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Abstract

Measuring software product maintainability is a central issue in software
engineering which led to a number of different practical quality models. Be-
sides system level assessments it is also desirable that these models provide
technical quality information at source code element level (e.g. classes, meth-
ods) to aid the improvement of the software. Although many existing models
give an ordered list of source code elements that should be improved, it is
unclear how these elements are affected by other important quality indicators
of the system, e.g. bug density.

In this paper we empirically investigate the bug prediction capabilities
of the class level maintainability measures of our ColumbusQM probabilistic
quality model using open-access PROMSIE bug dataset. We show that in
terms of correctness and completeness, ColumbusQM competes with statis-
tical and machine learning prediction models especially trained on the bug
data using product metrics as predictors. This is a great achievement in the
light of that our model needs no training and its purpose is different (e.g. to
estimate testability, or development costs) than those of the bug prediction
models.
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1. Introduction

Maintainability is probably one of the most attractive, observed and evaluated
quality characteristics of software products. The importance of maintainability
lies in its direct connection with many factors that influence the overall costs of a
software system, for example the effort needed for new developments [1], mean time
between failures of the system [2], bug fixing time [3], or operational costs [4]. After
the appearance of the ISO/IEC 9126 standard [5] for software product quality, the
development of new practical models which measure the maintainability of systems
in a direct way has exploded [6, 7, 8, 9, 10].

Although these models provide a system level overview about the maintainabil-
ity of a software which is a valuable information in itself for e.g. making decisions,
backing up intuition, or assessing risks, just a portion of them provide low-level,
actionable information for developers (i.e. list of source code elements and quality
attributes that should be improved). Current approaches usually just enumerate
the most complex methods, most coupled classes or other source code elements that
carry some source code metric value. There is a lack of empirical evidences that
these elements are indeed the most critical from maintainability point of view and
changing them will improve some of the quality factors related to maintainability.

We used our earlier results to calculate maintainability on system and lower
levels. The ColumbusQM model introduced in our previous work [10] is able to
calculate maintainability on systems level. Later we extended the ColumbusQM
with the drill-down approach [11] to calculate maintainability on lower levels as
well (classes, methods, etc.). The drill-down approach calculates a so-called rel-
ative maintainability index (RMI) for each source code element which measures
the extent to which they affect the overall system maintainability. The RMI is a
small number that is either positive when it improves the overall rating or nega-
tive when it decreases the system level maintainability. We also developed a web
based graphical user interface called QualityGate [12] to continuously monitor the
maintainability of a software using version control systems.

The contribution of this study is the comparison of the RMI based ordering
of classes with widely used statistical and machine learning prediction models,
e.g. decision trees, neural networks, or regression. The performance of the RMI
based ordering of classes proves to be competitive compared to these prediction
techniques.

The paper is organized as follows. Section 2 presents the work related to ours.
The data collection and analysis methodology is introduced in Section 3, while the
analysis results are described in Section 4. Finally, we list the threats to validity
in Section 5, and conclude the paper in Section 6.

2. Related work

In this section will give an overview about the related papers dealing with software
quality measurement and fault prediction.
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Both of software fault detection [13, 14] and software quality models [15, 16]
date back to the 70’s and evolving since then [17, 18]. Although the software quality
measurement has become popular recently by the release of quality standards like
ISO/IEC 9126 [5] and its successor the ISO/IEC 25010 [19]. Using the definition
of the characteristics and subcharacteristics reseachers developed several software
quality models which are able to measure the software quality of a system, but
only a few works on lower class or method level. Even fewer works investigate
empirically the relation of the maintainability and other factors, like bug density
at finer levels.

Heitlager et al. [6] presented a bottom-up approach to measure software main-
tainability. They split the basic metric values into five categories from poor to
excellent using threshold values [20]. Then they aggregated these qualifications for
for higher properties, such as maintainability. Bijlsma et al. [21] examined the cor-
relation of the SIG model rating with four maintainability related factors: Time,
Throughput, Productivity, Efficiency. They found that their model has a strong
predictive power for the maintenance burden that is associated to the system. Our
maintainability model is in many aspects similar to the SIG model; however, we use
a probabilistic approach for aggregation opposed to the threshold based approach,
and also generate a list of source code elements with the highest risk that should be
improved first. Moreover, we investigate the relation of maintainability and bugs
at lower level rather than system level where immediate actions can be taken.

The technical debt based models like SQALE [8] or SQUALE [7] introduce low-
level rules to connect the ISO/IEC 9126 characteristics with metrics. These rules
refer to different properties of the source code (e.g. the comment ratio should be
above 25%) and violating them has a reparation cost. These models provide a list
of critical elements simply by ordering them based on their total reparation costs.
Although it assures the biggest system level maintainability increase there is no
guarantee that one corrects the most critical elements (e.g. elements with the most
bugs, or elements that are used by many other components).

Chulani et. al. [22] introduced the Orthogonal Defect Classification Construc-
tive Quality Model (ODC COQUALMO) as an extension of the Constructive Cost
Model (COCOMO) [23, 24]. The model was calibrated with empirical defect dis-
tributions and it contains two sub-models. Defect introduction sub-model predicts
the number of defects that will appear in each defect category. The defect removal
model produces an estimate of the number of defects that will be removed from
these categories. The idea behind this and our study is similar, the main difference
is that we did not add a bug predictor sub-model to our quality model but we
investigated the connection between the defects and the final aggregated value of
the model.

