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Abstract

In most performance critical applications the bottleneck is data access.
This problem is mitigated by applying memory hierarchies. There are appli-
cation domains where the traditional, hard-wired cache control mechanisms
are not satisfactory and the programmer is given full control where to place
and when to move data. A known optimization technique on these kind of
architectures is to do block-transfer of data instead of element-by-element
access.

This contribution presents a lightweight library, written in and for C, to
support experiments with algorithm performance on simulated programmable
memory hierarchies. The library provides functions and macros to define
memory layers, available block-transfer operations and data layout. The
algorithm then can be run on a simple desktop computer and the library
combines its real runtime with simulated memory access penalties.
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1. Introduction

Memory access is the performance bottleneck of many computer architectures,
because memory is an order slower than processors. This is mitigated by applying
a memory hierarchy ranging from very fast but small to slow but large memory
layers. If data is loaded to the faster layers by an automatic policy hidden from
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the programmer we speak about cache layers. In some application areas, however,
these policies do not perform well enough. In these cases the programmer is given
control over the faster memory layers: She or he is in charge of which data to store
in which layer and when to move data between the layers.

Platforms with programmable memory hierarchy usually provide special block
copy operations: These can move given amount of data (typically 8, 16 or 32 bytes)
from one layer to another. The cost of these operations in terms of waiting for the
memory is similar to a single byte memory access. These operations make the so
called bulk access optimization possible: A large array is stored in slow memory
that needs to be processed elementwise. This task can be done by copying chunks
of the array using block copy operations one by one to fast memory and process
the chunks there. If the processing involves modification of the array then the
processed chunk is copied back to its original location by a second block copy.

The goal of the created C library is to provide means of experimentation with
bulk access and related optimizations without actually having a hardware platform
with programmable memory hierarchy. Detailed requirements:

e The library has to provide means to define the memory hierarchy, together
with the access costs.

e It has to provide means to define which object is placed in which layer.

e To be able to use the library to measure memory-related performance of an
existing C program should only require minimal changes to the program.

e The library does not have to provide cycle accurate results of a given platform,
instead it has to enable estimations for any platform with a memory hierarchy
configured by the user of the library.

In the next section, related work is presented. Then, section 3 describes how
to use our C library, followed by the implementation details in section 4. Section 5
presents measurement results of various experiments using the simulation library.

2. Related work

The theoretical background of architectures featuring storage elements with dif-
ferent access costs and providing block copy like instructions has been established
decades ago [1]. Regarding the technical aspects of such architectures, paper [4]
describes the details of efficiently using the memory hierarchies. However, this pa-
per mainly concentrates on traditional cache systems, as opposed to programmable
memory hierarchies, which is the main focus of our work.

Software controlled memory hierarchies generated a large amount of research
about related optimization problems. Let us mention a few of these: [9] discusses
heuristics to find good data layout, [10] concentrates on the optimization of energy
consumption and also deals with allocation instructions. Paper [6] shows a dynamic
memory management solution.
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Complementary to the optimization aspect, there have been experiments to in-
crease the abstraction level of programming software controlled memory hierarchies.
Several extensions to existing programming languages [2, 3] or newly proposed lan-
guages [5] emerged. However, in practice, C is still the most widely used language
to program these performance oriented platforms. For this reason C is selected as
the base language of the simulation solution of this paper.

Simulation of program behavior on special hardware is important because it
enables software evaluation without actual deployment. Another use case is the
pre-evaluation of not yet existing hardware. There are simulators targeting specific
hardware platforms accurately or aiming at the simulation of many different aspects
of software behavior, eg. [8]. The XMSIM system [7] uses code transformations
and C++ to evaluate memory hierarchies. It is, in many aspects, similar to the
work presented in this paper. The main differences are that our solution uses C,
and it is much simpler and lighter weight.

3. Users’ perspective

This section presents the API provided by our library. Figures 1 and 2 show a possi-
ble architecture definition and a program using it. The API elements demonstrated
by these examples are explained in the following subsections in detail.

1 #ifndef  EXAMPLE ARCHITECTURE H
9 #define _ EXAMPLE ARCHITECTURE H
3
4 enum memory { scratch = 10, ram = 100 };
5
6 enum copy size { 8bytes = 8,
7 _16bytes = 16,
8 _32bytes = 32
9 }s

10

11 #endif

Figure 1: Example memory architecture definition
(example_architecture.h)

3.1. Architecture definition

The first step of using the library is to describe the basic properties of the mem-
ory hierarchy to be simulated in a header file, see figure 1. Types memory and
copy_size have to be defined as enumeration types, like in the following example.

enum memory { scratch = 10, ram = 100 };
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1 #define ARCHITECTURE "example architecture.h"
2 #include "memory.h"

3 ##include <stdio.h>

4

5 wvoid calibration function () {

6 static int i, data[128];

7 for (i=0; i<128; ++i)

8 data|i] = i;

9 }

10

11 int main() {

12 calibrate(&calibration function , 4%128);
13 int i;

14 char sum;

15 char a[8];

16 #define a access(_a,scratch)

17 char Db[256];

18 #define b access(_b,ram)

