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Abstract

In this paper we determine the sets of spherical roots, real roots, isolated
complex roots, pure imaginary quaternion roots and roots in R + Rj and
R + Rk of a quaternion polynomial Q(t) by corresponding these sets to the
sets of real or complex roots of some real or complex polynomials determined
by Q(t). Thus, the counting and classifying methods for such polynomials
can be used for the counting and classifying of the aforementioned roots of
quaternion polynomials.
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1. Introduction

The problem of counting and classifying the real/imaginary roots of a given real
polynomial has been extensively studied. The classical Sturm’s algorithm is an
efficient method for determining the numbers of real roots of constant coefficient
polynomials, but very inconvenient for those with symbolic coefficients. On the
other hand, since the complete root classification of a parametric polynomial has
been applied in studies of ordinary differential equations, of integral equations, of
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mechanics problems, and to real quantifier elimination (see [16]), several methods
have been developed to fulfil this task [9, 17, 26, 27]. As far as we know, similar
results do not exist for the roots of polynomials

Q(t) = a0t
n + a1t

n−l + · · ·+ an

with coefficients a0, . . . , an lying in the skew field of quaternions H.
The fundamental theorem of algebra holds for quaternion polynomials [18, 5,

8, 14]. Algorithms for the computation of roots of a quaternion polynomial and its
expression as a product of linear factors have been investigated in several papers [6,
7, 10, 11, 12, 13, 14, 19, 20, 21, 22, 24, 25]. Recently, a method for finding the pure
imaginary quaternion roots of a quaternion polynomial was given [1]. Furthermore,
necessary and sufficient conditions for a quaternion polynomial to have a special
kind of root were obtained [4]. Note that a special class of space curves, the so-
called Pythagorean hodograph curves, may be generated by quaternion polynomials
[2, 3], and as it is has been studied in [3, Chapter 6], such a curve is generated by
another curve of lower degree if and only if its associated quaternion polynomial
has a complex root.

In this paper we determine the sets of spherical roots, real roots, isolated com-
plex roots, pure imaginary quaternion roots and roots in R + Rj and R + Rk of
a quaternion polynomial Q(t) by defining a bijection from each of these sets onto
the sets of real or complex roots of some real or complex polynomials which are
determined by Q(t). So the counting and classifying methods for real and complex
polynomials can be used for counting and classifying the aforementioned roots of
quaternion polynomials. Our method for the study of pure imaginary quaternion
roots has the same initial point as Chapman’s approach [1, Chapter 4, Section 1.3],
but is quite different in the sequel, since we use simpler equations and we determine
exactly the sets of spherical and isolated pure imaginary quaternion roots.

The paper is organized as follows. In Section 2, we recall basic facts about
quaternions and quaternion polynomials. Section 3 is devoted to the study of pure
imaginary quaternion roots of quaternion polynomials. The spherical roots, real
roots, complex isolated roots, and roots in R+Rj and R+Rk are studied in Section
4. Finally, in Section 5, we illustrate our results with three examples.

2. Quaternions

Let R and C be the fields of real and complex numbers, respectively. We denote
by H the skew field of real quaternions. Its elements are of the form q = x0 +x1i+
x2j + x3k, where x1, x2, x3, x4 ∈ R, and i, j, k satisfy the following multiplication
rules:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The conjugate of q is defined as q̄ = x0−x1i−x2j−x3k. The real and the imaginary
part of q are Re q = x0 and Im q = x1i+x2j+x3k, respectively. If Re q = 0, then q
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is called pure imaginary quaternion. The norm |q| of q is defined to be the quantity

|q| = √qq̄ =
√
x20 + x21 + x22 + x23.

Two quaternions q and q′ are said to be congruent or equivalent, written q ∼ q′, if
there is w ∈ H \ {0} such that q′ = wqw−1. By [28], we have q ∼ q′ if and only if
Re q = Re q′ and |q| = |q′|. The congruence class of q is the set

[q] = {q′ ∈ H/ q′ ∼ q} = {q′ ∈ H/ Re q = Re q′, |q| = |q′|}.
Note that every class [q] contains exactly one complex number z and its conjugate
z̄, which are x0 ± i

√
x21 + x22 + x23.

Let H[t] be the polynomial ring in the variable t over H. Every polynomial
f(t) ∈ H[t] is written as a0tn + a1t

n−l + · · · + an where n is an integer ≥ 0 and
a0, . . . , an ∈ H with a0 6= 0. The addition and the multiplication of polynomials are
defined in the same way as the commutative case, where the variable t is assumed
to commute with quaternion coefficients [15, Chapter 5, Section 16]. For every
q ∈ H we define the evaluation of f(t) at q to be the element

f(q) = a0q
n + a1q

n−l + · · ·+ an.

