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Abstract

Using the Souriau-Hsu-Möbius function with a natural parameter, a gen-
eralized Cesáro formula which is an extension of the classical gcd-sum formula
is derived. The formula connects a combinatorial aspect of the generalized
Möbius function with the number of integers whose prime factors have suffi-
ciently high powers.
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1. Introduction

Let A := {F : N→ C} be the set of complex-valued arithmetic functions. For
F,G ∈ A, their addition and Dirichlet product (or convolution) are defined, re-
spectively, by

(F +G)(n) = F (n) +G(n), (F ∗G)(n) =
∑

d| n
F (d)G(n/d).
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It is well known, [7, Chapter 7] that (A,+, ∗) is commutative ring with identity
I, where I(n) = 1 if n = 1 and I(n) = 0 when n > 1. The Souriau-Hsu-Möbius
function ([9], [2]) is defined, for α ∈ C, by

µα(n) =
∏

p|n

(
α

νp(n)

)
(−1)νp(n),

where n =
∏
pνp(n) denotes the unique prime factorization of n. For some particu-

lar values of α, the corresponding Souriau-Hsu-Möbius functions represent certain
well-known arithmetic functions, namely,

(i) when α = 0, this corresponds to the convolution identity µ0 = I;
(ii) when α = 1, this is the classical Möbius function µ1 = µ;
(iii) when α = −1, this is the inverse of the Möbius function µ−1 = µ−1 =: u,

where u(n) = 1 (n ∈ N) is the constant 1 function;
(iv) when α = −2, this is the number of divisors function, µ−2 = d, [2, p. 75].

Following [11], see also [6], for α ∈ C, k ∈ Z, the (k, α)-Euler’s totient is defined
as an arithmetic function of the form

ϕk,α := ζk ∗ µα ζk(n) := nk.

When k = α = 1, this function is the classical Euler’s totient

ϕ1,1(n) := ϕ(n) = ζ1 ∗ µ1(n) =
∑

d|n
dµ
(n
d

)
= n

∏

p|n

(
1− 1

p

)
,

which counts the number of integers in {1, 2, . . . , n} that are relatively prime to n.
Fixing k = 1, α = r ∈ N, the corresponding Euler’s totient, referred to as r-Euler
totient, is

ϕr(n) := ϕ1,r(n) := ζ1 ∗ µr(n) =
∑

d|n
dµr

(n
d

)
.

As mentioned in [5, Example 6], the r-Euler totient has the following combinatorial
meaning: an integer a is said to be rth-degree prime to n (≥ 2), briefly written as
(a, n)r = 1, if for each prime divisor p of n, there are integers a0, a1, . . . , ar−1 with
0 < ai < p such that

a ≡ a0 + a1p+ · · ·+ ar−1p
r−1 (mod pr).

As a convention, we define

(a, 1)r := 1 for any a ∈ N.

When r = 1, the concept of being rth-degree prime is merely that of being relatively
prime.

In order to connect the concept of being rth-degree prime with the r-Euler
totient, we introduce another notion. A positive integer n is said to be r-powerful
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if each of its prime factor appears with multiplicity at least r, i.e., νp(n) ≥ r for
each prime divisor p of n; as a convention, the integer 1 is adopted to be r-powerful
for any r ∈ N. Note that if n is r-powerful, then it is also s-powerful for all s ∈ N
with s ≤ r. The following lemma shows that when n is r-powerful, the function
ϕr(n) counts the number of a’s in the set {1, 2, . . . , n} such that (a, n)r = 1; the
proof given here is extracted from [11].

Lemma 1.1. Let n, r ∈ N, and let Nr(n) denote the number of integers a ∈
{1, 2, . . . , n} such that (a, n)r = 1. We have :

1) The function F (n) = Nr(n) if n is r-powerful and zero otherwise, is multi-
plicative.

2) If n is r-powerful, then Nr(n) = ϕr(n) = n
∏
p|n (1− 1/p)

r
,

Nr(1) = ϕr(1) := 1.

Proof. 1) Let n be an r-powerful positive integer whose prime factorization is n =
pe11 · · · pess . By the Chinese remainder theorem, for any integers α1, . . . , αs, there is
a unique a (mod n) such that

a ≡ α1 (mod pe11 ), . . . , a ≡ αs (mod pess ).

Conversely, for any a (mod n), there uniquely exist αi (mod peii ) (i = 1, . . . , s)
satisfying the above system of congruences. Thus,

(a, n)r = 1⇐⇒ (a, peii )r = 1 holds for every i ∈ {1, . . . , s},

which shows at once that Nr(n) is a multiplicative function of n.
2) Using part 1), it suffices to check that Nr and ϕr are equal on any prime

power pe with e ≥ r. Recall that Nr(pe) is the number of a ∈ {1, 2, . . . , pe} such
that (a, pe)r = 1, i.e., such that there are integers a0, a1, . . . , ar−1 with 0 < ai < p
satisfying

a ≡ a0 + a1p+ · · ·+ ar−1p
r−1 (mod pr).

