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Abstract

We summarise some computational advances in the theory of real algebra/
geometry over the last 15 years, and list some areas for future work.
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1. Introduction

Real Algebra and Geometry have many computational applications. In theory they
solve many problems of robot motion planning [34], though practice is not so kind
[38]. Understanding the (real) geometry of branch cuts [16] is crucial to issues
of complex function simplification [3]. A very powerful technique in computation
real geometry is Cylindrical Algebraic Decomposition, introduced in [12] to solve
problems of Quantifier Elimination.

Notation 1.1. We assume that the initial problem posed has m polynomials, of
degree (in each variable separately) at most d, in n variables.
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2. Quantifier elimination

A key technique we are going to use is Quantifier Elimination: throughout, Qi ∈
{∃,∀}. Given a statement

Φ := Qk+1xk+1 . . . Qnxnφ(x1, . . . , xn),

where φ is in some (quantifier-free, generally Boolean-valued) language L, the
Quantifier Elimination problem is that of producing an equivalent

Ψ := ψ(x1, . . . , xk) : ψ ∈ L.
In particular, k = 0 is a decision problem: is Φ true?

The Quantifier Elimination problem is critically dependent on the language L
and the range of the variables xi. For example

∀n : n > 1⇒ ∃p1∃p2 (p1 ∈ P ∧ p2 ∈ P ∧ 2n = p1 + p2)

[where m ∈ P ≡ m > 1 ∧ ∀p∀q (m = pq ⇒ p = 1 ∨ q = 1)]

is a statement of Goldbach’s conjecture in the language of the natural numbers
with, naïvely, seven quantifiers (five will do if we use the same quantifiers for the
two instances of P).

In fact, quantifier elimination is impossible over the natural numbers [29].
From this it follows that it is impossible over the real numbers if we allow un-
restricted1 trigonometric transcendental functions in L, since n ∈ Z is equivalent
to sin(nπ) = 0. The function sin satisfies a second-order (or coupled pair of first-
order) differential equation(s), and there are positive results provided we restrict
ourselves to Pfaffian functions, i.e. solutions of triangular systems of first-order
partial differential equations with polynomial coefficients. Exploring this is beyond
the scope of this paper: see [24].

However, quantifier elimination is possible for semi-algebraic (polynomials and
inequalities) L over R [35]. Note that we need to allow inequalities: the quantifier-
free form of ∃y : y2 = x is x ≥ 0, and ∃y : xy = 1 has the quantifier-free form x 6= 0.
Formally we define the language of real closed fields, LRCF, to include the natural
numbers, +,−,×,=, > and the Boolean operators. Then ∃y : y2 = x eliminates
the quantifier to (x > 0) ∨ (x = 0) and ∃y : xy = 1 eliminates the quantifier to
(x > 0) ∨ (0 > x).

It is worth noting that in practice we nearly always treat 6= as a first-class
citizen, and indeed this is necessary when proceeding via regular chains (Section
3.3).

3. Cylindrical algebraic decomposition

Unfortunately, the complexity of Tarski’s method is indescribable (in the sense that
no tower of exponentials can describe it) and we had to wait for [12] for a remotely

1Note that the undecidability comes from the fact that the function sin : R→ R has infinitely
many zeros. Restricted versions are a different matter: see [24, (h) p. 214].
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plausible method.

3.1. Collins’ method
Collins proceeds via a cylindrical algebraic decomposition, which is (almost) what
it says: a decomposition of Rn into cells Ci indexed by n-tuples of natural numbers
(so Rn =

⋃
i Ci and i 6= j ⇒ Ci ∩ Cj = ∅), which is (semi-)algebraic in the sense

that every Ci is defined by a finite set of equalities and inequalities of polynomials
in the xi and which is cylindrical, meaning that, for all k < n, if πk is the projection
operator onto the first k coordinates, then, for all i, j, πk(Ci) and πk(Cj) are either
equal or disjoint. Collins constructs a cylindrical algebraic decomposition which
is sign-invariant for the polynomials in φ, i.e. on each cell, every polynomial is
identically zero, or everywhere positive, or everywhere negative.