Note that it is not in general a ring homomorphism from H[t] to H.
We say that a quaternion q is a zero or a root of f(t) if f(q) = 0. The polynomial

B(t) ∈ H[t] is called a right factor of Q(t) if there exists C(t) ∈ H[t] such that
Q(t) = C(t)B(t). Note that q is a root of f(t) if and only if t− q is a right factor
of Q(t), i.e. there exists g(t) ∈ H[t] such that f(t) = g(t)(t − q) [15, Proposition
16.2].

Let q be a root of f(t). If q is not real and has the property that f(z) = 0 for
all z ∈ [q], then we will say that q generates a spherical root. For short, we will
also say that q is, rather than generates, a spherical root. If q is real or does not
generate a spherical zero, it is called an isolated root. If two elements of a class
are roots of f(t), then [10, Theorem 4] implies that all elements of this class are
zeros of f(t). Therefore, since every congruence class contains exactly one complex
number z and its conjugate z̄, the pairs of complex numbers {z, z̄} which are roots
of f(t) determine all spherical roots of f(t).

3. Pure imaginary quaternion roots

In this section we determine the set of pure imaginary quaternion roots of a quater-
nion polynomial. Let Q(t) = ant

n + an−1tn−1 + · · ·+ a0. We set

g(t) =

b(n−1)/2c∑

m=0

a2m+1(−1)mtm and h(t) =

bn/2c∑

m=0

a2m(−1)mtm.

Let gi(t), hi(t) ∈ R[t] (i = 1, 2, 3, 4) such that

g(t) = g1(t) + g2(t)i + g3(t)j + g4(t)k,
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h(t) = h1(t) + h2(t)i + h3(t)j + h4(t)k.

We denote by E(t) the greatest common divisor of polynomials g1(t), . . . , g4(t),
h1(t), . . . , h4(t). Further, we consider the polynomials

F (t) = (g1(t)2 + g2(t)2 + g3(t)2 + g4(t)2)t− (h1(t)2 + h2(t)2 + h3(t)2 + h4(t)2)

and
G(t) = g1(t)h1(t) + g2(t)h2(t) + g3(t)h3(t) + g4(t)h4(t).

Let L(t) = gcd(F (t), G(t)). Note, that E(t) divides L(t).

Theorem 3.1. Let E be the set of the positive roots of E(t) and L the set of the
positive roots of L(t) which are not roots of E(t). We denote by S and I the sets of
distinct spherical and isolated pure imaginary quaternion roots of Q(t), respectively.
Then the maps

σ : E −→ S,

N 7−→ {x1i + x2j + x3k/ x1, x2, x3 ∈ R, x21 + x22 + x23 = N}

and

τ : L −→ I,

N 7−→ −g(N)−1h(N)

are bijective.

Proof. Let x = x1i+ x2j+ x3k, with x 6= 0, be a pure imaginary quaternion which
is a root of Q(t). Then we have x2 = −(x21+x22+x23) = −|x|2 and setting N = x21+
x22 + x23, we get x2 = −N . Thus, the equality Q(x) = 0 implies g(N)x+ h(N) = 0.
Further, since x 6= 0, we have g(N) = 0 if and only if h(N) = 0.

Suppose that x defines a spherical root of Q(t). It follows that every y ∈ [x]
is a root of Q(t). Further, y is a pure imaginary quaternion with |x| = |y|, and
so y2 = −|y|2 = −|x|2 = x2, whence g(N)y = −h(N). Thus, for every y ∈ [x]
we have g(N)y = −h(N), whence we deduce g(N) = h(N) = 0. Since N is a
real number, we have E(N) = 0, and so N ∈ E . Conversely, if N ∈ E , then
g(N) = h(N) = 0. Thus, for every pure imaginary quaternion x with |x| =

√
N ,

we haveQ(x) = g(N)x+h(N) = 0. Hence, [x] is a spherical root ofQ(t). Therefore,
σ is a bijection.

We have that E(t) divides F (t) andG(t), whence we have that E(t) divides L(t).
Suppose now that L(t) 6= E(t). Let x be an isolated pure imaginary quaternion
root of Q(t) with g(N)h(N) 6= 0. Then, we get g(N)x+ h(N) = 0, whence we get
|g(N)|2|x|2 = |h(N)|2, and so, N is a root of F (t). Furthermore, we have

x = −g(N)−1h(N) = −g(N)h(N)/|g(N)|2

and, since Rex = 0, we get G(N) = 0. Hence N is a real positive root of L(t),
and so N ∈ L. Conversely, suppose that N ∈ L. Set x = −g(N)h(N)/|g(N)|2.
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Since G(N) = 0, we have Rex = 0. Furthermore, N is a root of F (t), and so,
we get N = |h(N)|2/|g(N)|2 = |x|2. Thus, x is a purely imaginary quaternion
with x2 = −|x|2 = −N , and hence Q(x) = g(N)x + h(N) = 0. Therefore, τ is a
bijection.