Chawla [25] proposed the SQMMA (Software Quality Model for Maintainability
Analysis) approach based on the ISO/IEC 25010 standard which provides compre-
hensive formulas to calculate the Maintainablity and its subcharacteristic. They
normalized the average metric values respect to the first selected release of Tomcat
and they aggregated towards higer nodes using weighted sum. They also compared

Maintainability of classes in terms of bug prediction 123



the number of buggy files with the system-level quality measurements through four
versions of the Tomcat. They observed that the pattern of Maintainability consis-
tently matches (in reverse) with the number of buggy files in the system. We also
compared the maintainability with the bugs in a system, but we worked on the
level of classes instead of the system.

Papers related to software defects very often use databases with information
about bugs and different metrics about the source code elements. Zimmermann et
al. [26] has published a bug database for Eclipse and used the data for predicting
defects by logistic regression and complexity metrics. Moser et al. [27] annotated
this dataset with change metrics and compared its bug prediction ability with code
metrics. We also used code metrics and a bug database, but we examined the
connection between the number of bugs and the RMI value of classes rather than
source code metrics directly. Moreover, the bug dataset used by Moser has become
part of the PROMISE [28] database, but we could not consider these data as it
provides bug information only for packages and Java files, while we need bug data
on the level of classes.

Jureczko et al. [29] describes an analysis that was conducted on newly collected
repository with 92 versions of 38 proprietary, open-source and academic projects.
The dataset is part of the PROMISE dataset and part of the our study as well
since it provides bug information on class level. To study the problem of cross
project defect prediction they performed clustering on software projects in order
to identify groups of software projects with similar characteristic from the defect
prediction point of view. The conducted analysis reveals that there exist clusters
from the defect prediction point of view, and two of those clusters were successfully
identified. Later Madeyski et al. [30] used the dataset to empirically investigate
how process metrics can significantly improve defect prediction.

There are also other works relying on the PROMISE dataset. Menzies et al.
aim to comparatively evaluate local versus global lessons learned [31] for effort
estimation and defect prediction. They applied automated clustering tools to effort
and defect datasets from the PROMISE repository and rule learners generated
lessons learned from all the data. The work of Wang and Yao [32] deals with
improving the bug prediction models by handling imbalanced training data and
uses PROMISE dataset to validate the approach.

Vasilescu et. al. [33] aggregated the SLOC class level metric to package level
using various aggregation techniques (Theil, Gini, Kolm, Atkinson, indices, sum,
mean, median). They found that the choice of the aggregation technique does
influence the correlation of the aggregated values and the number of defects. Con-
trary to them we did not aggregate class level metrics to package level metrics,
but we aggregated them to a maintainability index using the ColumbusQM quality
model weighed by experts and compared the results with the number of bugs in
the classes.
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3. Methodology

We started the empirical examination of the bugs in the aspects of maintainability
by collecting bug datasets. In the literature the most widely used bug dataset is
the PROMISE dataset [34]. It contains bug information on class level for various
open-source and proprietary systems. Since for the maintainability calculation the
source code is necessary we only used the open-source systems from the dataset.
In order to decrease the possible bias in the machine learning prediction models
we filter out the very small systems (i.e. systems with fewer than 6 classes) and
those having very high ratio of buggy classes (i.e. over 75% of the classes contain
bugs). At the end of the process we collected source code and bug information for
each 30 versions of the 16 open-source systems. For each Java class found in these
30 versions we calculate the class level RMI value (relative maintainability index)
according to our drill-down approach [11].

3.1. The applied quality model

First we calculated the absolute maintainability values for the different versions
of the systems. We used the ColumbusQM, our probabilistic software quality
model [10] that is able to measure the quality characteristics defined by the
ISO/IEC 25010 standard. The computation of the high-level quality character-
istics is based on a directed acyclic graph (see Figure 1) whose nodes correspond
to quality properties that can either be internal (low-level) or external (high-level).
Internal quality properties characterize the software product from an internal (de-
veloper) view and are usually estimated by using source code metrics. External
quality properties characterize the software product from an external (end user)
view and are usually aggregated somehow by using internal and other external
quality properties. The nodes representing internal quality properties are called
sensor nodes as they measure internal quality directly (white nodes in Figure 1).
The other nodes are called aggregate nodes as they acquire their measures through
aggregation of the lower-level nodes. In addition to the aggregate nodes defined
by the standard (black nodes) we introduced new ones (light gray nodes) and kept
those of contained only in the old standard (dark gray nodes).

The description of the different quality attributes can be found in Table 1.
Dependencies between an internal and an external, or two external properties

are represent by the edges of the graph. The aim is to evaluate all the external
quality properties by performing an aggregation along the edges of the graph, called
Attribute Dependency Graph (ADG). We calculate a so called goodness value (from
the [0,1] interval) to each node in the ADG that expresses how good or bad (1 is the
best) is the system regarding that quality attribute. The probabilistic statistical
aggregation algorithm uses a benchmark as the basis of the qualification, which
is a source code metric repository database with 100 open-source and industrial
software systems.
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Figure 1: ColumbusQM – Java ADG [35]

3.2. The drill-down approach

The above approach is used to obtain a system-level measure for source code main-
tainability. Our aim is to drill down to lower levels in the source code and to get
a similar measure for the building blocks of the code base (e.g. classes or meth-
ods). For this, we defined the relative maintainability index1 (RMI) for the source
code elements [11], which measures the extent to which they affect the system level
goodness values. The basic idea is to calculate the system level goodness values,
leaving out the source code elements one-by-one. After a particular source code
element is left out, the system level goodness values will change slightly for each
node in the ADG. The difference between the original goodness value computed for
the whole system and the goodness value computed without the particular source
code element is called the relative maintainability index of the source code element
itself. The RMI is a small number that is either positive when it improves the
overall rating or negative when it decreases the system level maintainability. The
absolute value of the index measures the extent of the influence to the overall sys-
tem level maintainability. In addition, a relative index can be computed for each
node of the ADG, meaning that source code elements can affect various quality
aspects in different ways and to different extents.