The construction and use of such a decomposition is roughly2 described below.

1 Let Sn be the polynomials in φ (m polynomials, degree ≤ d, n variables).

2 Compute Sn−1 (Θ(d3m2) polynomials, degree Θ(2d2), n− 1 variables), such
that, over a cylindrical algebraic decomposition of Rn−1 sign-invariant for
the polynomials in Sn−1, the polynomials in Sn are collectively delineable,
meaning each branch of each of them is defined by a continuous algebraic
function of x1, . . . , xn−1, and the branches of all polynomials are either equal
or disjoint;

3 and Sn−2 (Θ((2d2)3(d3m2)2) polynomials, degree Θ(2(2d2)2), n−2 variables)
satisfying a similar condition;

... continue

n and S1 (≤ (2d)3
n

m2n−1

polynomials, degree ≤ 1
2 (2d)2

n−1

, 1 variable) satisfy-
ing a similar condition.

n+ 1 Isolate the N1 roots of S1, decomposing R1 into N1 zero-dimensional points
and N1 + 1 one-dimensional regions. Pick a sample point in each one-
dimensional region.

n+ 2 Over each root, or at the sample points for each interval between roots,
isolate roots of S2, and pick a sample point between each adjacent pair of
roots.

... continue

2n Over each cell in the decomposition ofRn−1, isolate roots of Sn, pick a sample
point between each adjacent pair of roots, and hence make our decomposition
of Rn.

2For example, we ignore the growth in coefficient sizes. This can be (and is in [12]) tracked in
detail, but doesn’t affect the general argument.
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So Sn has invariant signs on each region of Rn, and φ(x1, . . . , xn) has invariant
truth on each region. Therefore all questions about φ reduce to the values of
φ at the sample points.

2n+ 1 Evaluate the truth of Φ on each region R of (x1, . . . , xk)-space, by looking
at the values of φ at the sample points lying above the sample point of R,
and combining them according to the quantifiers in Φ.

2n+ 2 The quantifier-free form Ψ of Φ is then the disjunction of the definitions of
those regions of (x1, . . . , xk)-space for which Φ is true.

The time complexity ends up being bounded [12, Theorem 16] by

O
(
m2n+6

(2d)2
2n+8

)
.

While running time is one measure of complexity, it depends on the various
sub-algorithms, and in practice depends on a lot of implementation details. A
more refined analysis [15] of the complexity of step n+ 1 (and its knock-on effects
on the subsequent steps), for example, reduces the complexity bound3 (not the

actual time) toO
(
m2n+/64

(2d)2
2n+/86

)
. Hence practitioners in the field of cylindrical

algebraic decomposition tend to concentrate on the number of cells in the final
decomposition. This has several advantages [6].

• It can be directly compared across systems, irrespective of hardware or soft-
ware details.

• Most applications do significant amounts of post-processing on the cells, so
the complexity of the post-processing is dependent on the number of cells
(and on the complexity of the descriptions of the cells and their sample points,
which a simple count doesn’t capture directly: however experience shows that
if algorithm A generates more cells than algorithm B on a given problem,
algorithm A’s descriptions are at least as complex).

• For a given problem and software/hardware system, the number of cells and
the processing time tend to be closely correlated: a point first made explicitly
in [18].

• The known lower bounds on complexity [17, 4] are in fact lower bounds on
the number of cells.

The number of cells produced by Collins’ method is bounded, by an analysis similar
to [6], by

O
(
m2n(2d)2·3

n
)
.

3This may seem like a trivial improvement. In fact, the new bound is the fourth root of the
old one, an improvement that would be viewed as massive in other contexts.
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3.2. McCallum’s improvements

Definition 3.1. The order of f at a point x is the least k such that at least one
partial derivative of f of order k does not vanish at x.

