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Abstract

In computer graphics and geometric modeling for good quality displaying
of an object it is required that the object must fit on the screen. It often
happens, for example when we are using modeling software, that the object
we would like to rotate around an axis, or edit from another point of view,
is partly out of the screen, and thus some parts are not visible. In two
dimensions the isoptic curve of a curve is constructed by involving lines with
a given angle intersect each other at a certain point of the isoptic curve.
In three dimensions the points of an isoptic curve may be the admissible
positions of the camera. So from these points we can watch the object with
respect to the given viewing angle. The purpose of this paper is to find a
general method and computational algorithm that helps to locate the closest
possible position of the camera, which positions form a closed curve around
the surface. The developed algorithm produces this curve for a special case.
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1. Introduction

Let us overview briefly the planar case of the isoptic problem.
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Definition 1.1. For a given curve C, consider the locus of points from where the
tangents to C meet at a fixed given angle.

The isoptic of quadratic curves can be determined from the definition by calcu-
lation based on elementary geometric results [5] and several further results are also
known, mainly about classical curves [6, 7]. For freeform curves, the intersections
of the appropriate tangents of the given curve determine the points of the isoptic
curve. In this case we need to derivate the given curve to find the involving lines.
With this algorithm we can find the set of points which form the isoptic curve of
convex curves (see Figure 1).

Figure 1: The isoptic curve with 90◦ (red one) of a Bézier curve

In case of Bézier curves there is a calculation for obtaining an exact formula of
the isoptic curve based on [1]. This method defines the isoptic as the envelope of
envelopes of families of isoptic circles over the chords of the Bézier curve. Although
it cannot always be resolved exactly, the numerical algorithms can provide sufficient
results as well.

In this paper we provide a way of generalization of isoptics in 3D and compute
a curve around a convex surface from which the surface can be seen under a given
angle.

2. Isoptic of surfaces

The first difficulty is that the generalization of the two-dimensional definition is not
straightforward and not unique in the three dimensional space. It is not evident
how to define the angle of view in 3D. One possibility is looking for points, from
where we can draw tangent lines to the surface, which intersect each other at the
given angle, but this computation is not uniquely determined. So we are looking
for points in a special case for Bézier surfaces.

Figure 2 shows the special circumstances. At first, we suppose that the surface
is convex and it is entirely above (but as close as possible to) the base plane which is
given by the equation Y = 0 in the coordinate system. Moreover, we suppose that
the origin of the coordinate system is in the orthogonal projection of the surface
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onto the base plane. We will search for points of this plane around the surface,
from which the viewing angle, that is the angle of the plane Y = 0 and the deepest
tangent line to the surface from this point is a predefined angle. We will call these
points isoptic points of the surface. To locate an isoptic point we use two vectors:
m and v. The vector m is parallel to the X-axis; the vector v is rotated around
the X-axis. This angle of the rotation needs to be selected as follows. If we look
from one isoptic point to the origin, the surface should fit on the viewing screen
on the top. For all points it is true that vector v and one of the normal vectors of
the surface are orthogonal. It is also true for the vector m. There are two ways to
do the scan: by rotating the surface and by rotating vectors m and v around the
Y -axis. With this condition, we can find several points on the plane Y = 0, and
based on these points we can produce a curve around the surface (see Figure 3)
interpolating these points by a closed B-spline curve [2]. In the next subsections
details of the two computational approach are provided.

Figure 2: The special case for finding isoptic points of Bézier sur-
face

Figure 3: Result of the algorithm
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2.1. Rotating the control points of the surface
In this algorithm we have to rotate the control points of the Bézier surface, which
is given by the following equation:

S(u, v) =
n∑

i=0

n∑

j=0

Bn
i (u)B

n
j (v)Pi,j .

We need to compute the normal vector by the partial derivatives of the surface, with
respect to the parameters u and v: U(u, v) = ∂S(u,v)

∂u and V (u, v) = ∂S(u,v)
∂v . The

normal vector will be the cross product of the two partial derivatives: N(u, v) =
U(u, v)×V (u, v).