More details and the validation of the approach can be found in our previous
paper [11].

3.3. Comparison of ColumbusQM and prediction models

One way to look at the maintainability scores is that they rank classes according
to their level of maintainability. Nonetheless, if we assume that classes with the
worst maintainability scores contain most of the bugs we can easily turn RMI into

1We use the terms relative maintainability index, relative maintainability score, and RMI
interchangeably throughout the paper. Moreover, we may also refer to them by omitting the
word “relative” for simplicity reasons.
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Table 1: The low-level quality properties of our model [35]

Sensor nodes
CC Clone coverage. The percentage of copied and pasted source code parts, com-

puted for the classes of the system.
NOA Number of Ancestors. Number of classes, interfaces, enums and annotations

from which the class is directly or indirectly inherited.
WarningP1 The number of critical rule violations in the class.
WarningP2 The number of major rule violations in the class.
WarningP3 The number of minor rule violations in the class.
AD Api Documentation. Ratio of the number of documented public methods in

the class.
CLOC Comment Lines of Code. Number of comment and documentation code lines

of the class.
CD Comment Density. The ratio of comment lines compared to the sum of its

comment and logical lines of code.
TLOC Total Lines of Code. Number of code lines of the class, including empty and

comment lines.
NA Number of attributes in the class.
WMC Weighted Methods per Class. Complexity of the class expressed as the number

of linearly independent control flow paths in it. It is calculated as the sum of
the McCabe’s Cyclomatic Complexity (McCC) values of its local methods and
init blocks.

NLE Nesting Level Else-If. Complexity of the class expressed as the depth of the
maximum embeddedness of its conditional and iteration block scopes, where in
the if-else-if construct only the first if instruction is considered.

NII Number of Incoming Invocations. Number of other methods and attribute
initializations, which directly call the local methods of the class.

RFC Response set For Class. Number of local (i.e. not inherited) methods in the
class plus the number of directly invoked other methods by its methods or
attribute initializations.

TNLM Total Number of Local Methods. Number of local (i.e. not inherited) methods
in the class, including the local methods of its nested, anonymous, and local
classes.

CBO Coupling Between Object classes. Number of directly used other classes (e.g.
by inheritance, function call, type reference, attribute reference).

a simple classification method. For that we should define “classes with the worst
maintainability scores” more precisely. To be able to compare the RMI based
classification to other prediction models, we simply use the natural RMI threshold
of 0, i.e. our simple model classifies all the classes as buggy which have negative
maintainability scores, and non-buggy all the rest.

Now we are ready to compare the ColumbusQM based ordering (i.e. classifica-
tion with the above extension) to other well-known statistical and machine learning
prediction models. We examine two types of models, three classification methods:
J48 decision tree algorithm, neural network model, and a logistic regression based
algorithm. Additionally, we apply three regression techniques that differ from the
above classifiers in that they assign a real number (the predicted number of bugs
in the class) to each class instead of predicting only whether it is buggy or not. We
consider the RepTree decision tree based regression algorithm, linear regression,
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and neural network based regression. In case of regression algorithms we say that
the algorithm predicts a class as buggy if it predicts more than 0.5 bugs for it,
because above this number the class will more likely be buggy than not buggy.

These models need a training phase to build a model for prediction. We chose
to put all the classes from the different versions of the systems together and train
these algorithms on this huge dataset using 10-fold cross validation. We allow them
to use all the available source code metrics which the Columbus static analyzer tool
called SourceMeter provides – not only those used by ColumbusQM – as predictors.
After the training we run the prediction on each of the 30 separate versions of the
13 systems. For building the prediction models we use the Weka tool [36].

We used Spearman’s rank correlation coefficient to measure the strength of the
similarity between the orderings of machine learning models and RMI. We also
evaluate the performance of the prediction models and our maintainability model
in terms of the classical measures of precision and recall. In addition, we also
calculate the completeness value [37], which measures the number of bugs (faults)
in classes classified fault-prone, divided by the total number of faults in the system.
This number differs from the usual recall value as it measures the percentage of
faults – and not only the faulty classes – that has been found by the prediction
model.

Each model predicts classes as either fault-prone or not fault-prone, so the
classification is binary (in case of regression models we make the prediction binary
as described above). The definition of the performance measures used in this work
are as follows:

Precision :=
# classes correctly classified as buggy
# total classes classified as buggy

Recall :=
# classes correctly classified as buggy
# total buggy classes in the system

Completeness :=
# bugs in classes classified buggy

# total bugs in the system

To be able to directly compare the results of different models we also calculate the
F-measure, which is the harmonic mean of precision and recall:

F −measure := 2 · precision · recall
precision+ recall

As an additional aggregate measure we define the Ḟ -measure to be the harmonic
mean of precision and completeness:

Ḟ −measure := 2 · precision · completeness
precision+ completeness
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4. Results

The empirical analysis is performed on 30 releases of 13 different open-source sys-
tems that take up to 2M lines of source code. The bug data for these systems is
available in the PROMISE [28] online bug repository which we used for collecting
the bug numbers at class level. For each version of the subject systems we calculated
the system level quality according to Section 3.1 and all the relative maintainability
scores for classes as described in Section 3.2 using ColumbusQM [10].

