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Abstract

We provide a sufficient condition for the right-continuity of the infimal
convolution. First we introduce the generalized infimal convolution, and we
show that this is not a proper generalization in the case of real-valued func-
tions.

Following the main theorem, through some illustrating examples we prove
that the result cannot be strengthened.
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1. Preliminaries

We use the following usual notions and notations in the whole paper.
Let

R = R ∪ {−∞} and R = R ∪ {∞}.

Note that R = [−∞,∞] is called the extended real line.
In this paper a Darboux function is an extended real-valued function f of a real

variable which has the intermediate value property, that is for any two real values
a and b, and any y between f(a) and f(b), there is some c between a and b with
f(c) = y.
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A function f : R → R is called right-continuous if for any x0 ∈ R and for all
neighborhood K of f(x0) there exists a positive real δ such that f(x) ∈ K for all
real x with x0 < x < x0 + δ.

Now, we define (f ∗ g) and (f ~ g), the so called infimal convolution and gen-
eralized infimal convolution of f and g. (See in [5], [8] and [10])

Definition 1.1. Let f : R → R be a function of R into R and g : V ⊂ R → R be
a function of a subset V of R into R.

For any x ∈ R, let

Γ(x) = {(u, v) ∈ R× V : x ≤ u+ v}

and define the functions (f ∗ g) : R→ R and (f ~ g) : R→ R of R into R such that

(f ∗ g)(x) = inf
v∈V

(
f(x− v) + g(v)

)

and
(f ~ g)(x) = inf{f(u) + g(v) : (u, v) ∈ Γ(x)}.

(f ∗g) and (f~g) are called infimal convolution and generalized infimal convolution
of f and g, respectively.

Remark 1.2. Note that we define the (generalized) infimal convolution only in the
case, when the range of the factors f and g are subsets of R, and note also that if
V 6= ∅, then the range of (f ~ g) and (f ∗ g) is also subset of R.

For all x, y, z ∈ R we have (−∞) + x = x + (−∞) = −∞ and x ≤ y =⇒
x+ z ≤ y + z.

In this paper, the order of the domain and range of f and g is the usual order
of (extended) real line, and the inf derives from this order also. The following
theorem and corollary show that since the same ordering, the generalized infimal
convolution is not a proper generalization contrary to the more abstract case, see
[1] and [6].

Definition 1.3. Let f : R→ R and define f̂ : R→ R for all u ∈ R in the following
way.

f̂(u) = inf
a≥u

f(a)

Proposition 1.4. If f : R → R, then f̂ is also, that is f̂(u) 6= ∞ for all u ∈ R.
Moreover f̂ ≤ f , f̂ is increasing, and f̂ = f if and only if f is increasing.

The generalized infimal convolution could be expressed by classical one.

Theorem 1.5. If f : R→ R and g : V ⊂ R→ R, then for any x ∈ R we have

(f ~ g)(x) = (f̂ ∗ g)(x).
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Proof. By definition
(f ~ g)(x) ≤ f(u) + g(v)

for all (u, v) ∈ Γ(x), therefore

(f ~ g)(x) ≤ inf
u≥x−v

(
f(u) + g(v)

)

for all v ∈ V , and it follows that

(f ~ g)(x) ≤ inf
v∈V

(
inf

u≥x−v

(
f(u) + g(v)

))
.

On the other hand

inf
v∈V

(
inf

u≥x−v

(
f(u) + g(v)

))
≤ inf

u≥x−v

(
f(u) + g(v)

)

for all v ∈ V , and
inf

u≥x−v

(
f(u) + g(v)

)
≤ f(u) + g(v)

for all (u, v) ∈ Γ(x), therefore

inf
v∈V

(
inf

u≥x−v

(
f(u) + g(v)

))
≤ (f ~ g)(x).

Now we have that

(f ~ g)(x) = inf
v∈V

(
inf

u≥x−v

(
f(u) + g(v)

))
,

and by the required definitions

(f̂ ∗ g)(x) = inf
v∈V

(
f̂(x− v) + g(v)

)
= inf

v∈V

(
inf

u≥x−v

(
f(u)

)
+ g(v)

)
.

If we notice that inf(A + a) = inf A + a for all A ⊂ R and a ∈ R, and write
{f(u) : u ≥ x − v} and g(v) in place of A and a respectively, then the proof is
complete.

According to Proposition 1.4 and Theorem 1.5 we obtain:

Corollary 1.6. If f : R→ R is increasing and g : V ⊂ R→ R, then for any x ∈ R
we have

(f ~ g)(x) = (f ∗ g)(x).

The infimal convolution could not always be expressed by generalized one.
Namely, there is not exist f : R → R and g : V ⊂ R → R such that (f ~ g) =
(sin ∗ sin), because

(sin ∗ sin)(0) = inf
v∈R

(
sin(0− v) + sin(v)

)
= 0,

and

(sin ∗ sin)
(π

2

)
= inf

v∈R

(
sin
(π

2
− v
)

+ sin(v)
)

= inf
v∈R

(
cos(v) + sin(v)

)
= −
√

2,

but by Proposition 2.1 (f ~ g) is increasing.
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2. Main Theorem

The following proposition has been proved in [10]. Its proof is included here for
the reader’s convenience.

