
Representation transformations
of ordered lists∗

Tibor Ásványi

Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

asvanyi@inf.elte.hu

Submitted September 15, 2014 — Accepted March 5, 2015

Abstract
Search and update operations of dictionaries have been well studied, due

to their practical significance. There are many different representations of
them, and some applications prefer this, the others that representation. A
main point is the size of the dictionary: for a small one a sorted array can
be the best representation, while for a bigger one an AVL tree or a red-black
tree might be the optimal choice (depending on the necessary operations and
their frequencies), and for an extra large one we may prefer a B+-tree, for
example.

Consequently it can be desirable to transform such a collection of data
from one representation into another, efficiently. There is a common feature
of the data structures mentioned: they can be considered strictly ordered
lists. Thus in this paper we start a new topic of interest: How to transform a
strictly ordered list form one representation into another, efficiently? What
about the time and space complexities of such transformations?

Keywords: strictly increasing list, representation-transformation, data struc-
ture (DS), linear, array, binary tree (BT), balanced, search tree

MSC: 68P05, 68P10, 68P20, 68Q25

1. Introduction

In this paper we consider strictly increasing lists. They can be represented in
several different ways. For example, with a linear data structure (LDS) (e.g. array,

∗Supported by Eötvös Loránd University, Faculty of Informatics.

Annales Mathematicae et Informaticae
44 (2015) pp. 5–13
http://ami.ektf.hu

5

linked list, sequential file), with a binary search tree (BST) (e.g. unbalanced BST,
AVL tree, red-black tree), with a B-tree, B+-tree, etc. [1, 2, 3].

Their common features are that they can be traversed increasingly in Θ(n)
time: the linear traversal of a LDS has linear operational complexity; similarly, the
inorder traversal of a tree needs Θ(n) time. And the search-and-update operations
can run in O(n) time. [1, 2]

In this paper we use three asymptotic computational complexity measures (each
time we consider the worst case by default): O(g(n)) (upper bound), Ω(g(n)) (lower
bound), and Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) [2].

Sorted arrays support only the search with O(log(n)) operational complexity,
but for the balanced search tree1 representations each of the search, insert, delete
operations have this complexity. On linked lists, and sequential files we cannot
perform any search-and-update operation in O(log(n)) time. Thus we concentrate
on the sorted array, and balanced search tree representations of such lists. The
search, insert, delete operations have been well studied. Sometimes we have to
transform these lists from one representation into another. Consequently we pay
attention to these representation-transformations. We ask, how to transform a
strictly ordered list L from one representation into another, efficiently?

Undeniably, the operational complexity of such a transformation is Ω(n): each
item must be processed. In some cases, it is also O(n): Undoubtedly, a linear
representation of L can be produced in O(n) time, because the input representation
of L can be traversed also in O(n) time. Thus, regardless of the input representation
of L, a linear representation of L can be generated with Θ(n) atomic operations.
Besides, a balanced search tree representation of L can be generated in O(n log(n))
time, because a single insert needs O(log(n)) atomic operations. Nevertheless this
method does not use the information that the input is sorted.

Consequently this is our question: Given an input representation of L, when and
how can we produce a balanced search tree representation of it, with an operational
complexity Θ(n), or at least better than Θ(n log(n))? We give a partial answer to
this question. We invent three algorithms. With operational complexity Θ(n), we
transform (1) a strictly increasing array into an AVL tree; (2) a strictly increasing
array into a red-black tree; (3) an AVL tree into a red-black tree.

2. Main results

In order to expound these algorithms (a) we define size-balanced BSTs, and an
algorithm transforming a strictly increasing array into such a size-balanced BST;
(b) we prove that a size-balanced BST is almost complete, and so (c) it is an AVL
tree; (d) we colour the almost complete BSTs as red-black trees; (e) we find a special
property of AVL trees, and invent an algorithm colouring them as red-black trees.

(a-c) are needed for transforming a strictly increasing array into an AVL tree
(Section 2.1). (a,b,d) result in the transformation of a strictly increasing array into

1AVL tree, red-black tree, SBB-tree, rank-balanced tree, B-tree, B+-tree, etc.

6 T. Ásványi

a red-black tree (Section 2.2). The theorems and algorithm of (e) in Subsection 2.3
form the high point of this section.