Table 2: Descriptive statistics of the analyzed systems [35]

System Nr. of Nr. of Buggy
classes bugs classes

ant-1.3 115 33 20
ant-1.4 163 45 38
ant-1.5 266 35 32
ant-1.6 319 183 91
ant-1.7 681 337 165
camel-1.0 295 11 10
camel-1.2 506 484 191
camel-1.4 724 312 134
camel-1.6 795 440 170
ivy-1.4 209 17 15
ivy-2.0 294 53 37
jedit-3.2 255 380 89
jedit-4.0 288 226 75
jedit-4.1 295 215 78
jedit-4.2 344 106 48
jedit-4.3 439 12 11
log4j-1.0 118 60 33
log4j-1.1 100 84 35
lucene-2.0 180 261 87
pbeans-2.0 37 16 8
poi-2.0 289 39 37
synapse-1.0 139 20 15
synapse-1.1 197 96 57
synapse-1.2 228 143 84
tomcat-6.0 732 114 77
velocity-1.6 189 161 66
xalan-2.4 634 154 108
xalan-2.6 816 605 395
xerces-1.2 291 61 43
xerces-1.3 302 186 65
Average 341.33 162.97 77.13

Table 2 shows some basic descriptive statistics about the analyzed systems. The
second column contains the total number of classes in the systems (that we could
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successfully map) while the third column shows the total number of bugs. The
fourth column presents the number of classes containing at least one bug.

4.1. Prediction Model Results
Recall, that to compare our model to other prediction models we put all the classes
together and let the machine learning algorithms to build prediction models based
on all the available product metrics using 10-fold cross validation. We built three
binary classifiers based on J48 decision tree, logistic regression, and neural network;
and three regression based prediction models using RepTree decision tree, linear
regression, and neural network.

Classification algorithms. First, we present the results of the comparison of
classifiers and maintainability score. For each of the classifiers we ran the classi-
fication on the classes of the 30 versions of the subject systems. As described in
Section 3, we also classified the same classes based on our maintainability scores.
Finally, we calculated the precision, recall, and completeness measures (for the
definitions of these measures see Section 3) for the different predictions for each
subject system.

Table 3 and 4 lists all the precision, recall, and completeness values for the four
different methods and for all the 30 versions of the 13 subject systems. Although
the results are varying for the different systems, in general we can say that the
precisions of the three learning based models are higher than that of the RMI based
model. The average precision values are 0.68, 0.59, 0.68, and 0.35 for J48, logistic
regression (LR), neural network (NN), and RMI, respectively. Nonetheless, in terms
of recall and completeness especially, RMI looks superior to the other methods.
The average completeness values are 0.38, 0.24, 0.31, and 0.81 for J48, logistic
regression, neural network, and RMI, respectively. Figure 2 shows these values
on a bar-chart together with the F-measure (harmonic mean of the precision and
recall) and Ḟ -measure (harmonic mean of the precision and completeness values).
It is easy to see that according to both the F-measure and Ḟ -measure, RMI and
J48 methods are performing the best. But while J48 achieves this with very high
precision and an average recall and completeness, RMI has far the highest recall
and completeness values combined with moderate precision. Another important
observation is that for every method the average recall values are smaller than the
completeness values which suggests that the bug distribution among the classes of
the projects is fairly uniform.

RMI performs the worst (in terms of precision) in cases of camel v1.0 and jedit
v4.3. Exactly these two systems are those where the number of bugs per class are
the smallest (11/295 and 12/439 respectively). This biases not only our method
but the other algorithms, too. They achieve the lowest precision on these two
systems.

There is a block of precision values close to 1 for systems from log4j v1.0 to
pbeans v2.0 for the three learning based models. However, their completeness
measure is very low (and recall is even lower). On the contrary, RMI has a very
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Table 3: Comparison of the precision, recall, and completeness of
different models

System J48 J48 J48 LR LR LR
Prec. Rec. Comp. Prec. Rec. Comp.