Thus, the number of such a (mod pr) is (p− 1)r, and so the total number of such
a (mod pe) is Nr(pe) = pe−r(p− 1)r. On the other hand using e ≥ r, we have

ϕr(p
e) =

∑

d|pe
dµr(p

e/d) = p0
(
r

e

)
(−1)e + p

(
r

e− 1

)
(−1)e−1 + · · ·+ pe

(
r

0

)
(−1)0

= pe−r
(
r

r

)
(−1)r + pe−r+1

(
r

r − 1

)
(−1)r−1 + · · ·+ pe

(
r

0

)
(−1)0

= pe−r(p− 1)r = Nr(p
e).

The classical gcd-sum function is an arithmetical function defined by

g(n) :=

n∑

j=1

gcd(j, n), (1.1)
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and the classical gcd-sum formula states that

g(n) =

n∑

j=1

gcd(j, n) =
∑

d|n
dϕ
(n
d

)
. (1.2)

There have recently appeared quite a number of works related to the gcd-sum
function and the gcd-sum formula. In [3], the gcd-sum function (1.1) is shown to be
multiplicative, has a polynomial growth, and arises in the context of a lattice point
counting problem, while the paper [1] studies the function

∑n
j=1, gcd(j,n)|d gcd(j, n),

which is a generalization of the gcd-sum function (1.1).
In [8], the function

∑n
j=1 gcd(j, n)

−1, which counts the orders of a generator of
a cyclic group, is studied. In [4], an extended Cesáro formula

n∑

j=1

f(gcd(j, n)) =
∑

d|n
f(d)ϕ

(n
d

)
(f ∈ A), (1.3)

which is another extension of (1.2), is investigated. Various properties of the gcd-
sum function (1.1) and its analogues are surveyed in [10]. Our objective here is to
establish yet another generalization of the gcd-sum formula (1.2) by relating the
r-Euler totient with the counting of r-powerful integers that are rth-degree prime.

2. Generalized gcd-sum formula

Our generalized gcd-sum formula arises from replacing the usual Euler’s totient
on the right-hand side of (1.3) by the r-Euler totient, and using its combinatorial
meaning to derive its corresponding generalized form. To do so, we need to extend
the notion of rth-degree primeness to that of r-gcd.

Definition. Let r ∈ N, and let n ∈ N be r-powerful. For j ∈ N, the integer g is the
r-gcd of j and n, denoted by g := (j, n)r, if g = gcd(j, n) satisfies two additional
requirements

1.
(
j
g ,

n
g

)
r
= 1, and

2. n/g is r-powerful.

When r = 1, the above definition of r-gcd is identical with the usual greatest
common divisor. Let us look at some examples.

Example 1. Let n = 23·32 = 72. The divisors of n are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36,
72. Consider j ∈ {1, 2, . . . , 72}. For r = 1, we have
(j, 72)1 = 1 when j ∈ {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53,

55, 59, 61, 65, 67, 71}
(j, 72)1 = 2 when j ∈ {2, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70}
(j, 72)1 = 3 when j ∈ {3, 15, 21, 33, 39, 51, 57, 69}
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(j, 72)1 = 4 when j ∈ {4, 20, 28, 44, 52, 68}
(j, 72)1 = 6 when j ∈ {6, 30, 42, 66}
(j, 72)1 = 8 when j ∈ {8, 16, 32, 40, 56, 64}
(j, 72)1 = 9 when j ∈ {9, 27, 45, 63}
(j, 72)1 = 12 when j ∈ {12, 60}
(j, 72)1 = 18 when j ∈ {18, 54}
(j, 72)1 = 24 when j ∈ {24, 48}
(j, 72)1 = 36 when j ∈ {36}
(j, 72)1 = 72 when j ∈ {72}.

For r = 2, we have
(j, 72)2 = 1 when j ∈ {7, 23, 31, 35, 43, 59, 67, 71}
(j, 72)2 = 2 when j ∈ {14, 46, 62, 70}
(j, 72)2 = 8 when j ∈ {32, 40, 56, 64}
(j, 72)2 = 9 when j ∈ {27, 63}
(j, 72)2 = 18 when j ∈ {54}
(j, 72)2 = 72 when j ∈ {72},
and for the other values of j, the 2-gcd (j, 72)2 are not defined.

For r = 3, we have (j, 72)3 = 9 when j ∈ {63}, (j, 72)3 = 72 when j ∈ {72},
and for the other values of j, the 3-gcd (j, 72)3 are not defined.

For r ≥ 4, we have (j, 72)3 = 72 when j ∈ {72}, and the r-gcd (j, 72)r are not
defined for the remaining j’s.

Our next lemma connects the r-gcd with the r-Euler totient.

Lemma 2.1. Let r, n ∈ N with n being r-powerful, and let

Ar,d(n) := {a ∈ {1, 2, . . . , n} ; (a, n)r = d} .

