
What does Mathematical Notation actually
mean, and how can computers process it?∗

James H. Davenport

University of Bath (U.K.)
J.H.Davenport@bath.ac.uk

Submitted September 14, 2014 — Accepted November 14, 2014

Abstract

Mathematical Notation is generally though of as universal and constant.
This is not as true as the layman thinks, and Notation is in fact an evolving,
subject-specific, collection of sub-notations, where the same symbol can mean
different things in different parts of the same sentence. This paper surveys
the various ways computers process, and help humans to process, the varieties
of notation.
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1. Notation: the perception and the reality

The outsiders’ perception of mathematical notation is that it is unambiguous, un-
changing, precise, and world-wide (or more so1). One need merely Google for the
phrase “mathematically precise” to see many instances of this view. And indeed
there is a lot of truth in this belief: the author has seen mathematicians be unable
to speak to each other, having no human language in common, but be able to
communicate by writing mathematics.

This is not just a popular belief: the computing discipline of “Formal Methods”,
which employs tens of thousands of people in industry, as well as many academics,

∗Thanks to many people: typesetters, editors, OpenMath and MathML colleagues, TEXnicians.
1Witness various science-fiction stories where, e.g., Pythagoras’ Theorem is used as a demon-

stration of intelligence.

Annales Mathematicae et Informaticae
44 (2015) pp. 47–57
http://ami.ektf.hu

47



Idea Anglo-Saxon French German
half-open interval (0, 1] ]0, 1] varies

single-valued function arctan Arctan arctan
multi-valued function Arctan arctan Arctan

{0, 1, 2, . . .} N N N ∪ {0}
{1, 2, 3, . . .} N \ {0} N \ {0} N

Table 1: Cultural Notation Differences

tries to reduce computer programming to mathematics/logic, and has substantial
success in doing so.

However, mathematical notation is certainly not unchanging. Few except the
scholars of the history of notation would recognise in

1cu.m.6ce.p.11co. equale 6ni

[2, attributed to [17]] the modern x3 − 6x2 + 11x = 6.

The + sign is less than 500 years old [19] (this text also introduced − and
√

).

The = sign is slightly younger [18].

Recorde [18] wrote 2a+ b: 2(a + b) is later, but the parenthetic notation won
because it is (much!2) easier for manual typesetting.

Calculus had from the origin, and still has, two very different notations for ordi-
nary differentiation: ẋ versus dx

dt , which have given rise to uxxt versus ∂3u
∂2x∂t .

Relativity introduced the summation convention [7]:
∑3
i=1 cix

i is abbreviated as
cix

i (but cµxµ is short for
∑3
µ=0 cµx

µ, i.e. the range of summation depends
on the alphabet from which the index is drawn).

Mathematical notation is also not quite as international as the layman believes:
see Table 1. The examples there are drawn from relatively advanced mathematics,
but the differences can be more basic – [13, p. 2] lists five different forms of writing
9,435,671 found in Houston schools. These issues can spread to the description
of algorithms such as division, as in Figure 1. Indeed MathML [22] recognises
10 such formats, such as stackedleftlinetop: see http://www.w3.org/Math/
draft-spec/mathml.html#chapter3_presm.mlongdiv.ex.

Mathematical notation is also subject-specific: while the mathematician writes
i for

√
−1, the electrical engineer writes j, reserving i for current. A more chaotic

2The author, in the 1960s, used to typeset mathematics using “cold lead” technology: 2(a+ b)
involved selecting six characters from the cases of symbols, while 2a+ b would have involved
cutting a raised piece of lead to form the overline and two “sleepers” – unraised pieces of lead –
to sit either side of it to ensure that the overline was over the right characters. Furthermore, any
change in the paragraph which moved the a+ b horizontally would involve cutting new sleepers.
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Figure 1: Division (from [13, p. 7])

example of notational clash between subjects can be seen in [5], where the alge-
braist uses [. . .] to indicate a polynomial ring extension, and the biochemist uses
[. . .] to indicate “concentration of”. Hence computations were being conducted in
C[[P ][S][E]]. The fact that “reaction scheme” notation uses + to indicate combi-
nation of reagents rather than mathematical addition is a further complication for
the reader.