We can write the equation of a plane that touches the Bézier surface in the
point from where the normal vector perpendicular to vectors m and v:

Nx(u, v)(X −X0) +Nz(u, v)(Z − Z0) = Ny(u, v)Y0,

where X0, Y0, Z0 are the coordinates of the points of the Bézier surface. The
isoptic point is lying on the line in which this plane and the base plane given by
the equation Y = 0 intersect each other. By solving this equation with X = 0, we
obtain the distance from the origin. This will be the Z coordinate of the isooptic
point:

Z =
Ny(u, v)Y0 −Nx(u, v)X0

Nz(u, v)
+ Z0.

The X and Y coordinates of this point are equal to zero. We need to rotate
this point with the same angle as we used to rotate the surface. While we rotate
the control points around the Y -axis the following conditions need to be satisfied:
〈N(u, v),m〉 = 0 and 〈N(u, v),v〉 = 0, that means the following:

Nx(u, v) = 0

sin(α)·Ny(u, v) = cos(α)·Nz(u, v).

If we can solve this equation for u and v we obtain an exact formula to compute the
normal vector and from this we can calculate exactly the position of each isoptic
point. Unfortunately the solution cannot be given in closed form in most of the
cases, but numerical methods work sufficiently.

2.2. Rotating vectors m and v
The other way to find the isoptic points is to rotate the vector m and v around the
Y -axis. The coordinates of the vectors will be the following:

m = (cos(β), 0,− sin(β)) and v = (− sin(β)· cos(α), sin(α),− cos(β)· cos(α)),
where β is the angle of rotation around the Y -axis, in the interval [0, 2π]. The
condition of the search is that 〈N(u, v),m〉 = 0 and 〈N(u, v),v〉 = 0 have to be
fulfilled. From these we obtain the following:

Nx(u, v) = tanβ·NZ(u, v)
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Ny(u, v) = cotα· 1

cosβ
·Nz(u, v).

We also tried to resolve this equation for u and v, but it cannot be obtained in
closed form as well. But there is no need to rotate the isoptic points so we can
compute exactly the X and Y cordinates of these points.

Let e be the intersection line of the plane that touches the surface and the base
plane given by the equation Y = 0, and let f be the line which has one point in
the origin and its normal vector m. The isoptic point is the intersection of these
lines:

X =
sin (β)·c

cos(β)·Nz(u, v)− sin(β)·Nx(u, v)

Z =
cos (β)·c

cos(β)·Nz(u, v)− sin(β)·Nx(u, v)
,

where c = Nx(u, v)X0 +Ny(u, v)Y0 +Nz(u, v)Z0. Since 〈N(u, v),m〉 = 0, we can
compute the coordinates by the following equations:

X =
cNx(u, v)

〈Nx(u, v), Nx(u, v)〉+ 〈Nz(u, v), Nz(u, v)〉

Z =
cNz(u, v)

〈Nx(u, v), Nx(u, v)〉+ 〈Nz(u, v), Nz(u, v)〉
.

2.3. Calculation by linear combination
There is another way to compute the isoptic points. To find these points we still
need to use the vectors m and v. If the normal vector of the surface is the cross
product of the vector U(u, v) and V (u, v), and N(u, v) is perpendicular to the
vector m and v, then v, m, U(u, v) and v, m, V (u, v) are linearly dependent.
Thus U(u, v) and V (u, v) can be obtained by linear combination of vectors m and
v. This means the following:

∣∣∣∣∣∣

1 0 0
1 sin(α) − cos(α)

Ux(u, v) Uy(u, v) Uz(u, v)

∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣

1 0 0
1 sin(α) − cos(α)

Vx(u, v) Vy(u, v) Vz(u, v)

∣∣∣∣∣∣
= 0.

From this we obtain the following equations:

sin(α) · Uz(u, v) + cos(α) · Uy(u, v) = 0

sin(α) · Vz(u, v) + cos(α) · Vy(u, v) = 0.

By solving this system we acquire a complex fifth order equation for u and v,
but it is not possible approximate the roots even by computer algebra systems.
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3. Conclusions

The possibilities of 3 dimensional generalization of isoptic curves are considered.
We provided a special scene where isoptic points of a surface can be computed,
although in some cases only by numerical methods. This method can be applied
in circumstances when a convex surface is above a given plane and the method
provides a curve in this plane from the point of which one can see the surface
under a given angle. Further investigations in terms of computational efficiency
and generalization can be subject of future work.
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