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Abstract

Let K be a field of characteristic p > 2, and G a nilpotent group with
commutator subgroup of order pn. Denote by (KG)∗ the set of symmetric
elements of the group algebra KG with respect to an oriented classical in-
volution. Then KG satisfies all Lie commutator identities of degree pn + 1
or more. We will show that (KG)∗ satisfies a Lie commutator identity of
degree less than pn + 1 if and only if G′ is not cyclic. Consequently, if G′ is
cyclic, then the Lie nilpotency index and the Lie derived length of (KG)∗ are
just the same as of KG, namely pn +1 and dlog2(pn +1)e, respectively. The
corresponding results on the set of symmetric units of KG are also obtained.
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1. Introduction

The Lie derived length and the Lie nilpotency index of group algebras and their
certain subsets have been studied separately for many decades. Both of these prop-
erties can be characterized by specific polynomial identities, where the polynomials
are multilinear Lie monomials. In this paper we investigate group algebras satis-
fying general multilinear Lie monomial (Lie commutator) identities, and from that
draw conclusions about the above properties.
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Let KG denote the group algebra of a group G over a field K. Then KG, with
the Lie commutator [x, y] = xy − yx serving as the Lie bracket, can be considered
as a Lie algebra. Let S be a nonempty subset of KG. We will consider the elements
of S as Lie commutators of weight 1 on S, and inductively, an element [x, y] of KG,
where x and y are Lie commutators of weight u and v on S with u+ v = r, will be
called a Lie commutator of weight r on S.

Denote by K〈x1, . . . , xm〉 the polynomial ring in the non-commuting indeter-
minates x1, . . . , xm over K. The set S is said to satisfy a polynomial identity if
there exists a nonzero polynomial in K〈x1, . . . , xm〉 such that f(s1, . . . , sm) = 0 for
all s1, . . . , sm ∈ S. Let now X be the set of the indeterminates in K〈x1, . . . , xm〉.
A Lie commutator of weight r on X is called a multilinear Lie monomial of de-
gree r, if it is linear in each of its indeterminates. We will say that the subset S
of KG satisfies a Lie commutator identity of degree r, if there exists a nonzero
multilinear Lie monomial f of degree r in K〈x1, . . . , xm〉 with f(s1, . . . , sm) = 0
for all s1, . . . , sm ∈ S. Then we also say: S satisfies the Lie commutator iden-
tity f(x1, . . . , xm) = 0. We will denote by f(S) the image of the set S under the
polynomial function f .

For subsets V,W ⊆ KG, by the symbol [V,W ] we mean the subspace of KG
generated by all Lie commutators [v, w] with v ∈ V,w ∈W . Set γ1(S) = δ[0](S) =
S, and by induction, let γn+1(S) = [γn(S), S] and δ[n+1](S) = [δ[n](S), δ[n](S)]. S
is said to be Lie nilpotent, if γn(S) = 0, and Lie solvable, if δ[n](S) = 0 for some
integer n. The first such n is called the Lie nilpotency index or the Lie derived
length of S and denoted by tL(S) and dlL(S), respectively. It is obvious that S is
Lie nilpotent of index n, or Lie solvable of derived length n, if and only if it satisfies
the polynomial identity

[x1, . . . , xn] = 0, (1.1)

or
[x1, . . . , x2n ]

◦ = 0, (1.2)

respectively, where the Lie commutators on the left-hand sides are defined induc-
tively to be

[x1, . . . , xn] = [[x1, . . . , xn−1], xn]

and
[x1, . . . , x2n ]

◦ = [[x1, . . . , x2n−1 ]◦, [x2n−1+1, . . . , x2n ]
◦]

with [x1, x2]
◦ = [x1, x2], and n is the least such integer.