Proposition 2.1. If f : R→ R and g : V ⊂ R→ R, then (f ~ g) is increasing.

Proof. Suppose that x, y ∈ R such that x ≤ y. Then, by the corresponding defini-
tions, it is clear that Γ(y) ⊂ Γ(x) and thus (f ~ g)(x) ≤ (f ~ g)(y).

Theorem 2.2. If f : R → R is a Darboux function and g : V ⊂ R → R, then
(f ~ g) is right-continuous.

Proof. Since the domain of (f ~ g) is the real line, we need only show that, for any
x ∈ R, we have

(f ~ g)(x) = lim
t→x+

(f ~ g)(t).

Since Proposition 2.1 (f ~ g) is increasing, therefore by [7] Theorem 4.29. we have

(f ~ g)(x) ≤ inf
t>x

(f ~ g)(t) = lim
t→x+

(f ~ g)(t).

To prove the corresponding equality, define

y = inf
t>x

(f ~ g)(t),

and assume to the contrary that (f ~ g)(x) < y. Then, y 6= −∞.
Let (u, v) ∈ Γ(x) such that

f(u) + g(v) < y.

There exists such (u, v) because y is not a lower bound of {f(u) + g(v) : (u, v) ∈
Γ(x)}.

Hence by using that (f ~ g)(u+ v) ≤ f(u) + g(v), we can infer that

(f ~ g)(u+ v) < y.

Thus, by the definition of y we necessarily have

u+ v ≤ x.

Moreover, since (u, v) ∈ Γ(x), we also have x ≤ u+ v, and thus x = u+ v.
Also by the corresponding definitions, we can note that

y ≤ (f ~ g)(x+ 1) = (f ~ g)(u+ 1 + v) ≤ f(u+ 1) + g(v).

Hence, since y 6= −∞, we can see that g(v) 6= −∞.
Now, from the inequalities

f(u) + g(v) < y ≤ f(u+ 1) + g(v),
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we can infer that
f(u) < y − g(v) ≤ f(u+ 1).

Thus, by the Darboux property of f , there exists s ∈]u, u+ 1[, such that

f(u) < f(s) < y − g(v),

and thus
f(s) + g(v) < y.

Moreover, since x = u+ v < s+ v, we can see that

y ≤ (f ~ g)(s+ v) ≤ f(s) + g(v) < y.

This contradiction proves the required equality.

Corollary 2.3. If f : R → R and g : V ⊂ R → R such that f is a continuous
increasing function, then (f ∗ g) is right-continuous.

Note that since f is increasing, hence it is a Darboux function if and only if it
is continuous.

3. Some Illustrating examples

The following two examples show that (f ~ g) may be discontinuous even if f, g :
R→ R are increasing continuous real-valued functions.

Example 3.1. Let f : R→ R such that f(x) = x3. Since f is increasing

(f ~ f)(x) = (f ∗ f)(x) = inf
v∈R

(
x3 − 3x2v + 3xv2

)
.

Let p(v) = x3 − 3x2v + 3xv2.
If x < 0, then

lim
v→±∞

p(v) = −∞

therefore (f ~ f)(x) = −∞.
If x > 0, then p is differentiable at everywhere, and p′(v) = −3x2 + 6xv =

3x(2v − x). Now we have that p′(v) < 0, p′(v) = 0 and p′(v) > 0 if v < x
2 , v = x

2
and v > x

2 , respectively. Therefore

(f ~ f)(x) = inf
v∈R

p(v) = min
v∈R

p(v) = p
(x

2

)
=
x3

4
.

By Theorem 2.2, (f ~ f) is right-continuous. Hence one has

(f ~ f)(0) = lim
x→0+

(f ~ f)(x) = 0.
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In the above example, the convolution has an infinite jump discontinuity. Since
the increasingness, an arbitrary convolution has at most 2 infinite jump, and at
most countable many finite jump, and has not any essential discontinuity. (See [7]
Theorem 4.30.)

In the following more complicated example (f~g) is also real-valued, and (f~g)
has infinitely many finite jump. For any x ∈ R let [x] and {x} denote the integer
and fractional part of x.

Example 3.2. Let α : R→ R such that

α(x) =





0, if x < 0,

x, if 0 ≤ x ≤ 1,

1, if 1 < x.

It is easy to see that α is an increasing continuous function. Moreover let g : R+
0 →

R and f : R→ R such that

g(x) =

∞∑

n=0

α((n+ 1)(x− n)) and f(x) =

{
g(x), if 0 ≤ x,
−g(−x), if x < 0.