McCallum [30] introduced a new projection operator for producing Si−1 from
Si. In fact, he constructs a stronger cylindrical algebraic decomposition, order-
invariant for the polynomials in φ, i.e. on each cell, every polynomial is identically
zero of constant order, or everywhere positive, or everywhere negative. Clearly
every order-invariant decomposition is sign-invariant, but the converse is not true.
This approach has three major features.

pro Despite the fact that we are constructing a richer final object, the new pro-
jection sets are much smaller, and our analysis [6], based on the key result
[30, Lemma 6.1.1] shows that the number of cells is bounded by

2n2
n−1

m2n−1dn2
n−1

,

where the key improvement4 is in the exponent of d, being of the form n2n

rather than 3n.

con The projection might not always work. There is a technical condition, known
as well-oriented in [30], which is only discovered in phases n+ 2, . . . , 2n− 1,
when a polynomial in Sk turns out to vanish identically on a cell of nonzero
dimension. In these circumstances we can either revert to using an improve-
ment [26] of the full Collins method (with its attendant costs), or, as suggested
in [30] but to the best of the author’s knowledge never implemented, when-
ever, in the projection phases, an Si contains a polynomial that might nullify,
add its partial derivatives with respect to each variable to the set Si. Again
to the best of the author’s knowledge, the complexity of this has never been
analysed.

In theory, well-orientedness ought to occur “with probability 1”. However,
humans don’t pose random problems, and the experience of the author and
his Bath colleagues is that well-orientedness can frequently fail to occur,
especially when solving problems coming from simplification, as in [3].

odd Step 2n+ 2 may run into difficulties, a problem first pointed out in [8]. The
roots of S1 isolated in step n+ 1 are of the form “the (unique) root α of p(x)
lying in (β, γ)”, where β, γ ∈ Q (in practice ∈ Z[1/2]). This statement is in
our language LRCF (p(x) = 0 ∧ x > β ∧ γ > x). However, the branches of
S2 (and other Si) are in the form “that branch of p(x1, x2) such that p(α, x2)
lies in (β, γ)”, where β, γ ∈ Q, and this is not in LRCF. We could equally

4An improved analysis of [30, Lemma 6.1.1] in fact gives

22
n+1−2n(md)2

n−1, (3.1)

reducing the exponent of d further.
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describe it as “the third real branch of p(x1, x2) when x1 ∈ (α1, α2)”, but
again this statement is not in LRCF. Now by Thom’s Lemma [14], we can
describe this branch in terms of the signs of p and its derivatives, but, whereas
these derivatives are in the Collins projection, they are not in the McCallum
projection. However, when it comes to step 2n+ 2, we can just add these, so
the additional cost is negligible.

3.3. Regular chains methods

The production of Cylindrical Algebraic Decompositions by Regular Chains was first
introduced in [11], and an improved version (essentially of the first step) was pre-
sented in [9]. Unlike the previous methods, they go via complex space, essentially
as:

1. construct a cylindrical decomposition of Cn which is zero/nonzero-invariant
for the polynomials in φ;

2. refine this to a cylindrical algebraic decomposition of Rn, which will therefore
be sign-invariant for the polynomials in φ;

3. for the same reasons as those described under odd in the previous section, if
necessary add extra derivatives to be able to express the quantifier-free result
in LRCF [10].

Not much is known about the theoretical complexity of regular chain computation
in general, but this method does seem to be5 at least competitive with, and often
better than, our implementation [22] of [30] using the same Maple technology and
libraries6.