19 for( i=0; i<256; ++i)

20 b[i] = i;

21 start ();

22 sum = O0;

23 for( 1i=0; i<256; ++i)

24 sum += b[1i];

25 long long elapsed = stop ();

26 printf("Simple_solution: _%lld _microseconds.\n",
27 elapsed );

28 start ();

29 sum = 0;

30 for ( i=0; i<256; i+=_8bytes ) {

31 block copy( a,scratch ,&( b[i]),ram, 8bytes);
32 sum += a[0] + a[l] + a[2] + a[3]

33 + al4] + a[5] + a[6] + a[7];

34 }

35 elapsed = stop ();

36 printf ("Block_copy_solution:_%lld _microseconds.\n",
37 elapsed );

38 return O0;

39 )

Figure 2: Summing an array with and without block copying
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enum copy_size { _8bytes = 8, _16bytes = 16, _32bytes = 32 };

Here, two memory layers are defined: scratch is a relatively fast memory, its access
costs ten cycles, while accessing ram takes 100 clock cycles. The example also
defines three different block copy widths: 8, 16 and 32 bytes respectively.

3.2. Importing the architecture

The next step is to implement the algorithms to be measured in some C source
file(s). Let us assume that the header file example_architecture.h defines the
simulated architecture. One can refer to it from the source files as seen in lines 1-2
of figure 2:

#define ARCHITECTURE "example_architecture.h"
#include "memory.h"

The ARCHITECTURE symbol defines the name of the header file describing the archi-
tecture, and memory.h is the header file providing the block copy operations and
utility functions to measure simulated execution time.

3.3. Variable definition and access

Lines 15-18 of the example uses special notation to declare the variables that we
want to store in one of the simulated memory layers.

char _a[256];
#define a access(_a,scratch)

The previous two lines define a character array of length 256 stored on the memory
layer called scratch. The real name of this object, seen by the C compiler is _a.
Using a macro definition, we create a synonym (a) for this variable and specify
a memory layer (scratch) for it. Whenever the algorithm accesses the data of
this object, the synonym has to be used. This enables the simulation library to
incorporate the configured memory access cost in the execution time results. On the
other hand, if the object is used without data access, for example, as an argument
of the sizeof or the & operators, the real variable name (_a) has to be used.

3.4. Block copy operations
Block copy operations are simulated by calling the following function:

void* block_copy( void* destination, enum memory dest_mem,
void* source, enum memory sSrc_mem,
enum copy_size size );

Destination and source are two addresses to copy to and from respectively. Param-
eters dest_mem and src_mem are memory layers of the destination and the source:
these can be values of the memory enumeration type as given in the architecture
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description. The last parameter, size, is one of the values of the copy_size enu-
meration type as given in the architecture description: It defines the number of
bytes to copy.

Line 31 of figure 2 demonstrates a call to this function. It copies 8 bytes from
array b in RAM to array a stored on the scratchpad.

3.5. Performance measurement
Before starting the first measurement cycle it is important to call the
double calibrate( void (*f) (), long long cycles );

function. The parameters are a calibration function and the number of clock cycles
the function would take on the simulated hardware to execute. The calibrate
function calculates the execution time of simulated clock cycle on the current ma-
chine. See line 12 of figure 2, where this calibration takes place.

In order to get the simulated execution time of a piece of code, it needs to
be surrounded by calls to the start() and stop() functions. The latter one
returns the simulated execution time in clock cycles. Figure 2 performs two such
measurements, between lines 21-25 and 28-35.

4. Implementation

The C library is implemented in a single header file in terms of macros and inline
functions. It first includes the header file indicated by the ARCHITECTURE symbol
to get access to the configuration of the simulated platform.

The calibrate function executes the calibration function in its first parameter,
measures its execution time, which is then divided by the number of clock cycles
in the second parameter. The result is the amount of time that a clock cycle of the
simulated machine takes on the simulator machine. This is saved for later use.

The start function initializes timeval structures from the sys/time.h stan-
dard header to measure execution time up to the execution of the stop function.
This amount of time is converted to simulated machine clock cycles according to
the ratio given by the calibration. This is one component of the end result.

The other component is the simulated memory access cost. Each object syn-
onyme (see section 3.3) in the program is expanded to a call to the access macro.
Its definition is as follows:

#define access(var,mem) (*(stall(mem),&var))

This is an expression composed by the comma (sequencing) operator of C. First,
the stall function is called with the actual memory layer. Recall that each layer
is an element in an enumeration type, and its integer value is the number of clock
cycles the memory access takes on the simulated platform. The stall function
simply accumulates these simulated stall times, which is the second component of
the simulation’s result. The left hand side of the comma operator defines the value
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of the expression, which is the address of the accessed variable. The dereferencing
operator (*) takes this address and returns the variable itself (var).

The reason for using the combination of the operators & and * instead of simply
writing (stall(mem),var) is that the latter expression is not a left-value and
would not allow the programmer to use the object synonyms on the left-hand side
of assignment operations, for example.

The block_copy function computes the maximum stall of the destination and
source memory layers and uses this maximum as the parameter to the stall func-
tion. The functionality of the operation is implemented by a standard memcpy
call.