ant-1.3 0.82 0.45 0.39 0.67 0.10 0.12
ant-1.4 0.45 0.13 0.13 0.00 0.00 0.00
ant-1.5 0.52 0.47 0.49 0.22 0.06 0.09
ant-1.6 0.76 0.41 0.57 0.74 0.15 0.25
ant-1.7 0.68 0.38 0.53 0.80 0.21 0.38
camel-1.0 0.20 0.10 0.09 0.50 0.10 0.09
camel-1.2 1.00 0.14 0.27 0.89 0.04 0.13
camel-1.4 0.75 0.20 0.25 0.70 0.05 0.15
camel-1.6 0.68 0.11 0.29 0.58 0.06 0.15
ivy-1.4 0.30 0.20 0.29 0.50 0.20 0.29
ivy-2.0 0.65 0.35 0.43 0.58 0.30 0.38
jedit-3.2 0.80 0.27 0.57 0.75 0.17 0.45
jedit-4.0 0.74 0.33 0.60 0.76 0.25 0.54
jedit-4.1 0.89 0.44 0.64 0.91 0.27 0.48
jedit-4.2 0.63 0.56 0.71 0.56 0.38 0.57
jedit-4.3 0.13 0.55 0.58 0.09 0.36 0.33
log4j-1.0 1.00 0.12 0.13 1.00 0.06 0.07
log4j-1.1 1.00 0.09 0.12 0.50 0.03 0.07
lucene-2.0 1.00 0.15 0.25 1.00 0.07 0.18
pbeans-2 0.75 0.38 0.56 1.00 0.13 0.19
poi-2.0 0.50 0.19 0.21 0.47 0.19 0.21
synapse-1.0 0.80 0.27 0.35 0.00 0.00 0.00
synapse-1.1 0.80 0.14 0.19 0.00 0.00 0.00
synapse-1.2 0.82 0.17 0.24 1.00 0.05 0.07
tomcat-1 0.47 0.40 0.46 0.48 0.36 0.48
velocity-1.6 0.85 0.26 0.39 0.67 0.12 0.20
xalan-2.4 0.56 0.50 0.55 0.50 0.31 0.38
xalan-2.6 0.89 0.53 0.58 0.94 0.33 0.40
xerces-1.2 0.38 0.19 0.25 0.35 0.16 0.23
xerces-1.3 0.58 0.23 0.42 0.58 0.22 0.40
Average 0.68 0.29 0.38 0.59 0.16 0.24

high recall and completeness in these cases (over 0.79 and 0.83, respectively) and
still having acceptably high precision values (above 0.5).

For synapse v1.0 and v1.1 logistic regression and for ant v1.3 and v1.4 neural
network achieves 0 precision, recall and completeness. Again, RMI based prediction
achieves a very high completeness and recall with a moderate, but still acceptable
level of precision in these cases, too.

We note again, that while our maintainability model uses only 16 metrics we
let the learning algorithms to use all the 59 available product metrics which we
calculated. If we restricted the set of predictors for the classifier algorithms to
only those that ColumbusQM uses, we got somewhat different results. Figure 3
shows the average values of the resulting precision, recall, completeness, F-measure,
and Ḟ -measure. In this case, the precision of the learning algorithms dropped a
bit while recall and completeness levels remained. The F-measure of the RMI is
higher than that of any other method while in terms of Ḟ -measure J48 and RMI
perform the best.

We empirically investigated that RMI competes with the classification based
algorithms. With Spearman’s rank correlation we measured the strength of the
similarity between the oredering of the RMI and the machine learning models.
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Table 4: Comparison of the precision, recall, and completeness of
different models

System NN NN NN RMI RMI RMI
Prec. Rec. Comp. Prec. Rec. Comp.

ant-1.3 0.00 0.00 0.00 0.27 0.90 0.91
ant-1.4 0.00 0.00 0.00 0.27 0.61 0.64
ant-1.5 0.50 0.28 0.31 0.18 0.78 0.80
ant-1.6 0.77 0.30 0.44 0.46 0.85 0.91
ant-1.7 0.72 0.33 0.51 0.38 0.82 0.88
camel-1.0 0.20 0.10 0.09 0.05 0.90 0.91
camel-1.2 0.97 0.19 0.26 0.41 0.60 0.77
camel-1.4 0.68 0.11 0.24 0.26 0.80 0.87
camel-1.6 0.75 0.11 0.24 0.26 0.73 0.86
ivy-1.4 0.40 0.13 0.24 0.15 1.00 1.00
ivy-2.0 0.86 0.16 0.21 0.25 0.86 0.91
jedit-3.2 0.87 0.15 0.44 0.49 0.69 0.86
jedit-4.0 0.86 0.25 0.55 0.40 0.77 0.91
jedit-4.1 0.91 0.27 0.48 0.39 0.78 0.85
jedit-4.2 0.71 0.42 0.60 0.23 0.88 0.93
jedit-4.3 0.20 0.73 0.75 0.03 0.64 0.67
log4j-1.0 1.00 0.03 0.15 0.58 0.79 0.83
log4j-1.1 1.00 0.03 0.11 0.68 0.80 0.86
lucene-2.0 1.00 0.08 0.24 0.69 0.68 0.81
pbeans-2 1.00 0.25 0.50 0.55 0.75 0.81
poi-2.0 0.45 0.14 0.15 0.19 0.65 0.64
synapse-1.0 0.50 0.07 0.05 0.15 0.87 0.85
synapse-1.1 1.00 0.09 0.11 0.35 0.75 0.79
synapse-1.2 1.00 0.05 0.09 0.49 0.77 0.80
tomcat-1 0.56 0.36 0.47 0.22 0.84 0.89
velocity-1.6 0.91 0.15 0.30 0.56 0.74 0.80
xalan-2.4 0.49 0.34 0.36 0.34 0.69 0.74
xalan-2.6 0.89 0.47 0.54 0.59 0.52 0.61
xerces-1.2 0.45 0.23 0.31 0.24 0.47 0.52
xerces-1.3 0.76 0.29 0.47 0.30 0.43 0.59
Average 0.68 0.20 0.31 0.35 0.74 0.81

The measurements for the classication algorithms are in Table 5. If the machine
learning models used only the quality model metrics the correlation in average is
strong (0.669) for the Logistic Regression and moderately strong for the J48 (0.504)
and the Neural Network (0.463). As it was expected if the machine learning models
were able to use other metrics the correlation became lower because of the difference
between the used metrics.