Besides Lie nilpotence and Lie solvability, many other properties can be originated
from Lie commutator identities. For example, KG is said to be Lie centre-by-
metabelian (or Lie centrally metabelian), if δ[2](KG) is central in KG, or, equiva-
lently, KG satisfies the Lie commutator identity

[[[x1, x2], [x3, x4]], x5] = 0 (1.3)

of degree 5. However, as we will see, the identities (1.1) and (1.2) play special roles.
For a prime p we say that G is p-abelian, if its commutator subgroup G′ is a

finite p-group. By definition, the 0-abelian groups are the abelian groups. In what
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follows, p will always denote the characteristic of the field K. According to [7],
KG satisfies a polynomial identity if and only if G has a p-abelian subgroup of
finite index. Now, assume that the Lie ideal L of KG satisfies the Lie commutator
identity f(x1, . . . , xm) = 0. If f is of degree 1, then f(x1, . . . , xm) = xi for some
i ∈ {1, . . . ,m}, so L = δ[0](L) = f(L). Suppose that there exists k such that
δ[k](L) ⊆ f(L) whenever f is of degree less than r. Let now f be of degree r. Then
f can be expressed as the Lie commutator of the multilinear Lie monomials f1 and
f2 of degrees less than r. By the inductive hypothesis, there exist k1, k2 such that
δ[k1](L) ⊆ f1(L) and δ[k2](L) ⊆ f2(L). Assume that k1 ≤ k2, and let k = k2 + 1.
Then

δ[k](L) = [δ[k2](L), δ[k2](L)] ⊆ [δ[k1](L), δ[k2](L)]

⊆ [f1(L), f2(L)] = f(L).

We have just proved that if L satisfies a Lie commutator identity, then L is Lie
solvable. The converse is trivial.

The Lie solvable group algebras are described in [6]: KG is Lie solvable if
and only if one of the following conditions holds: (i) p 6= 2, and G is p-abelian;
(ii) p = 2, and G has a 2-abelian subgroup of index at most 2. Consequently,
for p = 0, KG satisfies a Lie commutator identity precisely if G is abelian, and
then, of course, KG satisfies all Lie commutator identities of degree at least 2.
Therefore, in the sequel we can restrict ourselves to the case only when p > 0 and
G is nonabelian. In [6], a necessary and sufficient condition can also be found for
the Lie nilpotence of the group algebra KG: KG is Lie nilpotent if and only if G is
nilpotent and p-abelian. It is easy to check that if S ⊆ KG is Lie nilpotent of class
n (in other words, S satisfies (1.1)), then S satisfies all Lie commutator identities
of degree at least n.

Applying Theorems 3 and 6 of [5], it is not so hard to derive that on group
algebras, all Lie commutator identities of degree r are equivalent while r ≤ 4.
Nevertheless, according to [9], the group algebra F3D6, where F3 denotes the field
of three elements and D6 the dihedral group of order 6, satisfies the identity (1.3),
but, by [6], it does not satisfy (1.1) for n = 5. It is worth mentioning here that
the question of the equivalence of Lie commutator identities of the same degree is
raised in the “Dniester Notebook: Unsolved Problems in the Theory of Rings and
Modules” (see Problem 2.6 in [8, p. 482]).

Let now ∗ be an involution of the group algebra KG, and let (KG)∗ = {x ∈
KG : x∗ = x} the set of symmetric elements with respect to ∗. Evidently, (KG)∗
is a subspace of KG, but not always closed under Lie commutator. Although
the classification of all involutions of group algebras is still open, the exploration
of the algebraic properties of symmetric elements is an extensively studied area
of group algebras. Most of the results are known with respect to the so-called
classical involution, which sends every element of G into its inverse. By ∗ we will
understand a more general involution introduced by S. P. Novikov. Let σ : G →
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{±1} a homomorphism and let ∗ : KG→ KG be given by

∑

g∈G
αgg



∗

=
∑

g∈G
αgσ(g)g

−1.

This involution is called oriented classical involution of KG. According to [3], it
can happen that (KG)∗ satisfies a Lie commutator identity, but the whole KG
does not satisfy the same identity.

Now, we will assign group commutators to Lie monomials. Let τ be the map-
ping from the set of all Lie commutators on the subset X = {x1, . . . , xm} of
K〈x1, . . . , xm〉 into the free group F with generators u1, . . . , un, given by τ(xi) =
ui, and for the Lie commutator [x, y] of weight r > 1 on X, let τ([x, y]) be the
group commutator of τ(x) and τ(y). The word w in F will be called a multilinear
group commutator of degree r, if it is the image of a multilinear Lie monomial of
degree r under τ . Denote by U(S) the set of units of the set S ⊆ KG. We will say
that U(S) 6= ∅ satisfies a group commutator identity of degree r, if there exists a
nontrivial multilinear group commutator w(u1, . . . , un) of degree r in the free group
with generators v1, . . . , vn such that w(h1, . . . , hn) = 1 for all h1, . . . , hn ∈ U(S).