5. Experiments

The measurements were carried out on an Acer TravelMate 8572TG laptop with
Intel Core i5-460M processor (2.53 GHz, 3MB L3 cache) and 4 GB DDR3 mem-
ory. The following diagrams show the simulated clock cycles translated back to
microseconds according to the capabilities of this machine.

5.1. Proof-of-concept

In the first, basic experiment we have implemented the summation of a 1024 byte
long unsigned character array two different ways. The array is configured to be
stored in a memory layer causing 100 cycles average stall time at each access.

The first solution processes the array element-by-element. The second one
copies array chunks to faster memory and processes data there. The buffer used
to store the chunks has 10 cycles average stall time and the block-copy operations
used are 32 bytes wide.

In this setup, the block copy solution results in more than 4 times speedup,
according to our simulation. That is, block copying array chunks to faster memory
and processing data there is faster than element-wise processing of the original
array in slow memory.

5.2. Slowdown caused by increasing memory access penalties

This experiment examines the effect of increasing stall time to the run time of
summing the elements of a 1024 element character array. The computation is done
element-by-element, without block copy operations. The stall time of the memory
layer storing the array was increased from 2 cycles up to 256.

The diamonds on the graph show linear slowdown for reference. The runtime
results (squares) show that slowdown is smaller than linear in case of low stall
times and it converges to linear slowdown as stall time increases. This is because,
in the first case, the stall is not overwhelming the overall runtime of the algorithm.
As stalls get longer, they become the most significant factor. This observation
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Slowdown caused by increasing memory access penalties
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Figure 3: Slowdown caused by increasing memory access penalties

suggests the next experiment that examines the stall time versus the computation
time of algorithms.

5.3. Stall — computation ratio

This experiment examines the effect of increasing the number of arithmetic instruc-
tions while keeping the stall time constant. The processed array is 3000 bytes long
with unsigned character elements. Each arithmetic instruction is multiplication,
and no block copying is used. Two memory layers were tested, with stall time of 2
and 256 cycles respectively.
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Figure 4: Memory access vs. computation

In case of small number of arithmetic instructions the stall time is the most
significant factor of runtime, therefore there is considerable difference between the
fast and slow memory layers. Increasing the number of arithmetic instructions
causes sub-linear slowdown in this case. As more and more computation over-
whelms stall time, slowdown tends to be linear and the difference between memory
layers disappears.
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5.4. The effect of changing block-copy size

This experiment examines the effect of increasing block-copy width. The algorithm
used is scalar product working on two unsigned character arrays of 1024 elements
length each. These are stored in a memory layer with 128 cycles long stall, while the
buffer used is stored in memory with only 8 cycles long stall time. The block-copy
width was increased from 1 byte to 32 bytes.
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Figure 5: Effect of increasing buffer size

The results show that block-copying only single bytes chunks actually degrades
performance compared to the element-wise solution. This is expected and shows the
pure cost of the complication of the algorithm caused by block copying. Copying 2
array elements in each iteration already worth it. Figure 5b shows the speedup on
logarithmic scale with the triangles depicting linear speedup for reference. Speedup
is close to linear in the beginning, but using more and more powerful block-copy
instructions result in sub-linear speedups, but still decreasing runtime consider-
ably. The reason for sub-linearity is that the constant non-stall related cost of the
algorithm gets more and more significant as stall time is successfully reduced by
more and more effective block-copy instructions.

5.5. Array-of-structs vs. struct-of-arrays

Block-copy related optimizations often require data layout changes. A typical
example is the array-of-structs to struct-of-arrays transformation. This experi-
ment uses an algorithm that counts the RGB-coloured pixels with red component
stronger than a threshold. The first data layout is array-of-structs: An array with
1024 structs, each storing the RGB values of a pixel. The array is stored in a
memory layer with 100 instructions stall time. The first implementation processes
the array element-wise, the second one uses 32 bytes wide block-copy operations.
This is expected to result in considerable speedup, however, it copies the green
and blue components of the RGB structs superfluously. In order to improve the
solution further, a data layout change is needed: The second layout uses a struct
of three arrays, storing the 1024 red, green and blue components respectively. In
this case the red components are adjacent in memory, leading to much effective
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block-copying.

The simulation data showed almost 3.5 times speedup due to the introduction
of block copying on the first data layout. The layout change results in more than
1.5 times speedup between the two block-copying implementations. At this point,
one could expect more than 1.5 speedup, considering that 2/3 of data copying is
spared. In applications using structs with more fields this speedup could certainly
be increased.

6. Summary

This paper presented a light-weight library, written in C, that allows programmers
to simulate programmable memory hierarchies. The memory hierarchy, its stall
times and the data layout of the program can be freely configured. Only minor
changes are required in existing C code to make the simulation possible.

The paper discussed the API of the library, the implementation details and
presented five different experiments carried out by using the library. On one hand,
the results of the experiments are interesting because they reveal behavioral features
of memory hierarchies in detail. On the other hand, the results can be understood
and explained, which increases confidence in the simulation library itself.
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