Regression based algorithms. Next, we analyze the comparison results of the
regression based algorithms and RMI. Recall, that regression algorithms provide a
continuous function for predicting the number of bugs instead of only classifying
classes as buggy or non-buggy. According to the method described in Section 3, we
consider a class as buggy in this case if the appropriate regression model predicts at
least 0.5 bugs for it. The detailed results of the precision, recall, and completeness
values are shown in Table 6 and 7.

In this case the overall picture is somewhat different. The regression based
methods work more similarly to RMI meaning that they achieve higher recall and
completeness in return for lower precision. This can also be observed in Figure 4.
All the bars on the chart are similarly distributed as in case of RMI. Neural network
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Figure 2: Average performance of methods using all metrics

Figure 3: Average performance of methods using only the 16 met-
rics used by ColumbusQM
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Table 5: Spearman’s rank correlation between the ranking of RMI
and the classification algorithms

System Only QM All
J48 LR NN J48 LR NN

ant-1.3.csv 0.503 0.687 0.587 0.252 0.361 0.241
ant-1.4.csv 0.409 0.544 0.428 0.192 0.215 0.084
ant-1.5.csv 0.553 0.699 0.566 0.348 0.421 0.166
ant-1.6.csv 0.541 0.71 0.577 0.334 0.376 0.118
ant-1.7.csv 0.622 0.82 0.641 0.359 0.515 0.253
camel-1.0.csv 0.56 0.75 0.369 0.177 0.298 0.12
camel-1.2.csv 0.521 0.753 0.411 0.258 0.425 0.107
camel-1.4.csv 0.588 0.821 0.42 0.316 0.482 0.147
camel-1.6.csv 0.607 0.864 0.446 0.176 0.552 0.222
ivy-1.4.csv 0.517 0.666 0.474 0.326 0.435 0.276
ivy-2.0.csv 0.507 0.624 0.479 0.349 0.425 0.311
jedit-3.2.csv 0.194 0.239 0.035 0.131 0.077 0.102
jedit-4.0.csv 0.343 0.437 0.207 0.277 0.27 0.267
jedit-4.1.csv 0.413 0.624 0.325 0.31 0.367 0.238
jedit-4.2.csv 0.449 0.551 0.294 0.243 0.25 0.182
jedit-4.3.csv 0.386 0.567 0.392 0.366 0.302 0.135
log4j-1.0.csv 0.588 0.682 0.468 0.422 0.534 0.426
log4j-1.1.csv 0.82 0.854 0.751 0.567 0.726 0.528
lucene-2.0.csv 0.438 0.513 0.41 0.292 0.329 0.272
pbeans-2.csv 0.534 0.526 0.364 0.356 0.33 0.286
poi-2.0.csv 0.578 0.804 0.729 0.492 0.653 0.342
synapse-1.0.csv 0.454 0.725 0.401 0.379 0.307 0.338
synapse-1.1.csv 0.585 0.777 0.489 0.478 0.487 0.467
synapse-1.2.csv 0.642 0.799 0.52 0.566 0.496 0.483
tomcat-1.csv 0.44 0.611 0.502 0.324 0.368 0.16
velocity-1.6.csv 0.542 0.687 0.548 0.432 0.527 0.398
xalan-2.4.csv 0.497 0.747 0.585 0.394 0.591 0.377
xalan-2.6.csv 0.103 0.521 0.335 0.075 0.399 0.256
xerces-1.2.csv 0.58 0.687 0.521 0.423 0.564 0.32
xerces-1.3.csv 0.618 0.769 0.609 0.491 0.588 0.365
Average 0.504 0.669 0.463 0.337 0.422 0.266

achieves the highest precision but far the lowest recall and completeness. The
main feature of RMI remained unchanged, namely it has far the highest recall and
completeness in average. In terms of the F-measures, RepTree, linear regression and
RMI perform almost identically. Figure 5 shows the performance measures where
the regression models used only the 16 metrics used by ColumbusQM. Contrary to
the classifier algorithms, this caused no remarkable change in this case.

We also measuered the Spearman’s rank correlation coefficient between the
regression based machine learning algorithms and the RMI. The measurements
can be found in Table 8. In this case the linear regression algorithm produce
the most similar ranking in average comparing to the RMI (0.683). If the machine
learning models were able to use all of the metrics the similarity between the rankins
became lower in this case as well. Moreover it also interesting that in average
the regression based algorithms could achieve better correlation comparing to the
classification algorithms. This is probably because the classification algorithms
many times predicted with 0.0 or 1.0 probability which makes it harder to make a
more balanced ordering of the classes.

It is clear from the presented data that if one seeks for an algorithm that predicts
buggy classes with few false positive hits RMI based method is not the optimal
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Table 6: Comparison of the precision, recall, and completeness of
different regression models

System RT RT RT LR LR LR
Prec. Rec. Comp. Prec. Rec. Comp.