Corollary 3.2. The numbers of spherical roots of Q(t) is equal to the number of
positive roots of E(t), and the number of isolated pure imaginary quaternion roots
of Q(t) is equal to the number of positive roots of L(t) which are not roots of E(t).

Corollary 3.3. Let l1, . . . , lν be the positive real roots of L(t) satisfying g(li)h(li) 6=
0 (i = 1, . . . , ν). Then, the quaternions qi = −g(li)

−1h(li) (i = 1, . . . , ν) are all the
isolated pure quaternion roots of Q(t).

Proof. The map τ of Theorem 3.1 is a bijection. Further, the roots of L(t) which
are also roots of E(t) are the roots ρ such that g(ρ) = h(ρ) = 0. The other roots
satisfy g(ρ) 6= 0 and h(ρ) 6= 0. Thus, these roots ρ yield the isolated pure imaginary
quaternion roots of Q(t) which are the quaternions −g(ρ)−1h(ρ).

4. Spherical roots and roots in C, R+Rj and R+Rk
In this section we study first the sets of spherical roots, complex isolated roots
and real roots of a quaternion polynomial. Let Q(t) ∈ H[t] \ C[t] be a monic
polynomial of degree ≥ 1. Write Q(t) = f1(t) + f2(t)i + g1(t)j + g2k, where
f1(t), f2(t), g1(t), g2(t) ∈ R[t], and let ∆(t) = gcd(f1(t), f2(t), g1(t), g2(t)). Set
f(t) = f1(t) + f2(t)i, g(t) = g2(t) + g1(t)i, E(t) = gcd(f(t), g(t)) and Λ(t) =
E(t)/∆(t).

Theorem 4.1. a) The set of real roots of Q(t) coincides with the set of real roots
of ∆(t).
b) The spherical roots of Q(t) are represented by the pairs of complex conjugate
roots of ∆(t).
c) The set of isolated complex roots of Q(t) is equal to the set of roots of Λ(t).

Proof. a) Let x ∈ R. Then we have Q(x) = 0 if and only if

f1(x) = f2(x) = g1(x) = g2(x) = 0

which is equivalent to ∆(x) = 0. It follows that the set of real roots of Q(t) is the
same with the set of real roots of ∆(t).

b) We have Q(t) = f(t) + kg(t). Let z ∈ C. We have Q(z) = 0 if and only if
f(z)+kg(z) = 0 which is equivalent to f(z) = g(z) = 0. Suppose now that Q(t) has
a spherical root q. Let z and z̄ be the only complex numbers of the class of q. Then
we have Q(z) = Q(z̄) = 0, whence we get f(z) = f(z̄) = 0 and g(z) = g(z̄) = 0.
It follows that the real polynomial (t − z)(t − z̄) divides f(z) and g(z) and hence
(t− z)(t− z̄) divides the polynomials f1(t), f2(t), g1(t), g2(t). Therefore z and z̄ is
a pair of conjugate complex root of ∆(t). Conversely, suppose z and z̄ is a pair of
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conjugate complex root of ∆(t). It follows that z and z̄ are roots of f(t) and g(t)
and hence of Q(t). Therefore, the class of z is a spherical root of Q(t). So, there is
a bijection between the spherical roots of Q(t) and the pairs of complex conjugate
roots of ∆(t).

c) Suppose that C(t) ∈ C[t]. The polynomial C(t) is a right factor of Q(t) if
and only if there is A(t) ∈ H[t] \ C[t] such that Q(t) = A(t)C(t). This happens
if and only if C(t) divides f(t) and g(t) which is equivalent to the fact that C(t)
divides E(t). Thus, C(t) is a right factor of Q(t) if and only if C(t) divides E(t).
In case where C(t) ∈ R[t], we similarly deduce that C(t) is a right factor of Q(t)
if and only if C(t) divides ∆(t). Thus, we have that ∆(t) divides E(t) and the
polynomial Λ(t) = E(t)/∆(t) has no real factor. Suppose that z is a complex no
real isolated root of Q(t). Then its conjugate z̄ is not a root of Q(t) and so, z̄ is
not a root of E(t). It follows that z is a root of Λ(t). Conversely, suppose that z is
a root of Λ(t). If its conjugate z̄ is also a root of Λ(t), then (t− z)(t− z̄) is a real
factor of Λ(t) which is a contradiction. Then, z̄ is not a root of E(t), and so, it is
not a root of Q(t). Hence, z is an isolated complex no real root of Q(t). Thus, the
complex no real isolated roots of Q(t) are precisely the roots of Λ(t).