We will say that U(S) is nilpotent of class n − 1, or solvable of length n, if
U(S) satisfies the group commutator identity (v1, . . . , vn) = 1, or (v1, . . . , v2n)◦ =
1, respectively, where the group commutators (v1, . . . , vn) and (v1, . . . , v2n)

◦ are
defined by induction, analogously to (1.1) and (1.2), and n is the first such integer.
The nilpotency class and the derived length of U(S) will be denoted by cl(U(S))
and dl(U(S)), respectively.

Our main theorem is the following.

Theorem 1.1. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group with cyclic commutator subgroup. Then:

(i) (KG)∗ satisfies no Lie commutator identity of degree less than |G′|+ 1;

(ii) provided that G is torsion, U∗(KG) satisfies no group commutator identity of
degree less than |G′|+ 1.

By Theorem 1 of [2], if G′ is not cyclic, then tL(KG) ≤ |G′|, or in other words,
KG satisfies all Lie commutator identities of degree at least |G′|. Combining this
result with Theorem 1.1, we can state the next corollary.

Corollary 1.2. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group. Then the group algebra KG satisfies all Lie commutator identities
of degree |G′|+1 or more, and U(KG) satisfies all group commutator identities of
degree |G′|+1 or more. Furthermore, (KG)∗ satisfies a Lie commutator identity of
degree less than |G′|+ 1 if and only if G′ is not cyclic. Provided that G is torsion,
U∗(KG) satisfies a group commutator identity of degree less than |G′| + 1 if and
only if G′ is not cyclic.
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Finally, we draw conclusions about the Lie nilpotency index and the Lie derived
length of (KG)∗, such as the nilpotency class and derived length of U∗(KG).

Corollary 1.3. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group. Then tL((KG)∗) ≤ |G′| + 1, with equality if and only if G′ is
cyclic. Provided that G is torsion, cl(U∗(KG)) ≤ |G′|, with equality if and only if
G′ is cyclic.

Corollary 1.4. Let K be a field of characteristic p > 2, and let G be a nilpotent
p-abelian group with cyclic commutator subgroup. Then

dlL((KG)∗) = dlL(KG) = dlog2(|G′|+ 1)e.

In addition, if G is torsion, then dl(U∗(KG)) = dlL(KG).

2. Proof of Theorem 1.1

Let G be a finite p-group with cyclic commutator subgroup of order pn, where
p is an odd prime, and let K be a field of characteristic p. We will denote by
ω(KG) and ω(KG′) the augmentation ideals of KG and KG′, respectively. The
assumption guarantees that they are nilpotent ideals, and by Lemma 3 of [1], the
relations

[ω(KG′)m, ω(KG)l] ⊆ ω(KG)l−1ω(KG′)m+1;

[ω(KG)k, ω(KG)l] ⊆ ω(KG)k+l−2ω(KG′);

[ω(KG)kω(KG′)m, ω(KG)lω(KG′)n] ⊆ ω(KG)k+l−2ω(KG′)n+m+1

(2.1)

hold for all k, l,m, n ≥ 1. By definition, ω(KG)0 = KG.
We will also use the following well-known identity: for any g ∈ G and integer k

gk − 1 ≡ k(g − 1) (mod ω(KG)2). (2.2)

Let Ir denote the ideal ω(KG)3ω(KG′)r−1+KGω(KG′)r of KG, and let S be the
subspace of KG spanned by the elements

(a− 1)(a−1 − 1), (b− 1)(b−1 − 1), (ab− 1)((ab)−1 − 1),

with a, b ∈ G such that the commutator x = (a, b) is of order pn. For the multilinear
Lie monomial f we will denote by wf the multilinear group commutator τ(f).

Lemma 2.1. S satisfies no Lie commutator identity of degree less than pn + 1,
and 1 + S satisfies no group commutator identity of degree less than pn + 1.

