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Abstract

Using the Souriau-Hsu-Mobius function with a natural parameter, a gen-
eralized Cesaro formula which is an extension of the classical gcd-sum formula
is derived. The formula connects a combinatorial aspect of the generalized
Mbobius function with the number of integers whose prime factors have suffi-
ciently high powers.
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1. Introduction
Let A := {F: N — C} be the set of complex-valued arithmetic functions. For
F,G € A, their addition and Dirichlet product (or convolution) are defined, re-

spectively, by

(F+G)(n)=F(n)+Gn), (FxG)Mn ZF G(n/d).
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It is well known, [7, Chapter 7] that (A, +,x*) is commutative ring with identity
I, where I(n) = 1if n =1 and I(n) = 0 when n > 1. The Souriau-Hsu-M&bius
function ([9], [2]) is defined, for a € C, by

na) =TT (, ) -0,

pln Vp(n

where n =[] p"»(") denotes the unique prime factorization of n. For some particu-
lar values of «, the corresponding Souriau-Hsu-Md&bius functions represent certain
well-known arithmetic functions, namely,

(i) when o = 0, this corresponds to the convolution identity o = I;

(ii) when o = 1, this is the classical Mobius function p = u;

(iii) when o = —1, this is the inverse of the M&bius function y_; = pu=! =: u,
where u(n) =1 (n € N) is the constant 1 function;
(iv) when o = —2, this is the number of divisors function, u_o =d, [2, p. 75].

Following [11], see also [6], for & € C, k € Z, the (k, «)-Euler’s totient is defined
as an arithmetic function of the form

P = Ch* pa  Cu(n) :=n".
When k& = o = 1, this function is the classical Euler’s totient
n 1
p1,1(n) = (n) = (1 * p(n) = Zdu <E) = nH (1 — p) ,
d|n pln

which counts the number of integers in {1,2,...,n} that are relatively prime to n.
Fixing k = 1, = r € N, the corresponding Euler’s totient, referred to as r-Fuler
totient, is

er(n) = p1,(n) 1= G pup(m) = Y dpr ()
din

As mentioned in [5, Example 6], the r-Euler totient has the following combinatorial
meaning: an integer a is said to be 7'"-degree prime to n (> 2), briefly written as
(a,n), = 1, if for each prime divisor p of n, there are integers ag, a1, ..., a,—1 with
0 < a; < p such that

a=ag+ap+---+a_1p" " (modp").
As a convention, we define
(a,1),:=1 for any a € N.

When 7 = 1, the concept of being r*"-degree prime is merely that of being relatively
prime.

In order to connect the concept of being r*"-degree prime with the r-Euler
totient, we introduce another notion. A positive integer n is said to be r-powerful
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if each of its prime factor appears with multiplicity at least r, i.e., v,(n) > r for
each prime divisor p of n; as a convention, the integer 1 is adopted to be r-powerful
for any r € N. Note that if n is r-powerful, then it is also s-powerful for all s € N
with s < r. The following lemma shows that when n is r-powerful, the function
©r(n) counts the number of a’s in the set {1,2,...,n} such that (a,n), = 1; the
proof given here is extracted from [11].

Lemma 1.1. Let n,r € N, and let N,.(n) denote the number of integers a €
{1,2,...,n} such that (a,n), = 1. We have :

1) The function F(n) = N.(n) if n is r-powerful and zero otherwise, is multi-
plicative.

2) If n is r-powerful, then N.(n) = ¢.(n) = anln (1-1/p)",
N:(1) = (1) :=1.

Proof. 1) Let n be an r-powerful positive integer whose prime factorization is n =
pit -+ pS. By the Chinese remainder theorem, for any integers ayq, ..., as, there is
a unique a (mod n) such that

a=a; (modpf'),...,a=as (modpd).

Conversely, for any ¢ (mod n), there uniquely exist «; (mod pi*) (i = 1,...,s)
satisfying the above system of congruences. Thus,

(a,n), =1 <= (a,p;’)r = 1 holds for every i € {1, ..., s},

which shows at once that N,.(n) is a multiplicative function of n.