2.1. Strictly increasing array to AVL tree

First we enumerate the necessary notions. By trees we mean rooted ordered trees
[2]. Remember that NIL is the empty tree. The leaves of a nonempty tree have
no child. The non-leaves are the internal nodes.

If t 6= NIL is a binary tree (BT), left(t) is its left and right(t) is its right subtree.
If t is a BT, s(t) is its size, i.e. s(t) = 0, if t = NIL; s(t) = 1 + s(left(t)) +

s(right(t)), otherwise. h(t) is its height, i.e. h(t) = −1, if t = NIL; h(t) =
1 + max(h(left(t)), h(right(t))), otherwise.

If r is the root node of a BT t 6= NIL, left(r) = left(t), right(r) = right(t),
and root(t) = r. Provided that t is a BT, n ∈ t, iff t 6= NIL ∧ (n = root(t) ∨ n ∈
left(t) ∨ n ∈ right(t)).

dt(n) is the depth of node n in BT t. If t 6= NIL, dt(root(t)) = 0. If n is a node
of a BT t and left(n) 6= NIL, dt(root(left(n))) = dt(n) + 1. If right(n) 6= NIL,
dt(root(right(n))) = dt(n) + 1. Node n is strictly binary (SB(n)), iff left(n) 6=
NIL ∧ right(n) 6= NIL.

Clearly, h(t) = max{dt(n) | n ∈ t}, if t 6= NIL. A BT t is complete, iff
(∀n ∈ t)(dt(n) < h(t)→ SB(n)).

Notice that for any leaf n of a complete BT t, d(n) = h(t); and s(t) = 2h(t)+1−1.
A BT t is almost complete (AC(t)), iff (∀n ∈ t)(dt(n) < h(t)− 1→ SB(n)).

Notice that a BT is AC, iff compared to the appropriate complete BT, nodes
may be missing only from its lowest level: Figure 1 shows such a tree. Clearly, for
a leaf n of an AC BT t, dt(n) ∈ {h(t), h(t)− 1}. The nodes of t at depth h(t)− 1
may have one or two children, or may be leaves. s(t) ∈ [2h(t), 2h(t)+1 − 1].

------------7----------
/ \

-----4----- ---10----
/ \ / \

2 5 9 12
/ \ / \ / \ / \

1 3 NIL NIL 8 NIL 11 NIL

Figure 1: almost complete BST: the places of the missing nodes
are shown by NILs

A node n of a BT is height-balanced, iff |h(right(n)) − h(left(n))| ≤ 1. A BT
t is height-balanced, iff (∀n ∈ t), n is height-balanced. An AVL tree is a height-
balanced BST.

A node n of a BT is size-balanced, iff |s(right(n))− s(left(n))| ≤ 1. A BT t is
size-balanced, iff (∀n ∈ t), n is size-balanced.

Representation transformations of ordered lists 7

We transform a strictly increasing array into an equivalent size-balanced BST
in linear time:

We take the middle item of a nonempty array. This will label the root node
of the tree. Next we transform the left and right sub-arrays into the appropriate
subtrees, recursively. An empty array is transformed into an empty tree.

The resulting size-balanced BST is also an AVL tree, as it follows from the next
two theorems.

Theorem 2.1. A size-balanced binary tree is also almost complete (AC).

Proof. We use mathematical induction with respect to the height h(t) of the size-
balanced tree t. If h(t) = −1, then t is empty, and AC(t). Let us suppose that
we have this property for trees with h(t) ≤ h. Let h(t) = h + 1. Then t 6=
NIL ∧ h(left(t)) ≤ h ∧ h(right(t)) ≤ h. It follows by induction that left(t) and
right(t) are almost complete. Also | size(left(t))−size(right(t))| ≤ 1. (Furthermore,
remember that a complete binary tree of height h has the size 2h+1 − 1, and an
almost complete binary tree with size in [2h+1, 2h+2−1] has height h+1.) Now we
enumerate the possible cases about the subtrees of t, and prove that AC(t) in each
case. If the two (almost complete) subtrees have the same size, their heights are
also equal, and AC(t). If the smaller subtree is complete, then the bigger one has
an extra leaf at its extra level, and AC(t). If the smaller subtree is not complete,
then the bigger one has the same height, and AC(t).

Theorem 2.2. An almost complete binary tree is also height-balanced.