Proof. We show that for arbitrary multilinear Lie commutator f(x1, . . . , xm) of
degree r, and for any element v of the set V = {(a − 1)2, (b − 1)2, (a − 1)(b − 1)}
there exist s1, . . . , sm ∈ S such that

f(s1, . . . , sm) ≡ wf (1 + s1, . . . , 1 + sm)− 1 ≡ v(x− 1)r−1 (mod Ir).
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This goes by induction on r. If r = 1, then f(S) = S, and using (2.2) we have

−(a− 1)(a−1 − 1) ≡ (a− 1)2 (mod ω(KG)3),

−(b− 1)(b−1 − 1) ≡ (b− 1)2 (mod ω(KG)3)

and

−(ab− 1)((ab)−1 − 1) ≡ (ab− 1)2 = ((a− 1)(b− 1) + (a− 1) + (b− 1))2

≡ (a− 1)2 + (b− 1)2 + 2(a− 1)(b− 1) (mod ω(KG)3).

Hence,

2−1((a− 1)(a−1 − 1) + (b− 1)(b−1 − 1)− (ab− 1)((ab)−1 − 1))

≡ (a− 1)(b− 1) (mod ω(KG)3).

As ω(KG)3 ⊆ I1, the claim is true for r = 1. Assume the claim for all Lie commu-
tator identity of degree less than r, and let f be a multilinear Lie commutator of
degree r. Then f can be expressed as a Lie commutator of the multilinear Lie com-
mutators f1 and f2 of degree d and r−d, respectively. By the inductive hypothesis,
for all v1, v2 ∈ V there exist s1, . . . , sm ∈ S such that

f1(s1, . . . , sm) ≡ wf1(1 + s1, . . . , 1 + sm)− 1 ≡ v1(x− 1)d−1 (mod Id),

f2(s1, . . . , sm) ≡ wf2(1 + s1, . . . , 1 + sm)− 1 ≡ v2(x− 1)r−d−1 (mod Ir−d).

Now we can apply (2.1) and the equality

KGω(KG′)k = ω(KG′)k + ω(KG)ω(KG′)k

which holds for any k ≥ 1 to get that both [Is, It] and [ω2(KG)ω(KG′)s−1, It] are
subsets of Is+t for any s, t ≥ 1. Then

f(s1, . . . , sm) ≡ [v1(x− 1)d−1, v2(x− 1)r−d−1] (mod Ir),

furthermore,

[v1(x− 1)d−1, v2(x− 1)r−d−1]

= v1[(x− 1)d−1, v2(x− 1)r−d−1] + [v1, v2(x− 1)r−d−1](x− 1)d−1

= v1[(x− 1)d−1, v2](x− 1)r−d−1 + [v1, v2](x− 1)r−2,

and by using the first relation of (2.1) we have

f(s1, . . . , sm) ≡ [v1, v2](x− 1)r−2 (mod Ir). (2.3)

It remains to compute the Lie commutators [v1, v2] for all possible v1 and v2.
According to [1] (see p. 4911),

[(a− 1)2, (b− 1)2] ≡ 4(a− 1)(b− 1)(x− 1) (mod I2),

[(a− 1)2, (a− 1)(b− 1)] ≡ 2(a− 1)2(x− 1) (mod I2),

[(b− 1)2, (a− 1)(b− 1)] ≡ 2(b− 1)2(x− 1) (mod I2).

(2.4)
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For the sake of completeness, we confirm here the first congruence, the other two
can be obtained similarly. Clearly,

[(a− 1)2, (b− 1)2] = (a− 1)[a, (b− 1)2] + [a, (b− 1)2](a− 1)

= (a− 1)(b− 1)[a, b] + (a− 1)[a, b](b− 1)

+ (b− 1)[a, b](a− 1) + [a, b](b− 1)(a− 1).

Furthermore, [a, b] = ba(x − 1) = (ba − 1)(x − 1) + (x − 1) and (g − 1)(h − 1) =
(h − 1)(g − 1) + hg((g, h) − 1) for any g, h ∈ G, so every summand on the right
hand side is congruent to (a−1)(b−1)(x−1) modulo I2. This implies the required
congruence.