ant-1.3 0.34 0.70 0.70 0.48 0.65 0.61
ant-1.4 0.29 0.42 0.49 0.28 0.34 0.38
ant-1.5 0.27 0.66 0.69 0.25 0.59 0.60
ant-1.6 0.66 0.73 0.84 0.61 0.68 0.79
ant-1.7 0.54 0.63 0.76 0.54 0.62 0.76
camel-1.0 0.12 0.30 0.27 0.11 0.50 0.45
camel-1.2 0.63 0.17 0.33 0.69 0.37 0.57
camel-1.4 0.44 0.27 0.45 0.40 0.51 0.68
camel-1.6 0.39 0.22 0.42 0.30 0.37 0.62
ivy-1.4 0.21 0.60 0.65 0.24 0.67 0.71
ivy-2.0 0.36 0.70 0.77 0.30 0.76 0.79
jedit-3.2 0.64 0.57 0.83 0.64 0.66 0.87
jedit-4.0 0.57 0.68 0.86 0.54 0.69 0.88
jedit-4.1 0.55 0.69 0.81 0.56 0.77 0.87
jedit-4.2 0.31 0.81 0.91 0.31 0.90 0.95
jedit-4.3 0.04 0.64 0.67 0.04 0.64 0.67
log4j-1.0 0.77 0.30 0.45 0.88 0.42 0.55
log4j-1.1 0.89 0.49 0.67 0.86 0.34 0.55
lucene-2.0 0.83 0.34 0.55 0.79 0.47 0.63
pbeans-2 0.71 0.63 0.69 0.60 0.38 0.56
poi-2.0 0.21 0.54 0.54 0.20 0.46 0.46
synapse-1.0 0.35 0.53 0.60 0.25 0.27 0.35
synapse-1.1 0.56 0.42 0.54 0.63 0.33 0.47
synapse-1.2 0.67 0.44 0.50 0.74 0.38 0.46
tomcat-1 0.25 0.78 0.84 0.26 0.69 0.78
velocity-1.6 0.58 0.44 0.58 0.56 0.55 0.70
xalan-2.4 0.41 0.73 0.77 0.38 0.70 0.75
xalan-2.6 0.74 0.58 0.66 0.80 0.54 0.63
xerces-1.2 0.22 0.47 0.52 0.25 0.44 0.51
xerces-1.3 0.33 0.49 0.61 0.27 0.34 0.53
Average 0.46 0.53 0.63 0.46 0.53 0.64

solution. But the purpose of RMI is clearly not that. It strives for highlighting
the most problematic classes from maintainability point of view and for giving
an ordering among classes in which they should be improved. In this respect,
it is an additional extra that it outperforms the pure bug prediction algorithms
without any learning phase. Moreover, RMI based prediction is superior in terms
of completeness, which is the primary target when improving the code – to catch
more bugs with less resources. Adding this to the fact that typically less than half
of the classes gets a negative RMI, we can say that it is a practically useful method.
To summarize, RMI has lower but still acceptable level of precision and very high
recall and completeness compared to the different learning algorithms resulting in
competitive performance in terms of the F-measures.

5. Threats to validity

There are some threats to the validity of our study results. First of all, the cor-
rectness of the bug data contained in the PROMISE dataset is taken for granted.
However, there might be errors in the collected bug data that could compromise
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Table 7: Comparison of the precision, recall, and completeness of
different regression models

System NN NN NN RMI RMI RMI
Prec. Rec. Comp. Prec. Rec. Comp.

ant-1.3 0.30 0.15 0.15 0.27 0.90 0.91
ant-1.4 0.41 0.18 0.22 0.27 0.61 0.64
ant-1.5 0.34 0.44 0.46 0.18 0.78 0.80
ant-1.6 0.63 0.36 0.54 0.46 0.85 0.91
ant-1.7 0.67 0.44 0.60 0.38 0.82 0.88
camel-1.0 0.08 0.10 0.09 0.05 0.90 0.91
camel-1.2 0.84 0.11 0.25 0.41 0.60 0.77
camel-1.4 0.59 0.16 0.33 0.26 0.80 0.87
camel-1.6 0.55 0.16 0.35 0.26 0.73 0.86
ivy-1.4 0.17 0.13 0.24 0.15 1.00 1.00
ivy-2.0 0.39 0.32 0.45 0.25 0.86 0.91
jedit-3.2 0.81 0.33 0.66 0.49 0.69 0.86
jedit-4.0 0.69 0.41 0.68 0.40 0.77 0.91
jedit-4.1 0.72 0.46 0.65 0.39 0.78 0.85
jedit-4.2 0.49 0.63 0.78 0.23 0.88 0.93
jedit-4.3 0.06 0.45 0.50 0.03 0.64 0.67
log4j-1.0 1.00 0.12 0.25 0.58 0.79 0.83
log4j-1.1 0.75 0.09 0.21 0.68 0.80 0.86
lucene-2.0 0.93 0.16 0.39 0.69 0.68 0.81
pbeans-2 1.00 0.25 0.50 0.55 0.75 0.81
poi-2.0 0.38 0.16 0.18 0.19 0.65 0.64
synapse-1.0 0.00 0.00 0.00 0.15 0.87 0.85
synapse-1.1 1.00 0.07 0.10 0.35 0.75 0.79
synapse-1.2 1.00 0.10 0.11 0.49 0.77 0.80
tomcat-1 0.38 0.47 0.59 0.22 0.84 0.89
velocity-1.6 0.59 0.15 0.32 0.56 0.74 0.80
xalan-2.4 0.45 0.43 0.47 0.34 0.69 0.74
xalan-2.6 0.87 0.28 0.40 0.59 0.52 0.61
xerces-1.2 0.36 0.28 0.34 0.24 0.47 0.52
xerces-1.3 0.51 0.28 0.48 0.30 0.43 0.59
Average 0.46 0.53 0.63 0.46 0.53 0.64

our study. But the probability of this is negligible, and there are many other works
in the literature that relies on PROMISE dataset similarly to ours.

Another problem is that it is hard to generalize the results as we studied only
30 versions of 13 Java open-source systems from the PROMISE bug repository.
There are other open-access bug datasets that could also be examined to support
the generality of the current findings for other programming languages as well.