Proof. We can suppose t 6= NIL. First, if AC(t), the leaves of t have depth
h(t) or h(t) − 1. Thus h(left(t)), h(right(t)) ∈ {h(t) − 1, h(t) − 2}. Consequently,
|h(right(t))− h(left(t))| ≤ 1. As a result, root(t) is balanced. Next, let us suppose
that lr(t) ∈ {left(t), right(t)}. Now, if AC(t), then (∀n ∈ lr(t))(dt(n) < h(t)− 1→
SB(n)). Therefore (∀n ∈ lr(t))(dlr(t)(n) < h(t) − 2 → SB(n)). We also have
h(lr(t)) ≤ h(t)−1. For these reasons (∀n ∈ lr(t))(dlr(t)(n) < h(lr(t))−1→ SB(n)).
As a result, AC(lr(t)). Thus each (direct or indirect) subtree of t is AC, and
if a subtree is nonempty, its root node is balanced. Finally, each node of t is
balanced.

Corollary 2.3. A size-balanced BST is also an AVL tree.

Proof. A size-balanced BST is almost complete, thus height-balanced.

Consequently, the algorithm we defined above transforms a strictly increasing
array into an equivalent AVL tree. It takes Θ(n) time, because each item of the
array is processed once. Besides the Θ(n) size of its output, it needs Θ(log(n))
working memory: this is the height of the recursion. Provided that we need the
heights of the nonempty subtrees in their root nodes (as it is usual with AVL trees),
we can return the height of a subtree when we return from the appropriate recursive
call, and compute the height of a subtree with a given root node from the heights
of the two subtrees of that node.

8 T. Ásványi

2.2. Strictly increasing array to red-black tree

We have an algorithm transforming a strictly increasing array into an almost com-
plete BST. We also have the height of the tree. Here we need an additional flag
showing whether the tree is complete or not. Clearly, a nonempty BT is complete,
iff its too subtrees are also complete, and their heights are the same. Thus the
computation of this flag is also easily merged into the algorithm above.

Next, if we prove that an almost complete BST (with its height and flag) can
be coloured in linear time, as a red-black tree, then we have also the algorithm
transforming a strictly increasing array into such a tree.

Definition 2.4. A red-black tree is a BST with red and black nodes: The root
node is black. We regard NILs as pointers to black, external leaves. For each node,
all simple paths from the node to descendant NIL-leaves contain the same number
of black nodes. If a node is red, then both its children are black. [2] (See Figure 2.)

---------BLACK---------
/ \

----red---- --BLACK--
/ \ / \

BLACK BLACK red NIL
/ \ / \ / \

NIL NIL NIL NIL NIL NIL

Figure 2: Red-black tree

Based on this definition, the algorithm of colouring is simple: consider the
complete levels of an almost complete BST, and paint the nodes black. If the
tree is not complete, the nodes at the lowest, partially filled level remain, and we
paint them red. (See Figure 3.) Unquestionably this procedure needs Θ(n) time
and Θ(log(n)) working memory. The algorithm computing its input (the almost
complete tree, its height, and flag) has the same measures. Consequently, the whole
transformation has these time and space requirements.

----------BLACK---------
/ \

---BLACK--- --BLACK--
/ \ / \

red red red NIL
/ \ / \ / \

NIL NIL NIL NIL NIL NIL

Figure 3: Almost complete tree painted as red-black tree

Representation transformations of ordered lists 9

2.3. AVL tree to red-black tree
We colour an AVL tree t as a red-black tree. We use a postorder and a preorder
traversal. As a result, our procedure needs Θ(n) time and Θ(log(n)) (proportional
to the height of t) working memory [1].

Definition 2.5. Minimal height of a binary tree t: m(t) = −1, if t = NIL;
1 + min(m(left(t)),m(right(t))), otherwise.

Theorem 2.6. If t is a height-balanced tree then m(t) ≤ h(t) ≤ 2m(t) + 1.

Proof. It comes with mathematical induction with respect tom(t). Ifm(t) = −1⇒
t = NIL ⇒ h(t) = −1 ⇒ m(t) ≤ h(t) ≤ 2m(t) + 1. Let us suppose that we have
this property for trees with m(t) = k. Let m(t) = k + 1. We can suppose that
m(left(t)) = k. By induction: k ≤ h(left(t)) ≤ 2k+1. The tree t is height-balanced.
Therefore h(right(t)) ≤ 2k + 2. Thus k + 1 ≤ 1 + max(h(left(t)), h(right(t))) =
h(t) ≤ 2k + 3 = 2(k + 1) + 1. As a result: m(t) ≤ h(t) ≤ 2m(t) + 1. (Notice that
m(t) ≤ h(t) for any binary tree.)