Next, we deal with the roots of Q(t) in R + Rj and R + Rk. Set f̄(t) =
f1(t) + g1(t)j, ḡ(t) = g2(t) − f2(t)j and Ē(t) = gcd(f̄(t), ḡ(t)). Further, we put
f̃(t) = f1(t) + g2(t)k, g̃(t) = g1(t)− f2(t)k and Ẽ(t) = gcd(f̃(t), g̃(t)).

Theorem 4.2. a) The set of roots of Q(t) in R+Rj is equal to the set of roots of
Ē(t).
b) The set of roots of Q(t) in R + Rk is equal to the set of roots of Ẽ(t).

Proof. For (a), we write Q(t) = f̄(t) + kḡ(t). Let x ∈ R + Rj. Then Q(x) = 0 if
and only if f̄(x) = ḡ(x) = 0 which is equivalent to Ē(x) = 0. For (b), we write
Q(t) = f̃(t) + ig̃(t), and similarly we deduce the result.

5. Examples

In this section we give three examples using the results of previous sections.

Example 5.1. By [1, Chapter 4, Example 1.4.1], the roots of the polynomial

P (t) = t3 + (2 + k)t+ i− j.

are the pure imaginary quaternions j and i + j.
We shall compute the pure quaternion roots of P (t) using Corollary 3.3. We

follow the notations of Section 3. We have g(t) = −t+2+k and h(t) = i− j. Thus,
we get g1(t) = −t+2, g2(t) = g3(t) = 0, g4(t) = 1 and h1(t) = h4(t) = 0, h2(t) = 1,
h3(t) = −1. Hence, the greatest common divisor E(t) of these polynomial is 1. It
follows that P (t) has not a spherical pure imaginary quaternion root. Next, we
obtain the polynomials

F (t) = ((−t+ 2)2 + 1)t− (1 + 1) = t3 − 4t2 + 5t− 2 and G(t) = 0.
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Then L(t) = gcd(F (t), G(t)) = t3 − 4t2 + 5t − 2. The roots of L(t) are 1 and 2.
Next, we compute:

−g(1)−1h(1) = −(1 + k)−1(i− j) = j, −g(2)−1h(2) = −k−1(i− j) = j + i.

Hence, the isolated pure imaginary quaternion roots of P (t) are j and i + j.

Example 5.2. According to [12], the polynomial

Q(t) = t6 + j t5 + i t4 − t2 − j t− i

has the four isolated roots

t1 = 1, t2 = −1, t3 =
1

2
(1− i− j− k), t4 =

1

2
(−1 + i− j− k)

and the spherical root generated by t5 = i.
Following the notations of Section 4, we have:

f1(t) = t6 − t2, f2(t) = t4 − 1, g1(t) = t5 − t, g2(t) = 0.

Then
∆(t) = gcd(f1(t), f2(t), g1(t), g2(t)) = t4 − 1.

By Theorem 4.1, we have that Q(t) has the real roots ±1 and one spherical root
defined by i.

Example 5.3. We shall compute the roots of the polynomial

R(t) = t4 − (2 + k)t3 + (3 + j + 2k)t2 − 2(1 + j + k)t+ 2(1 + j).

Following the notations of Section 4, we write R(t) = f(t) + kg(t), where

f(t) = t4 − 2t3 + 3t2 − 2t+ 2, g(t) = −t3 + (2 + i)t2 − 2(1 + i)t+ 2i.

We have:
E(t) = gcd(f(t), g(t)) = t3 − (2 + i)t2 + 2(1 + i)t− 2i.

Next, we write R(t) = f1(t) + f2(t)i + g1(t)j + g2(t)k, where

f1(t) = t4−2t3 + 3t2−2t+ 2, f2(t) = 0, g1(t) = t2−2t+ 2, g2(t) = −t3 + 2t2−2t.

Then, we have:

∆(t) = gcd(f1(t), f2(t), g1(t), g2(t)) = t2 − 2t+ 2.

The roots of ∆(t) are the complex numbers 1 ± i which define a spherical root of
R(t). Further, we get:

Λ(t) =
E(t)

∆(t)
= t− i,
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and so i is a complex isolated root of R(t).
Next, we shall compute the pure quaternion roots of R(t). Following the nota-

tions of Section 3, we compute:

g(t) = −2 + 2t− 2j + (−2 + t)k, h(t) = 2− 3t+ t2 + (2− t)j− 2tk.

It follows:

F (t) = 28t− 30t2 + 11t3 − 8− t4 and G(t) = −4t+ 6t2 − 2t3.

We have:
L(t) = gcd(F (t), G(t)) = t2 − 3t+ 2 = (t− 1)(t− 2).

We obtain −g(1)−1h(1) = i and −g(2)−1h(2) = k + i. Accordingly to [6], the
polynomial R(t) has not other roots. Thus, R(t) has the isolated roots i and i + k
and the spherical root defined by 1 + i.
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