This figure shows the graph of f .
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For all x ≥ 0 if n ∈ Z with n ≥ [x] + 1 > x we have that x− n < 0 and n+ 1 > 0,
hence (n+ 1)(x− n) < 0, therefore α((n+ 1)(x− n)) = 0. It follows that

g(x) =

[x]∑

n=0

α((n+ 1)(x− n)) (3.1)

for all x ≥ 0, and if a ≥ 0, then

g(x) =

[a]∑

n=0

α((n+ 1)(x− n))
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on [0, a].
It means, that definition of g is correct and g is really a real-valued function. It

also means that the function series is uniformly convergent on [0, a] for all a ≥ 0,
hence the continuity of α((n + 1)(x − n)) follows the continuity of g on [0, a] for
all a ≥ 0 and hence g is continuous. Note that by (3.1) we can also easily see the
increasingness of g.

Moreover, if n ∈ Z with 0 ≤ n ≤ [x] − 1, then since (n + 1)(x − n) ≥ 1, hence
α((n+ 1)(x− n)) = 1. It follows by (3.1) that

g(x) =

[x]−1∑

n=0

1 + α(([x] + 1)(x− [x])) = [x] + α(([x] + 1){x}). (3.2)

[x] + 1 ≥ 1 and {x} ≥ 0 imply that ([x] + 1){x} ≥ {x} and it follows by the
increasingness of α, that α(([x]+1){x}) ≥ α({x}) = {x}. Now, since (3.2) we have
that

g(x) ≥ [x] + {x} = x (3.3)

for all x ≥ 0.
If n ∈ Z+

0 , then by (3.2)

g(n) = [n] + α(([n] + 1){n}) = n, (3.4)

and

g(x+n)−g(x) = [x+n]+α(([x+n]+1){x+n})− [x]−α(([x]+1){x}) ≥ n (3.5)

for all x ≥ 0.
Since the increasingness of g and (3.4) we also have that

g(x) ≤ g([x] + 1) = [x] + 1 ≤ x+ 1, (3.6)

for all x ≥ 0.
To prove the increasingness of f , by using the increasingness of g let x1 < x2 <

0, and see the following

f(x1) = −g(−x1) ≤ −g(−x2) = f(x2) ≤ 0 = g(0) = f(0).

It follows by Corollary 1.6 that

(f ~ f)(x) = (f ∗ f)(x).

By (3.3) and (3.6) we have that

x ≤ f(x) ≤ x+ 1, for all x ≥ 0, (3.7)

and
x− 1 ≤ f(x) ≤ x, for all x < 0. (3.8)
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Now, we prove that (f ~ f)(x) = [x] for all x ≥ 0.
At first, let x ∈ Z+

0 . In this case one has

f(x− 0) + f(0) = g(x) = x,

therefore (f ~ f)(x) ≤ x.
To prove the converse inequality we show that f(x−v)+f(v) ≥ x, for all v ∈ R.

If 0 ≤ v ≤ x, then f(x− v) + f(v) ≥ (x− v) + v = x by (3.7).
If x < v, then f(x− v) + f(v) = −g(v − x) + g(v) = g((v − x) + x)− g(v − x) ≥ x
by (3.5).
If v < 0, then f(x− v) + f(v) = g(x− v)− g(−v) ≥ x by (3.5).

At second, let x ∈ R+
0 \ Z. In this case one has

(f ~ f)(x) ≥ (f ~ f)([x]) = [x],

by Proposition 2.1.
To prove the converse inequality we show that f(x− v) + f(v) = [x] with v ∈ Z

such that v ≥ [x] + 1/(1− {x}).
Really, for such v we have that

(v − [x])(1− {x}) ≥ 1,

that is
α(([v − x] + 1){v − x}) = 1.

It means by (3.2) that

g(v − x) = [v − x] + 1 = v − [x],

therefore

f(x− v) + f(v) = −g(v − x) + g(v) = v − (v − [x]) = [x].

Finally, we show that (f ~ f) is real-valued. For this, it is enough to show that if
x ∈ R, then by (3.7) and (3.8)

x− 2 = (x− v − 1) + (v − 1) ≤ f(x− v) + f(v) ≤ (x− v + 1) + (v + 1) = x+ 2,

for all v ∈ R, therefore
x− 2 ≤ (f ~ f)(x) ≤ x+ 2.

Finally, the following example shows that the Darboux property in Theorem
2.2 is essential.

Example 3.3. Let f : R→ R such that

f(x) = 1R+ =

{
0, if x ≤ 0

1, if 0 < x.
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For all real x and v we have that f(x − v), f(v) ∈ {0, 1}, therefore f(x − v) +
f(v) ∈ {0, 1, 2}, hence (f ∗ f)(x) ∈ {0, 1, 2}.

With v = 0 we have that f(x − 0) + f(0) = f(x), hence (f ∗ f)(x) ≤ f(x) for
all x ∈ R.

To prove the converse inequality, it is enough to show that 1 ≤ (f ∗ f)(x) for
all x > 0. If 0 < x, then for all v ∈ R x − v > 0 or v > 0, that is f(x − v) = 1 or
f(v) = 1, hence 1 ≤ f(x− v) + f(v). It follows that 1 ≤ (f ∗ f)(x) for all x > 0.

Now, we have that
(f ∗ f) = f,

which is not right-continuous.
Note that by Corollary 1.6, the increasingness of f follows that

(f ~ f)(x) = (f ∗ f)(x).
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