In the colouring algorithm, first we calculate m(t). Based on the definition, this
can be done with a postorder traversal of t. In a typical AVL tree, for each non-NIL
subtree s of t, the h(s) attributes are already present. (If not, the computation of
the h(s) values can be easily merged into the postorder traversal.)

Next, with a preorder traversal of t, we colour t. (See Figure 4). We paint
m(t) + 1 nodes black on each simple path from the root to a NIL-leaf. (The NIL-
leaves are also considered black, but we do not paint them.)

PreCondition of the first call:
I0: t is AVL tree and b = m(t)+1 and

h(s) is calculated for each subtree s of t

procedure colour(t : BinTree; b : integer)
/* I1: b>=0 and b-1 =< m(t) and h(t) =< 2*b */
if(t \= NIL) {
/* Note: paint b nodes black on each branch of t */

if(h(t) < 2*b) {
colour(t) := black
b := b-1 }

else /* I2: 0 =< b =< m(t) and h(t) = 2*b */
colour(t) := red

colour(left(t),b)
colour(right(t),b) }

end of procedure colour

Figure 4: Colouring an AVL tree t as a red-black tree

Now we are going to prove the correctness of the colouring algorithm in Figure 4.

10 T. Ásványi

Terminology: In the rest of this section we use I0 (i.e. the PreCondition), invari-
ants I1, I2, and other logical statements. Let us suppose that Ij, Ik ∈ {I0, I1, I2};
P , Q are arbitrary statements. When we say that Ij with P induces Ik with Q, we
mean: If Ij and P are true when the program is at the place of Ij, then Ik and Q
will hold when the run of the program next time arrives at the place of Ik.

Lemma 2.7. I0 induces I1 with h(t) < 2b.

Proof. Based on the definition of m(t), m(t) ≥ −1. Consequently b = m(t) + 1
implies b ≥ 0 ∧ b − 1 ≤ m(t). Theorem 2.6 implies h(t) ≤ 2m(t) + 1. Considering
b = m(t)+1 we receive h(t) ≤ 2m(t)+1 = 2(b−1)+1 = 2b−1. Thus h(t) < 2b.

Lemma 2.8. I1 with t 6= NIL ∧ h(t) < 2b induces I1 in both recursive calls.

Proof. Let s(t) be the left or right subtree parameterizing the appropriate recursive
call. Thus we need to prove I1b←b−1,t←s(t) i.e. that the following three conditions
hold:

(1) b − 1 ≥ 0: We know that h(t) ≥ 0 (since t 6= NIL) and h(t) < 2b. Conse-
quently, b > 0, and therefore b− 1 ≥ 0.

(2) b − 2 ≤ m(s(t)): From I1, b − 1 ≤ m(t). From the definition of m(t),
m(t) ≤ 1 +m(s(t)). As a result, b− 1 ≤ 1 +m(s(t)), i.e. b− 2 ≤ m(s(t)).

(3) h(s(t)) ≤ 2(b − 1): h(t) < 2b, i.e. h(t) ≤ 2b − 1; h(s(t)) ≤ h(t) − 1; thus
h(s(t)) ≤ 2b− 2.

Lemma 2.9. I1 with t 6= NIL ∧ h(t) ≥ 2b induces I2.

Proof. h(t) ≤ 2b and h(t) ≥ 2b implies h(t) = 2b. 0 ≤ b remains true. Considering
Theorem 2.6 we have 2b ≤ 2m(t) + 1; thus b ≤ m(t) + 1/2 i.e. b ≤ m(t).

Lemma 2.10. I2 induces I1 with h(t) < 2b in both recursive calls.

Proof. Let s(t) be the left or right subtree parameterizing the appropriate recursive
call. Thus we have to prove (I1 ∧ h(t) < 2b)t←s(t) i.e. b ≥ 0 ∧ b − 1 ≤ m(s(t)) ∧
h(s(t)) < 2b. b ≥ 0 remains true. From b ≤ m(t) and m(t) ≤ 1 +m(s(t)) we have
b− 1 ≤ m(s(t)). h(t) = 2b implies h(s(t)) < 2b.