Only about 25% of the classes in the PROMISE repository contain bugs, there-
fore the training data we used for the machine learning models is somewhat im-
balanced. Compensating this effect itself is a subject of many research efforts.
However, we think that for a first comparison of the performance of our maintain-
ability score based model to other prediction algorithms this level of imbalance is
acceptable (i.e. does not bias the learning algorithms significantly).

We found inconsistencies between the bug databases and the downloaded source
code of the systems. Some of the classes were missing either from the bug data
or from the source code of some projects. In such cases we simply left out these
classes from the further analysis. Even though the proportion of these classes was
very small, it is certainly a threat to validity, but we think its effect is negligible.

Finally, as we used machine learning bug prediction models the chosen algo-
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Figure 4: Average performance of regression methods using all
metrics

Figure 5: Average performance of regression using only the 16 met-
rics used by ColumbusQM
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Table 8: Correlation between the ranking of RMI and the regression
algorithms

System Only QM All
RT LR NN RT LR NN

ant-1.3.csv 0.596 0.708 0.639 0.57 0.533 0.485
ant-1.4.csv 0.553 0.585 0.527 0.475 0.363 0.289
ant-1.5.csv 0.597 0.678 0.629 0.576 0.519 0.425
ant-1.6.csv 0.638 0.713 0.638 0.604 0.52 0.429
ant-1.7.csv 0.713 0.793 0.717 0.682 0.67 0.558
camel-1.0.csv 0.545 0.773 0.564 0.399 0.522 0.224
camel-1.2.csv 0.634 0.776 0.571 0.434 0.629 0.359
camel-1.4.csv 0.698 0.834 0.614 0.551 0.713 0.447
camel-1.6.csv 0.759 0.879 0.643 0.416 0.765 0.54
ivy-1.4.csv 0.524 0.651 0.529 0.471 0.563 0.371
ivy-2.0.csv 0.548 0.61 0.547 0.47 0.498 0.435
jedit-3.2.csv 0.197 0.246 0.214 0.172 0.139 0.136
jedit-4.0.csv 0.335 0.413 0.401 0.356 0.309 0.269
jedit-4.1.csv 0.489 0.585 0.493 0.523 0.452 0.343
jedit-4.2.csv 0.45 0.547 0.476 0.496 0.386 0.337
jedit-4.3.csv 0.489 0.592 0.53 0.526 0.422 0.39
log4j-1.0.csv 0.588 0.642 0.448 0.511 0.562 0.405
log4j-1.1.csv 0.784 0.869 0.652 0.747 0.712 0.493
lucene-2.0.csv 0.485 0.558 0.471 0.421 0.408 0.432
pbeans-2.csv 0.405 0.61 0.436 0.445 0.429 0.203
poi-2.0.csv 0.618 0.826 0.725 0.767 0.752 0.564
synapse-1.0.csv 0.588 0.749 0.618 0.581 0.47 0.261
synapse-1.1.csv 0.627 0.797 0.698 0.674 0.655 0.424
synapse-1.2.csv 0.704 0.811 0.731 0.721 0.677 0.396
tomcat-1.csv 0.537 0.624 0.501 0.509 0.434 0.37
velocity-1.6.csv 0.576 0.756 0.664 0.526 0.63 0.452
xalan-2.4.csv 0.639 0.715 0.613 0.722 0.697 0.672
xalan-2.6.csv 0.382 0.526 0.52 0.446 0.524 0.468
xerces-1.2.csv 0.599 0.773 0.285 0.692 0.603 0.585
xerces-1.3.csv 0.62 0.859 0.333 0.741 0.573 0.578
Average 0.564 0.683 0.548 0.541 0.538 0.411

rithms and tuning of their parameters are also important. During the comparison
process we tried to choose the most well-known regression and classification al-
gorithms and we used their default parameters set by Weka. Probably there are
better bug prediction models than those we used, but our goal was not to find the
best one but to generally compare our relative maintainability index to the bug
prediction ability of the well-known machine learning algorithms.

6. Conclusions

In this paper we examined the connection of the maintainability scores of Java
classes calculated by our ColumbusQM quality model and their fault-proneness
(i.e. the number of bugs the classes contain). As there is only a small number of
quality models providing output at source element level, currently there is a lack
of research dealing with this topic.

However, the primary target of quality models (including ours) in general is not
bug prediction, but it is important to investigate the usefulness of these models in
practice. Nonetheless, to get a picture about how useful this feature of the model
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is, we compared its bug prediction capability to other well-known statistical and
machine learning algorithms. The results show that if the two model uses the same
metrics the Spearman’s rank correlation between the predicted values of the models
is strong or moderately strong. If the machine learning models were able to use
other metrics as well the correlation became weaker. The empirical investigation
showed that there are different balances between the precision and recall of the
different methods, but in overall (i.e. according to the F-measure of the prediction
performance) our model is clearly competitive with the other approaches. While
typical classifier algorithms tend to have higher precision but lower recall, our
quality model based prediction has far the highest recall with an acceptable level
of precision. What is even more, completeness, which expresses the number of
detected bugs compared to the total number of all bugs, is also the best among all
algorithms.

We stress that the main result here is that a general maintainability model
like ColumbusQM is able to draw the attention to the classes containing this large
amount of bugs independent of the analyzed system (i.e. without any training on
data). This property ensures that the source code elements one starts to improve
contain the largest amount of bugs while high precision would only mean that the
classes one consider contain bugs for sure (but not necessarily in large amount).
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