So, by (2.4), for any v ∈ V we can choose v1 and v2 such that

f(s1, . . . , sm) ≡ αv(x− 1)r−1 (mod Ir),

for some α ∈ K \ {0}.
For the sake of brevity, we write 1 + s instead of (1 + s1, . . . , 1 + sm). Then

wf (1 + s) = (wf1(1 + s), wf2(1 + s))

= 1 + wf1(1 + s)−1wf2(1 + s)−1[wf1(1 + s), wf2(1 + s)]

≡ 1 + wf1(1 + s)−1wf2(1 + s)−1f(s1, . . . , sm)

≡ 1 + αv(x− 1)r−1 (mod Ir).

Let k be an integer for which xk divides the polynomial f(x1, . . . , xm); let s′k =
α−1sk, and s′i = si for all i 6= k. Then

f(s′1, . . . , s
′
m) ≡ wf (1 + s′1, . . . , 1 + s′m)− 1 ≡ v(x− 1)r−1 (mod Ir),

and the induction is done.
Now, applying the results of [4] we show that w = v(x− 1)r−1 6∈ Ir for r = pn.

Denote by t the weight of the element x−1. Then t ≥ 2, and w ∈ ω(KG)2+t(r−1) \
ω(KG)3+t(r−1). Since ω(KG)i has a basis over K consisting of regular elements
of weight not less than i, we have that Ir = ω(KG)3ω(KG′)r−1 ⊆ ω(KG)3+t(r−1).
Consequently, w 6∈ Ir. This means that f(S) contains a nonzero element for any
Lie commutator identity f of degree pn or less.

As every element of G has odd order, the orientation σ has to be trivial, so
all elements of S belong to (KG)∗, further 1 + S ⊆ U∗(KG). This implies the
following statement.

Lemma 2.2. Let K be a field of characteristic p > 2, and let G be a finite p-group
with cyclic commutator subgroup. Then

(i) (KG)∗ satisfies no Lie commutator identity of degree less than |G′|+ 1;

(ii) U∗(KG) satisfies no group commutator identity of degree less than |G′|+ 1.
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Now, we are ready to prove our main theorem. We will use that the subspace
(KG)∗ of KG is spanned by the set {g + σ(g)g−1 : g ∈ G}.

Proof of Theorem 1.1. Let f(x1, . . . , xm) be a multilinear Lie commutator of degree
less than |G′|+ 1.

According to Theorem 1.7 of [10], the FC-groupG is isomorphic to a subgroup of
the direct product of the torsion FC-group G/A and the torsion-free abelian group
G/T , where A is a maximal torsion free central subgroup, and T is the torsion part
of G. Hence, G′ ∼= (G/A)′. Assume that A ⊆ kerσ. Then the involution ∗ induces
the involution 

 ∑

g∈G/A

αgg




?

=
∑

g∈G/A

αgσ(g)g
−1,

on K[G/A], which is also an oriented classical involution, and the elements of
(K[G/A])? are exactly the homomorphic images of the elements of (KG)∗ under the
natural homomorphism ϕ : KG→ K[G/A]. Choose the elements g, h ∈ G/A such
that (G/A)′ = 〈(g, h)〉. As a finitely generated torsion nilpotent group, H = 〈g, h〉
is finite, and it is the direct product of its Sylow subgroups. Denote by P the Sylow
p-subgroup of H. Since G′ is a p-group, we have that P ′ = H ′ ∼= G′. By applying
(i) of Lemma 2.2 for the finite p-group P , we obtain that there exist elements
s1, . . . , sm ∈ (KG)∗ such that ϕ(s1), . . . , ϕ(sm) ∈ (KP )? and

f(ϕ(s1), . . . , ϕ(sm)) 6= 0.

Then ϕ(f(s1, . . . , sm)) 6= 0, and f(s1, . . . , sm) 6= 0, as desired.
In the remaining case when A 6⊆ kerσ, let us take an element a from A \ kerσ.

Then G = kerσ ∪ a kerσ, and as a is central in G, it follows that (kerσ)′ = G′.
Now we may repeat the proof to have that (K kerσ)∗ does not satisfy f . Since
(K kerσ)∗ ⊆ (KG)∗, the first part of the theorem is proved.

Assume that G is torsion, and denote by P the Sylow p-subgroup of the finite
nilpotent group H = 〈g, h〉, where g, h ∈ G such that 〈(g, h)〉 = G′. Then P ′ = G′,
and by (ii) of Lemma 2.2, U∗(KP ) satisfies no Lie commutator identity of degree
less than |G′|+ 1, so is U∗(KG).
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