallel with respect to V, then we have (3.23) and a@ = 0. As
a =0, we get f1 = fo = f3 by Theorem 5.2. From (3.14); and (3.23)5, we have
BV, V) = 0.
Applying Vx to this equation and using the fact that VxV; = 0, we have
(Vxhi)(¥,V;) =0.

Substituting these two equations into (5.6) such that PZ =V}, we obtain

n

Z Ga{pia(Y)hZ(Xa ‘/3) - pm(X)hZ(K ‘/j)}
a=r+1

+ Y {BX, Vina(Ay, Y) = hi (Y, Vima(Ay, X))}
k=1
= fu{u;(Y)mi(X) = u;(X)ni(Y)} + 2f20:;9(X, JY).

Taking X = ¢ and Y = U; to this equation and using (3.3), (3.23)3,4 5 and the
fact that he(U;, V;) = eaht(U;, W,) = 0 due to (3.3), (3.14),4 and (3.23)5, we obtain

f1+2f; =0. It follows that f; = fo = f3 =0 and M is flat. O
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Definition 5.5. An r-lightlike submanifold M is called totally umbilical [6] if there
exist smooth functions A; and B, on a neighborhood U such that

hf(X7Y) :Alg(X?Y)? hZ(X7Y> :Bag(XaY) (511)
In case A; = B, = 0, we say that M is totally geodesic.

Theorem 5.6. Let M be a generic lightlike submanifold of an indefinite generalized
Sasakian space form M(f1, fa, f3) with a non-metric ¢-symmetric connection such
that ¢ is tangent to M. If M is totally umbilical, then M (f1, f2, f3) is an indefinite
Sasakian space form such that

2 1
-1 -0 _ 2 e —
a=1, g=0; fi 3 fa=f3 3

Proof. Taking Y = ¢ to (5.11)1 2 by turns and using (3.12); 2, we have
Ai0(X) = —(a — D (X), Bo0(X) = —(a— 1wy (X),

respectively. Taking X = ¢ and X = U; to the first equation by turns, we have
A; = 0 and a = 1 respectively. Taking X = ( to the second equation, we have
B, =0. As A; = B, = 0, M is totally geodesic. As a =1 and g =0, M is an
indefinite Sasakian manifold and f; — 1 = f5 = f3 by Theorem 5.2.

Taking Z = U; to (5.5) and using (5.7)1 and hf = hS = 0, we get

(f2 + D{us(Y)n; (X) — wi(X)n;(Y)} + 265 f29(X, JY) = 0.
Taking X =¢; and Y = U;, we have fy = —%. Thus f; = % and f3 = —%. O

Definition 5.7. (1) A screen distribution S(T'M) is said to be totally umbilical [6]
in M if there exist smooth functions ; on a neighborhood U/ such that

hi(X,PY) = vig(X, PY).

In case v; = 0, we say that S(TM) is totally geodesic in M.
(2) An r-lightlike submanifold M is said to be screen conformal [8] if there exist
non-vanishing smooth functions ¢; on U such that

hi(X,PY) = p;hi(X, PY). (5.12)

Theorem 5.8. Let M be a generic lightlike submanifold of an indefinite generalized
Sasakian space form M(f1, fa, f3) with a non-metric ¢-symmetric connection such
that ¢ is tangent to M. If S(TM) is totally umbilical or M is screen conformal,
then M(f1, f2, f3) is an indefinite Sasakian space form ;

0421, /8:07 f1:07 f2:f3:_1-
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Proof. (1) If S(TM) is totally umbilical, then (3.13)9 is reduced to

7i0(X) = —(a — 1vi(X) + Bni(X).

Replacing X by V;, & and ( respectively, we have a« = 1, § = 0 and v, = 0. As
vi = 0, S(TM) is totally geodesic, and hj (X, Uy) = 0 and h§(X,Ux) =0. Asa =1
and B = 0, M is an indefinite Sasakian manifold and f; — 1 = f, = f3 by Theorem
5.1. Taking PZ = Uy, to (5.6) with h} = 0, we get
Silfor(Y)mi(X) — oe(X) (V) } + {0i(Y)ne (X) — 0 (X)mi(Y)}] = 0.
Taking X = ¢, and Y =V}, we have f; = 0. Thus fo = f3 = —1.
(2) If M is screen conformal, then, from (3.12)3, (3.13)2 and (5.12), we have

(@ = D{vi(X) = Bni(X) = @i(a = Dui(X)}.

Taking X =V, and X = &; to this equation by turns, we have o = 1 and beta = 0.
As o =1 and = 0, M is an indefinite Sasakian manifold and f; — 1 = fy = f3
by Theorem 5.1.

Denote by pu; the r-th vector fields on S(TM) such that u; = U; — ¢;V;. Then
J/Lz = NZ - (pzéz USiIlg (3.14)1727374 and (512), we get

4 _ S _
b (X, pi) =0, ho (X, p;) =0. (5.13)
Applying Vy to (5.12), we have
(Vxhi)(Y, PZ) = (Xei)hi(Y, PZ) + ¢i(Vxi)(Y, PZ).

Substituting this equation and (5.12) into (5.6) and using (5.5), we have
D X @i)di5 — @ima(X) — 37i5(X) = mi( Ay X)}5(Y, PZ)
j=1

- Z{(Y<ﬂi)5z‘j —@iTi(Y) — ;7 (V) — Th'(AN]. Y)}hf(X, PZ)

n

- Z {€apia(X) + pidai(X) o (Y, PZ)
a=r+1

+ Z {€apia(Y) + @irai(Y) tho (X, PZ)
a=r+1

— (VxO)(PZ){vi(Y) = pui(Y)} + (Vy0)(PZ){vi(X) — pui(X)}
— af0(X)n:(Y) — 0(Y)n:(X)}0(PZ)

= filg(Y,PZ)n;(X) — g(X, PZ)n;(Y)}

+ foA[vi(Y) — piui(Y)]g(X, JPZ) — [v:(X) — ¢iui(X)]g(Y, JPZ)
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+2[0i(PZ) — piui(PZ)]g(X, JY)}
+ fs{0(X)mi(Y) = 6(Y)n:(X)}0(P2).

Replacing PZ by p; to this and using (5.7) and (5.13), we obtain

Si{lo;(Y)n:(X) = v (X)m (V)] = @5 {ug (V)i (X) — u; (X)mi(Y)]}
+ fi{loi(YV)n; (X) — 0i(X)n; (V)] = i [us(Y)n; (X) — wi(X)n; ()]}
= 2f2(p; + i)0i; g(X, JY) = 0.

Taking X =¢; and Y =V}, we get f; = 0. Thus fo = f3 = —1. O
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