4. Equational constraints

It is often the case that φ contains equations: can we make use of these? [31] (based
on [13]) was the first to show how. He defined an equational constraint h = 0 as
an equality logically implied by φ, i.e. φ(x1 . . . , xn) ⇒ h(x1, . . . , xn) = 0. For the
sake of simplicity, we assume that φ actually has the form (h = 0) ∧ φ̂, and that φ̂
involves m − 1 polynomials gi (therefore m in all). We will not ask for an order-
invariant decomposition, but rather an equationally sign-invariant decomposition:
one where the signs of f and the gi are constant on every cell where f = 0 — it
is quite possible that cells where f 6= 0 have a mixture of behaviours of the gi. We
also need h to have main variable xn. Compared with equation (3.1), this generates
[6] at most

22
n+1−2n(m+ 1)2

n−1−1d2
n−1

5Compare the columns RC-Inc-CAD and PL-CAD in [19, Table 1].
6www.regularchains.org.
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cells: replacing m2 by m+ 1 in a single projection, and hence reducing the double
exponent in the overall complexity.

This process is generalised in [5] to consider φ of the form

(f1 = 0 ∧ g1,1 > 0 ∧ · · · )︸ ︷︷ ︸
φ1

∨ (f2 = 0 ∧ · · · )︸ ︷︷ ︸
φ2

∨ · · · ∨ (fk = 0 ∧ gk,1 > 0 ∧ · · · )︸ ︷︷ ︸
φk

. (4.1)

This does have an equational constraint, viz.
∏
i fi = 0, but this is of degree

kd if the fi have degree d. What [5] produces is rather a Truth Table Invariant
decomposition (TTICAD), in which the truth of each φi is invariant on each cell.
Practically this shows further savings, and the complexity is analysed in [6]. It
uses a strict subset of the projection sets Si generated with the equation constraint∏
i fi = 0 (for example not having resxn(f2, g1,1)), so is clearly an improvement.
This method is further generalised in [6] to the case where not every φi in (4.1)

has an equality. The savings are less spectacular than when every φi has an equality,
but much more spectacular than the McCallum projection. The complexity [6]
depends on the shape of φ.

These methods have also been applied to the Regular Chains approach to con-
structing cylindrical algebraic decompositions [2], again with good experimental
results, but no complexity analysis. However, a curious feature comes up here.
The method of [9] is incremental: one starts with the trivial decomposition, in-
variant for ∅, and adds polynomials. [2] build on this, but prune the cylindrical
decomposition being created according to the Boolean structure of φ. This means
that the same φ, but processed in a different order, can produce different cylindrical
algebraic decompositions, and different (though of necessity logically equivalent)
quantifier-free forms. This is analysed in [19].

5. So I have a problem in LRCF: what do I do?

A first remark is that this is a common phenomenon: according to [1], 47% of
the problems in the Tokyo University mathematics entrance examination can be
posed in LRCF. Most of these, however, are actually posed in terms of elementary
geometry, and translating these into forms involving the fewest number of variables
(note how all the complexity formulae are doubly-exponential in n, as are the lower
bounds [17, 4]) is non-trivial: an obvious translation might have twelve variables,
whereas we “really only need” three.

There are also many choices of the precise way the problem is formulated: see
[7] in general for projection-based methods, [19] for Regular Chains methods, and
[38] for a specific example in robot motion planning.

Even after doing this, in fact, you probably have a problem that can be ex-
pressed in LRCF in many ways. If our goal is quantifier elimination, then step
2n + 1 implies that the variables must be projected (in terms of the cylindricity
property, even if we are using Regular Chains methods) in the order implied by the
quantifiers. But this still leaves much unspecified, e.g. x1, . . . , xk can be projected
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in any order, and we can apply ∀x∀y ≡ ∀y∀x (and its ∃ equivalent). Other appli-
cations, such as robot motion planning [34] and simplification [3] impose no con-
straints on the variable order. Hence an LRCF-problem with n variables may have
up to n! possible instantiations as a cylindrical algebraic decomposition problem.
This problem was first studied systematically in [18], who produced and evaluated
various heuristics to pick the best order. Having observed that no one heuristic is
best for all problems, [25] used machine learning on a large set of problems (using
McCallum-style methods) to see if machine learning could predict which heuristic
to use in a given setting, and found that this did indeed do better than any fixed
choice of heuristic. [21] explored the choice of variable ordering for Regular Chains
methods. The theoretical importance of variable ordering is shown by [4, Theorem
7] who produce a family of systems that has doubly-exponentially many cells in
one ordering, and a constant number (independent of n) in another. Conversely
[4, Theorem 8] there are problems that are doubly exponential for all orders.