The mathematician also knows (without, possibly, having articulated it) that
notation is area-specific within mathematics. For example (2, 4) might be, depend-
ing on the area, any of:

Set Theory The ordered pair “first 2, then 4”;

(Geometry) The point x = 2, y = 4;

(Vectors) The 2-vector of 2 and 4;

Calculus Open interval from 2 to 4;

Group Theory The transposition that swaps 2 and 4;

Number Theory The greatest common divisor of 2 and 4;

What does Mathematical Notation actually mean, and . . . ? 49



In general, these expressions, whilst written identically, are spoken differently by
the mathematician: the written text “we draw a line from (2, 4) to (3, 5)” is spoken
“we draw a line from the point (2, 4) to the point (3, 5)”. This can apply even within
a given sentence3: every group theorist would read

Since Hi ≤ G for i ≤ n (1.1)

as “Since H sub i is a subgroup of G for i less than or equal to n” without, probably,
even noticing that the two instances of ≤ had been pronounced very differently.
This issue is a major challenge for mathematics “text-to-speech” renderers.

2. Imperfections in notation

Mathematical notation has evolved over the centuries, and some innovations were,
with hindsight, less than ideal.

2.1. “Landau” Notation
This notation, apparently actually due to Bachmann [3], has two components. The
first is not controversial: we use O(f(n)) to denote those functions that “grow no
faster than f(n)” – formally (though rarely stated as such)

O(f(n)) = {g(n)|∃N,A : ∀n > N |g(n)| < Af(n)} , (2.1)

and similarly with o, Ω, ω and Θ. The second component of this notation is the
use of “=” with this, as in log2 n = O(log n). This is not the traditional use of
the = sign, as the relation is not symmetric: we can’t write O(log n) = log2 n, for
example, and while we might stretch the notation to O(n2) = O(n3), it is certainly
not the case that O(n3) = O(n2). Again, the spoken language gives a clue: the
(English-speaking) mathematician would say “is” not “equals”.

If we were honest with (2.1), we would write O(log n) ∈ log2 n, but to the best
of the author’s knowledge, [12] is the only textbook to be consistently honest in
this area using ∈, though [9] does refer to O(f) as a set, and is careful to use
neither = nor ∈. Being honest with (2.1) has another advantage: we can write
Θ(f(n)) = O(f(n)) ∩ Ω(f(n)), as [9] does.

2.2. Iterated Functions
No-one could quarrel with any of the following:

sin(x2) square x, then apply sin

(sinx)2 apply sin to x, then square the result

sin(sin(x)) apply sin to x, then apply sin again
3I owe this example to Ieuan Evans of Bath.
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The problem comes with sin2 x, which is generally used to mean (sinx)2, whereas,
if anything, it should mean sin(sin(x)), since this is the sense in which we write
sin−1(x) – apply the inverse operation of sin, not 1/ sin(x). The author is not the
first to object to this notation: “[This] is by far the most objectionable of any”
[2]. The author has not encountered a definitive explanation of the origin of this
notation, which was clearly common by the time of Babbage, but his experience of
manual printing leads him to believe that it was economy of printing:

sin2 θ + φ

2
versus

(
sin

θ + φ

2

)2

obviates searching for the very large brackets, and building up an exponent to a
non-standard height.

2.3. Continued Fractions
The “correct” notation for continued fractions, as in

π = 3 +
1

7 + 1
15+ 1

1+ 1

292+

...

(2.2)

is nearly always reduced to

π = 3 +
1

7+

1

15+

1

1+

1

292+
· · · , (2.3)

which is much easier for (manual) typesetting4, and uses less space – still a relevant
consideration. Furthermore, if the individual terms of the continued fraction are
complicated, as in

α = a0 +
1

a1 + 1
a2+

1

a3+ 1

a4+

...

,

the alternative notation is probably more readable, at least when the reader is used
to it.

2.4. Conclusion
We actually see that the same printed notation can mean very different mathe-
matical objects, and that the same mathematical object can be displayed in many
different styles. This has led to a conceptual split between the computerisation
of the presentation, how the mathematics looks, and the computerisation of the
content (or semantics), i.e. what the mathematics means. This is formalised in the
MathML standard, which has different chapters, and even different basic tokens,
for the two approaches.

4As we (LATEX) have written it (2.2) uses three sizes of digits, while (2.3) only uses one. Most
“Hot metal” printers only had two available, so the result would not be as attractive as (2.2).
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3. Computer Displays of Mathematics

Let us first look at how computers mediate the presentation of mathematical for-
mulae.