2) Using part 1), it suffices to check that N, and ¢, are equal on any prime
power p¢ with e > r. Recall that N,.(p°) is the number of a € {1,2,...,p°} such
that (a,p®), = 1, i.e., such that there are integers ag,a,...,a,—1 with 0 < a; <p
satisfying

a=ag+ap+---+a_1p""" (mod p").

Thus, the number of such a (mod p") is (p — 1)", and so the total number of such
a (mod p°) is N,.(p°) = p° "(p — 1)". On the other hand using e > r, we have

o) = Sty = () -0 (7 ) () -0

dlpe
= (D) ar (1) (g 1
=p"(p—1)" =N (p°). O

The classical ged-sum function is an arithmetical function defined by

n

g(n) = ged(j,n), (1.1)

Jj=1
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and the classical ged-sum formula states that

g(n) = > ged(jn) = Y dp (%) (1.2)
j=1 d|n

There have recently appeared quite a number of works related to the gcd-sum
function and the ged-sum formula. In [3], the ged-sum function (1.1) is shown to be
multiplicative, has a polynomial growth, and arises in the context of a lattice point
counting problem, while the paper [1] studies the function Z?:L gcd(jon)|d ged(j,n),
which is a generalization of the ged-sum function (1.1).

In [8], the function > 7_; ged(y, n)~1, which counts the orders of a generator of
a cyclic group, is studied. In [4], an extended Ceséro formula

> Fleed(iom) = Y fld)p (5) - (f €A, (1.3)

j=1 dln

which is another extension of (1.2), is investigated. Various properties of the ged-
sum function (1.1) and its analogues are surveyed in [10]. Our objective here is to
establish yet another generalization of the ged-sum formula (1.2) by relating the
r-Euler totient with the counting of r-powerful integers that are 7*"-degree prime.

2. Generalized gcd-sum formula

Our generalized gcd-sum formula arises from replacing the usual Euler’s totient
on the right-hand side of (1.3) by the r-Euler totient, and using its combinatorial
meaning to derive its corresponding generalized form. To do so, we need to extend
the notion of rt"-degree primeness to that of r-ged.

Definition. Let » € N, and let n € N be r-powerful. For j € N, the integer g is the
r-ged of j and n, denoted by g := (j,n),, if g = ged(j,n) satisfies two additional
requirements

1. (%,%) =1, and
T

2. n/g is r-powerful.

When r = 1, the above definition of r-ged is identical with the usual greatest
common divisor. Let us look at some examples.

Example 1. Let n = 23-3%2 = 72. The divisorsof n are 1,2, 3,4,6,8,9,12,18, 24, 36,

72. Consider j € {1,2,...,72}. For r = 1, we have

(j,72)1 = 1 when j € {1,5,7, 11, 13,17, 19,23, 25,29, 31, 35, 37, 41, 43, 47, 49, 53,
55,59, 61,65, 67,71}

(j,72)1 = 2 when j € {2, 10, 14,22, 26, 34, 38, 46, 50, 58, 62, 70}

(7,72)1 = 3 when j € {3, 15,21, 33,39, 51,57, 69}
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| =4 when j € {4,20,28, 44,52, 68}
| = 6 when j € {6,30,42, 66}
| = 8 when j € {8, 16,32, 40,56, 64}

(4, 72)

(J,72)

(J,72)

( ) - 9
(4,72); = 12 when j € {12,60}
( )1 = 18 when j € {18,54}
(J,72)
(J,72)
(J,72)

For r = 2, we have

(j,72)s = 1 when j € {7,23,31,35,43,59, 67, 71}
(7,72)2 = 2 when j € {14, 46,62, 70}

(4,72)2 = 8 when j € {32,40, 56,64}

(4,72)2 =9 when j € {27, 63}

(4,72)2 = 18 when j € {54}

(4,72)2 = 72 when j € {72},

and for the other values of j, the 2-ged (4, 72)2 are not defined.

For r = 3, we have (5,72); = 9 when j € {63}, (j,72)3 = 72 when j € {72},
and for the other values of j, the 3-gcd (7, 72)3 are not defined.