If a problem involves equalities, then, as well as the simplifications in Section 4,
we can also use the equalities to perform algebraic simplification of each other, and
of the appropriate inequalities. This was first noticed in the case of branch cuts by
Phisanbut [33, 32], where a simple cut like <(z) < 0 ∧ =(z) = 0 becomes f<(z) <
0 ∧ f=(z) = 0, but f<(z) is only relevant when f=(z) = 0. This was generalised in
[36], who observed that it is often helpful, but not always. They evaluated several
heuristics, including those from [18], to determine which formulation of a given
problem to solve.

In the case of Projection/Lifting methods, whether Collins or McCallum, it is
nearly always the case that the lifting step (n + 1, . . . , 2n) are by far the most
expensive. Within these, it is the lifting of cells of non-full dimension that is
the most expensive component, since in general this will involve algebraic number
manipulations. Hence [37] suggest using a variant of these steps that only lifts
the full-dimensional cells, picking the ordering (or other formulation choices) that
minimises this, and then recovering the lower-dimensional cells. Further improved
lifting techniques in the presence of equational constraints are described in [20].

6. Conclusion

6.1. Overview

In the fifteen years since [31], there has been a great deal of work on algorithms
for cylindrical algebraic decomposition, both for quantifier elimination and other
problems. Notably the Regular Chains method [11, 9] has appeared as a competitor
to the traditional Projection/Lifting approach of [12] and his school. Nevertheless,
there are at least as many open questions as there were before, and some are given
below.

42 J. H. Davenport



6.2. Open questions
1. Produce some complexity results for the Regular Chains method (Section

3.3). It follows from the work of that section, and the fact that quantifier
elimination is doubly exponential [17, 4] that Regular Chain computation (of
the kind used in these computations) must be, but this has not been explored
systematically.

2. Formalise the “we only need” issue of writing LRCF formulae expressing prob-
lems with as few variables as possible. A lot of this seems to be a variation
on “without loss of generality”, for example a naïve algebraicisation of

Given a triangle ABC

might be

Given a triangle ABC where A is at (ax, ay), B is at (bx, by) and C
is at (cx, cy)

but a mathematician using coordinates is more likely to write

Given a triangle ABC where, without loss of generality, A is at (0, 0),
B is at (0, 1) and C is at (cx, cy)

thus reducing the number of free variables by four, and more if we then need
to choose a point on AB.

3. Extend the machine learning approach of [25] to a wider class of problems, and
also a wider set of choices, not just variable ordering but also preconditioning
[36] and formulation [19].

4. The method of [37], which seems to be the most accurate predictor of the
“best formulation”, is only applicable to Projection/Lifting methods. Can the
fundamental idea be applied to Regular Chains methods as well?

5. The lower bounds for quantifier elimination are based on a construction which
alternates quantifiers, e.g. [4] uses ∃∀∀︸︷︷︸

block

. . . ∃∀∀︸︷︷︸
block

. There are theoretical meth-

ods [23] which are doubly-exponential only in the number a of alternations
of quantifiers: (md)n

O(a)

. To the best of the author’s knowledge, these have
never been implemented. Note, however, that since all the Projection/Lifting
algorithms we have shown are doubly-exponential in n (just in the Projection
phases), this means that cylindrical algebraic decomposition is theoretically
not the best tool.

6. This point is borne out by [27, 28], who solve the purely existential version
of quantifier elimination, more precisely

∃x1∃x2 . . . ∃xnφ(x1, . . . , xn), (6.1)
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by a method which can be thought of as a blend of the algebra underpinning
cylindrical algebraic decomposition with the methodology of modern SAT-
solvers. It currently seems to be impossible to generalise beyond (6.1), even
to a single alternation, but again this is a topic crying out for progress.
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