Then
|Ar,d(n)| = ϕr (n/d) .

Proof. The result follows at once from the observation that

a ∈ {1, 2, . . . , n} and (a, n)r = d,

if and only if ad ∈
{
1, 2, . . . , nd

}
,
(
a
d ,

n
d

)
r
= 1, nd is r-powerful, and the set of elements

on the right-hand side has cardinality ϕr (n/d).

We now state and prove our generalized Cesáro formula.

Theorem 2.2. Let r, n ∈ N with n being r-powerful. For an arithmetic function
f , we have the following generalized Cesáro formula

n∑

j=1

f((j, n)r) =
∑

d |r n
f(d)ϕr

(n
d

)
. (2.1)

where the symbol d |r n in the summation on the right-hand side indicates that the
sum extends over all the divisors d for which n/d is r-powerful.
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In particular, taking f(n) = n, the generalized Cesáro formula becomes the
generalized gcd-sum formula

n∑

j=1

(j, n)r =
∑

d |r n
dϕr

(n
d

)
. (2.2)

Proof. Writing (j, n)r = d, using the above notation and Lemma 2.1, we get

n∑

j=1

f ((j, n)r) =
n∑

j=1

∑

(j,n)r=d

f(d) =
∑

d |r n
f(d) |Ar,d(n)| =

∑

d |r n
f(d)ϕr

(n
d

)
.

When r = 1, the generalized Cesáro formula is simply the classical Cesáro
formula, and its representation via generalized Möbius function becomes a Dirichlet
product of two arithmetic functions, viz.,

n∑

j=1

f((j, n)1) =
∑

d |1 n
f(d)ϕ1

(n
d

)
= (f ∗ ϕ)(n).

Example 2. Continuing from Example 1, let n = 23 · 32 = 72.
For r = 1, we have

{d ∈ {1, 2, . . . , 72} ; d |1 72} = {1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72} ,

and the values of ϕ1 (72/d) with d |1 72 are

ϕ1(72) = 24, ϕ1(36) = 12, ϕ1(24) = 8, ϕ1(18) = 6, ϕ1(12) = 4, ϕ1(9) = 6,

ϕ1(8) = 4, ϕ1(6) = 2, ϕ1(4) = 2, ϕ1(3) = 2, ϕ1(2) = 1, ϕ1(1) = 1.

Using Example 1, the left-hand side of (2.1) is

n∑

j=1

f((j, n)1) = f(1)× 24 + f(2)× 12 + f(3)× 8 + f(4)× 6 + f(6)× 4

+ f(8)× 6 + f(9)× 4 + f(12)× 2 + f(18)× 2 + f(24)× 2

+ f(36)× 1 + f(72)× 1

=
∑

d |1 n
f(d)ϕ1

(n
d

)
(2.3)

which agrees with the theorem.
For r = 2, we have {d ∈ {1, 2. . . . , 72} ; d |2 72} = {1, 2, 8, 9, 18, 72}, and the

values of ϕ2 (72/d) with d |2 72 are

ϕ2(72) = 8, ϕ2(36) = 4, ϕ2(9) = 4, ϕ2(8) = 2, ϕ2(4) = 1, ϕ2(1) = 1.
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Using Example 1, the left-hand side of (2.1) is

n∑

j=1

f((j, n)2) = f(1)× 8 + f(2)× 4 + f(8)× 4 + f(9)× 2 + f(18)× 1 + f(72)× 1

=
∑

d |2 n
f(d)ϕ2

(n
d

)
. (2.4)

For r = 3, we have {d ∈ {1, 2. . . . , 72} ; d |3 72} = {9, 72}, and the values of
ϕ3 (72/d) with d |3 72 are ϕ3(8) = 1, ϕ3(1) = 1. Using Example 1, the left-hand
side of (2.1) is

n∑

j=1

f((j, n)3) = f(9)× 1 + f(72)× 1 =
∑

d |3 n
f(d)ϕ3

(n
d

)
. (2.5)

For r ≥ 4, we have {d ∈ {1, 2. . . . , 72} ; d |r 72} = {72}, and the values of
ϕ3 (72/d) with d |r 72 is ϕr(1) = 1. The left-hand side of (2.1) is

n∑

j=1

f((j, n)r) = f(72)× 1 =
∑

d |r n
f(d)ϕr

(n
d

)
. (2.6)

The formulae such as (2.1)–(2.6) deal with a single r. We end this paper by
remarking that such formulae can be absorbed into one single formula. For a
positive integer n whose prime representation is n = p

ν1(n)
1 p

ν2(n)
2 · · · pνt(n)t , let

ν(n) := max {νi(n); 1 ≤ i ≤ t} .

Corollary 2.3. For an arithmetic function f , we have the following generalized
Cesáro formula

ν(n)∑

r=1

n∑

j=1

f((j, n)r) =

ν(n)∑

r=1

∑

d |r n
f(d)ϕr

(n
d

)
.
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