For r > 4, we have (j,72)3 = 72 when j € {72}, and the r-ged (j, 72), are not
defined for the remaining j’s.

Our next lemma connects the r-gcd with the r-Euler totient.
Lemma 2.1. Let r,n € N with n being r-powerful, and let
Arq(n) ={a€{1,2,...,n}; (a,n), =d}.

Then
|Ara(n)| = ¢r (n/d).

Proof. The result follows at once from the observation that
a€{l,2,...,n} and (a,n),=d,

if and only if § € {1, 2,..., %}, (%, %)r =1, & is r-powerful, and the set of elements
on the right-hand side has cardinality ¢, (n/d). O

We now state and prove our generalized Cesaro formula.

Theorem 2.2. Let r,n € N with n being r-powerful. For an arithmetic function
f, we have the following generalized Cesdro formula

anf (i) = 32 fd)e (5)- (2.1)

where the symbol d |, n in the summation on the right-hand side indicates that the
sum extends over all the divisors d for which n/d is r-powerful.
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In particular, taking f(n) = n, the generalized Cesdro formula becomes the
generalized ged-sum formula

Z Jon)e =Y der (7) . (2.2)
dlon

Proof. Writing (j,n), = d, using the above notation and Lemma 2.1, we get

n

S G = Y f@) = f@) A = Y S (5). D

j=1 i=1(j,n)r=d dlrn dlpn

When r = 1, the generalized Cesaro formula is simply the classical Cesaro
formula, and its representation via generalized M&bius function becomes a Dirichlet
product of two arithmetic functions, viz.,

Zf jim)) = Y f@er (5) = (F < 9)(n).
dlin

Example 2. Continuing from Example 1, let n = 23 - 32 = 72.
For r = 1, we have

(de{1,2,...,72}; d |, 72} = {1,2,3,4,6,8,9,12, 18, 24,36, 72} ,
and the values of o1 (72/d) with d |; 72 are

©1(72) = 24, ¢1(36) = 12, 01(24) = 8,1(18) = 6,91(12) = 4,1(9) = 6,
@1(8) = 45901(6) = 27901(4) = 27@1(3) - 2a§01(2) = 17901(1) =1

Using Example 1, the left-hand side of (2.1) is

Zf jn F(1) x 24+ £(2) x 124+ f(3) x 8 + f(4) x 6+ f(6) x 4

+ f(8) x 6+ f(9) x4+ f(12) x 2+ f(18) x 2+ f(24) X
+ f(36) x 1+ f(72) x 1

=Y Fde () (23)

d|1n

which agrees with the theorem.
For r = 2, we have {d € {1,2....,72}; d |2 72} = {1,2,8,9,18,72}, and the
values of s (72/d) with d |2 T2 are

©a2(72) = 8,02(36) = 4,02(9) =4, p2(8) = 2,2(4) = 1,p2(1) = 1.
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Using Example 1, the left-hand side of (2.1) is

= 3 f(d)pa (%) . (2.4)

For r = 3, we have {d € {1,2....,72}; d |3 72} = {9,72}, and the values of
w3 (72/d) with d |3 72 are ¢3(8) = 1,¢3(1) = 1. Using Example 1, the left-hand
side of (2.1) is

n

> F(Gim)a) = FO) x 1+ £(72) x 1= 37 f(d)es () (2.5)

j=1 dlsn

For r > 4, we have {d € {1,2....,72}; d |, 72} = {72}, and the values of
3 (72/d) with d |, 72 is (1) = 1. The left-hand side of (2.1) is

> F(Gm)n) = F72) x 1= 3 @) (2. (2.6)

j=1 d|rn

The formulae such as (2.1)—(2.6) deal with a single r. We end this paper by
remarking that such formulae can be absorbed into one single formula. For a

positive integer n whose prime representation is n = p'fl (n)pl@(") .- p?”(n)7 let

v(n) ;= max{y;(n);1 <i <t}.

Corollary 2.3. For an arithmetic function f, we have the following generalized
Cesdro formula

S50 %, e ().
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