Theorem 2.11. Provided that the precondition I0 holds, procedure colour paints
the nodes of tree t so that t becomes a red-black tree.

Proof. Lemmas 2.7, 2.8, 2.9, and 2.10 imply that I1 and I2 are invariants of the
program. I1 means that when we arrive at an external leaf, i.e. t = NIL, 0 ≤ b ≤
m(t) + 1 = −1 + 1, as a result b = 0. In the program b is decreased (by 1), exactly
when a node is painted black. Because b is decreased to zero on each branch of
any subtree while we go to a NIL-leaf, we have the same number of black nodes
on these paths. Lemma 2.7 implies that the root node of the tree is painted black.
Lemma 2.10 makes sure that both children of a red node will also be black. These
have the effect of receiving a red-black tree.

Representation transformations of ordered lists 11

Let a crb-tree be a BST which can be coloured as a red-black tree. Then an
AVL tree is also a crb-tree. This also follows from both of the following results.

(1) Bayer proved that the class of SBB-trees properly contains the AVL trees [4],
and we know from 4.7.2 in [3] that the SBB-trees and the red-black trees are
structurally equivalent.

(2) Rank-balanced trees are a relaxation of AVL trees, and form a proper subclass
of crb-trees [5].

Our achievements and these results are unrelated. In this subsection our contribu-
tions are the notion of the minimal height of an AVL tree, theorems 2.6 and 2.11,
and our efficient colouring algorithm proved.

3. Conclusions

This was our question: How to transform a strictly increasing list L from one
representation into another, efficiently?

Summarizing this paper, we already know that given an input representation
of L, we can produce another representation of it in Θ(n) time, if this other rep-
resentation is a linear data structure, an AVL or red-black tree. In some cases we
have direct transformations, in other cases we need a temporary array.

In three cases we invented the necessary algorithms, theorems, lemmas, and
proofs. The first two, (sorted array → balanced BST) programs create new trees;
but the second half of the second algorithm, and the third (AVL tree → red-black
tree) procedure do not make structural changes on the actual tree, just paint its
nodes black, and red. Each of the three programs needs Θ(log(n)) working memory.

Our algorithms and theorems imply three relations among four classes of BSTs:
size-balanced BSTs ⊂ almost complete BSTs ⊂ AVL trees ⊂ crb-trees. Actually,
each of the first three classes is a proper subclass of the next one. For exam-
ple2 BST (((1)2(3))4(5)) is almost complete, but not size-balanced; AVL tree
((((1)2)3(4))5(6(7))) is not almost complete; red-black tree ((1b)2b((3b)4r(5b(6r))))
is not height-balanced.

Open questions: If L is transformed into another type of balanced search trees
(not into an AVL or red-black tree); for example, into a B-tree, we know that the
operational complexity of the transformation is Ω(n), and O(n log(n)). Here we
still need more sharp results. Maybe, from a strictly increasing list, each kind of
balanced search trees can be generated in Θ(n) time? Are there some cases, when
the time complexity is more than Θ(n), but less than Θ(n log(n))?

If the input representation of L is a search tree (or a linked list or a sequential
file), and the output is an AVL or red-black tree, we can make the transformation
in Θ(n) time, but – with the exception of the AVL tree → red-black tree program

2Using the notation (left-subtree root right-subtree) where the empty subtrees are omitted.

12 T. Ásványi

– we actually need a temporary array, thus Θ(n) working space. We ask: In which
cases can we reduce the memory needed?

References

[1] Weiss, Mark Allen, Data Structures and Algorithm Analysis, Addison-Wesley,
1995, 1997, 2007, 2012, 2013.

[2] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to Algo-
rithms, The MIT Press, 2009. (Ebook: http://bit.ly/IntToAlgPDFFree)

[3] Wirth, N., Algorithms and Data Structures, Prentice-Hall Inc., 1976, 1985, 2004.
(Ebook: http://www.ethoberon.ethz.ch/WirthPubl/AD.pdf)

[4] Bayer R., Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms,
Acta Informatica 1, 290–306 (1972), Springer-Verlag, 1972.

[5] Haeupler B., Sen S., Tarjan R.E., Rank-Balanced Trees, Algorithms and Data
Structures: 11th International Symposium, WADS 2009, Banff, Canada, August 2009,
pp 351–362, Springer-Verlag, LNCS 5664, 2009.

Representation transformations of ordered lists 13