3.1. Display of Mathematics
We can distinguish various (overlapping) periods in the computer display of math-
ematics.

1. Images – generally GIF or JPEG formats, though others have been used, and
SVG has become more desirable [20]. The fundamental problem with an im-
age is that it is precisely an image – all machine-processable information has
been lost. In HTML, it is possible to include an ALTernative representation,
and this might be the LATEX source, which at least conveys some information
to a text-to-speech renderer.

2. Computer processing – as photocomposition replaced “hot metal” technology
in typesetting shops, so these photocomposers became computer-controlled.
Various programs, notably troff [16] and the associated mathematics pre-
processor eqn [10], were developed to take advantage of this capability, and
the author’s PhD thesis was ported as [6] to the IBM equivalent program –
YFL [8].

3. A major breakthrough came with Knuth’s TEX [11]. One fundamental de-
velopment here over its predecessors was the principle of boxes with width,
height and depth. The requirement to know the explicit depth of a box is
fundamental, as in (2.2). This has become the de facto gold standard for
mathematical typesetting.

4. The original HTML did not support mathematics, much to its designer’s
regret, and MathML–Presentation 1.0 [21] soon appeared to fill this gap.
However, the browsers of the period did not support the concept of ‘depth’ for
boxes, and this can still be a problem today (Chrome’s support for MathML
has been intermittent, largely for this reason). A further challenge with many
browsers5 is the lack of fonts available.

5. MathJax [14] has emerged as a pragmatic solution to the vagaries of browsers,
and is discussed further in [20].

3.2. Line Breaking
All systems the author knows of make a fundamental distinction between “in-line”
and “display” mathematics, and the user has to state which is required, e.g. $...$
versus $$...$$ in TEX. TEX and its derivatives provide so support for automatic

5And other software: PowerPoint has often given users problems here.
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breaking of lines if a displayed formula overflows the line width, and not much
support for in-line formulae6. In the author’s experience, a significant fraction of
the effort in converting a paper from one format to another is in reflowing the
equations, and maybe converting from display to in-line or vice versa.

However, the author of a web page has no control over the width within which
it is displayed, and hence the browser must do something about linebreaking. This
is also a problem for the various kinds of e-book readers, and partially accounts
for the relative difficulty of handling mathematics, or technical text in general, on
these devices. The MathML standard [23, §3.1.7] provides a suggested algorithm,
but, as it says there:

This algorithm takes time proportional to the number of token elements
times the number of lines.

This problem, with its blend of algorithmics and aesthetics, is at least as difficult
as, but less-researched than, the problem of table layout, as discussed in [15]

3.3. MathML-Presentation

While it is possible to regard MathML-Presentation as “LATEX with pointy brack-
ets”, this view in fact does it a disservice. While f(x), written as f(x) in TEX,
could be written as

<mrow> <mi> f </mi> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow>

it would best be represented in MathML as

<mrow>
<mi> f </mi>
<mo> &ApplyFunction; </mo>
<mrow>

<mo> ( </mo>
<mi> x </mi>
<mo> ) </mo>

</mrow>
</mrow>

In this representation, the function application, and precisely what the argument
is, are clearly apparent. This matters for speech rendering – “f of x”, as well as
semantic analysis. However, it is still presentation, and cannot solve the sort of
problem seen in (1.1).

6TEXnically speaking, the mathematics has been converted into a list of boxes by the time
it is realised that line-breaking is needed, hence rules like “break at the outermost operator” no
longer make sense.
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4. Computer Representation of Mathematical Con-
tent

Originally, there were two different approaches to the description of mathemati-
cal content: OpenMath and MathML-Content. We describe each, and then the
convergence process.

4.1. OpenMath
The OpenMath movement grew out of the Computer Algebra community’s wish
to move formulae between systems. An early document is [1], which emphasises
the importance of extensibility. Indeed, OpenMath is not so much an encoding as
a framework for encoding, and the Standard [4] does not of itself specify how to
transmit anything more complicated than integers. In fact it defines only a few
basic concepts, listed here as their XML encodings.

OMOBJ The basic constructor, whose argument is an OpenMath objects. This exists
so that OpenMath can be embedded in other documents, as formulae are in
text. It’s opposite is OMFOREIGN, indicating that we have some non-OpenMath
constructs (such as Presentation MathML) embedded in an OpenMath ob-
ject.

OMS This indicates an “OpenMath Symbol”, an object to which the OpenMath
process assigns a definite meaning. The arguments are the name of the sym-
bol, e.g. sin, and the location of the “Content Dictionary” in which that
definition can be found. This location can be either a simple name (transc1
would indicate the standard Content Dictionary for basic transcendental func-
tions) or a complete URL.

OMA This indicates an “OpenMath Application”, where the first argument is to be
considered an operator applied to the remaining arguments.

OMBIND This indicates an “OpenMath Binding”, where the first argument is some
operator to bind the variables specified in the second argument in the use of
the third argument. A typical first argument would be
<OMS name="forall" cd="quant1"/> to indicate ∀.

OME This indicates an “OpenMath Error Object” (such as “divide by zero”): the
first argument is the ‘name’ of the error, as an OMS, and the rest are additional
arguments depending on the error.

OMATTR This indicates an “OpenMath Attribution”: the first argument has various
attributes, such as color being red.

OMR This indicates an “OpenMath Reference” and allows us to build directed
acyclic7 graphs, rather than just trees.

7There is an explicit ban on cycles in the OpenMath standard.
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Basic objects are encoded by any of OMV (variables), OMI (integers), OMB (byte
arrays), OMSTR (Unicode strings) or OMF (IEEE floating-point numbers).

4.2. MathML-Content
This was introduced at the start of the MathML process, with a view to being
“an explicit encoding of the underlying mathematical meaning of an expression,
rather than any particular rendering for the expression” [23]. Equally, as have we
have seen, renderings can be ambiguous, and one aim of MathML-Content is to
remove this ambiguity. Consider (F + G)x: this could be either multiplication or
function application: see Figure 2. We note that there is no need for brackets, as

<apply><times/> <apply>
<apply><plus/> <apply><plus/>

<ci>F</ci> <ci>F</ci>
<ci>G</ci> <ci>G</ci>

</apply> </apply>
<ci>x</ci> <ci>x</ci>

</apply> </apply>

Figure 2: Alternative MathML-Content for (F +G)x

<apply>. . . </apply> groups, and the meaning is explicit: in the first we have an
application of <times/> while in the second we are applying F +G.

The original aim in MathML (version 1) was to handle “school” mathematics,
otherwise “K–12”, or Kindergarten to 12th-grade. However, this became a moving
target, as constructs like <div> were introduced.

4.3. Convergence
The reader will have noticed that there is a strong similarity between OpenMath
and MathML-Content, with <apply> corresponding to <OMA>, and <ci> constructs
corresponding to <OMV name= constructs. The difference is that <plus/> is part
of the MathML specification, whereas <OMS name="plus" cd="arith1"/> is just
a symbol in an OpenMath content dictionary. This difference is also the source of
the greater expressivity of OpenMath: MathML needed to charge to accommodate
<div/>, whereas OpenMath just added the veccalc1 content dictionary.

MathML version 2 therefore added the ability to use OpenMath symbols, thus
buying into the expressivity of OpenMath. In MathML version 3, the authors went
further, and defined MathML-Content in terms of OpenMath as follows.

[In §4.2] a core collection of elements comprising Strict Content Markup
are described. Strict Content Markup is sufficient to encode general
expression trees in a semantically rigorous way. It is in one-to-one
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correspondence with OpenMath element set. OpenMath is a standard
for representing formal mathematical objects and semantics through
the use of extensible Content Dictionaries. [23, §4.1.1].

<plus/> is then defined to be a shorthand for <OMS name="plus" cd="arith1"/>,
etc.

5. Conclusion

In terms of reproducing via computers the intricate two-dimensional layouts of
mathematical notation, created (at considerable expense) by cold-metal printers,
the TEX engine [11] has no equal. However, all it does is express how to lay out
the symbols, and says nothing about their meaning. The invisible operator after )
in the LATEX (F+G)x could be either function application or multiplication.

Although it is possible to write MathML-presentation that conveys no more in-
formation than the LATEX, well-written MathML-presentation can convey far more,
as the invisible operator should be either &ApplyFunction; or &InvisibleTimes;.

However, presentation MathML can only go so far in encoding meaning, and
is still unable to resolve the two uses of ≤ in (1.1) for example. For this, we
need a representation of the semantics ,either OpenMath or MathML-Content.
Fortunately, the two have converged so much that they are essentially isomorphic
structures, and we can look forward to greater convergence in the future.
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