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Abstract

In this note we prove directly that Golomb’s method and the continued
fraction method are essentially the same, in the sense that they give the same
Egyptian fraction expansions of positive rational numbers. Furthermore, we
show their connection with the Farey sequence method.
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1. Introduction

It is well-known that every positive rational number can be expressed as a sum of
distinct unit fractions (reciprocals of natural numbers). Ancient Egyptians already
used such representations of rational numbers, for this reason we call a sum of
distinct unit fractions an Egyptian fraction. We note that sometimes unit fractions
themselves are called Egyptian fractions.
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Since the harmonic series
∞∑

n=1

1
n is divergent, it is enough to give an algorithm

for finding an Egyptian fraction expansion of rational numbers between 0 and 1.
There are several methods to do this, many of them are summarized in [6].

Probably the oldest such algorithm is the greedy method, which subtracts al-
ways the largest possible unit fraction from the current rational number. Sometimes
it is referred to as Fibonacci method or Fibonacci-Sylvester method, because it was
first described by Leonardo Pisano, better known as Fibonacci [5], and later it was
rediscovered by J. J. Sylvester [10].

The splitting method is based on successive application of the identity 1
n =

1
n+1 + 1

n(n+1) . It was shown by L. Beeckmans [2] that this algorithm terminates
after a finite number of steps, however it was stated previously without proof by
P. J. Campbell [4].

We still mention here by name the method of S. W. Golomb [7] and the contin-
ued fraction method due to M. N. Bleicher [3], as they are the main subject of this
paper. We should remark that there is a confusion in the literature, in [3] a further
variant of the latter method is presented, and the author calls the modified version
the continued fraction method. However, in [6] the original algorithm is called the
continued fraction method, as will be in this note.

Writing her BSc thesis, the first author observed that surprisingly Golomb’s
method and the continued fraction method always give the same Egyptian frac-
tion expansions. Before proving this statement directly, we discuss these methods
briefly. After that, we present their connection with the Farey sequence method,
and a possible usage of them in teaching basic number theory.

2. Golomb’s method and the continued fraction
method

Golomb’s method Let a < b be positive integers with gcd(a, b) = 1, and con-
sider the rational number 0 < a

b < 1. If a = 1, then it is a unit fraction. Otherwise,
since a and b are coprime, there exist a multiplicative inverse 0 < a′ < b of amodulo
b and a natural number r such that aa′ = br + 1. Then

a

b
=

r

a′
+

1

a′b
.

Now it follows from aa′ > br > ar and aa′ = br + 1, that 0 < r
a′ < 1 and

gcd(r, a′) = 1, and we can apply the above procedure for r
a′ .

On the other hand, we have aa′ > br > a′r, hence r < a, which guarantees
the finiteness of the method. The algorithm is also correct, it gives distinct unit
fractions in the Egyptian fraction expansion, which can be proved by induction
showing that the unit fractions have denominators at most b(b− 1).

Continued fraction method Let 0 < a
b < 1 be again a rational number with

coprime natural numbers a and b. Suppose that the finite simple continued fraction
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expansion of a
b is 〈c0, c1, . . . , cn〉, where c0 = 0 and c1, . . . , cn are positive integers.

As it is well-known, a
b can be represented by a finite simple continued fraction in

exactly two ways, but it is indifferent which of them is used.
As usual, define two sequences (ak)nk=−2 and (bk)

n
k=−2 recursively:

a−2 = 0, a−1 = 1, ak = ckak−1 + ak−2 (k = 0, 1, . . . , n)

b−2 = 1, b−1 = 0, bk = ckbk−1 + bk−2 (k = 0, 1, . . . , n)

Then an = a and bn = b.
Primary and secondary convergents satisfy equations

ak
bk
− ak−1
bk−1

=
(−1)k+1

bk−1bk

for 1 ≤ k ≤ n, and

ak−2 + lak−1
bk−2 + lbk−1

− ak−2 + (l − 1)ak−1
bk−2 + (l − 1)bk−1

=
(−1)k

(bk−2 + (l − 1)bk−1)(bk−2 + lbk−1)

for 2 ≤ k ≤ n, 1 ≤ l ≤ ck. Details about these and other properties of continued
fractions can be found in [8, 9].

Using the above identities, we can describe the continued fraction method. If
n is odd, then

an
bn

=
an−1
bn−1

+
1

bn−1bn
, (2.1)

and apply the method for an−1

bn−1
.

If n is even, then

an
bn

=
an−2 + cnan−1
bn−2 + cnbn−1

=
an−2
bn−2

+

cn∑

l=1

(
an−2 + lan−1
bn−2 + lbn−1

− an−2 + (l − 1)an−1
bn−2 + (l − 1)bn−1

)

=
an−2
bn−2

+

cn∑

l=1

1

(bn−2 + (l − 1)bn−1)(bn−2 + lbn−1)
, (2.2)

and apply the method for an−2

bn−2
.

We note that the first case (odd subscript) is used at most once, while the
correctness of the algorithm can be proved by induction on n showing that the
denominators of the unit fractions do not exceed bn(bn − 1).

Proof that these methods give the same Egyptian fraction expansions
If n is odd, then it follows from anbn−1 − an−1bn = 1 that 0 < bn−1 < bn is the
multiplicative inverse of an modulo bn, hence one step of Golomb’s method gives
(2.1), exactly the same sum as the continued fraction method.

If n is even, then (an−2+lan−1)(bn−2+(l−1)bn−1)−(an−2+(l−1)an−1)(bn−2+
lbn−1) = 1 implies that 0 < bn−2 + (l− 1)bn−1 < bn−2 + lbn−1 is the multiplicative
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inverse of an−2+ lan−1 modulo bn−2+ lbn−1, hence applying Golomb’s method for
an−2+lan−1

bn−2+lbn−1
, it gives

an−2 + lan−1
bn−2 + lbn−1

=
an−2 + (l − 1)an−1
bn−2 + (l − 1)bn−1

+
1

(bn−2 + (l − 1)bn−1)(bn−2 + lbn−1)

(l = cn, cn − 1, . . . , 1). It shows that after cn steps of Golomb’s method, we get
(2.2) from an

bn
.

3. Example

As an example, we calculate the Egyptian fraction expansions of the rational num-
ber 47

64 both by Golomb’s method and by the continued fraction method.

Golomb’s method Golomb’s method gives the result through the following
steps:

The multiplicative inverse of 47 modulo 64 is 15, hence 47
64 = 11

15 + 1
960 .

The multiplicative inverse of 11 modulo 15 is 11, hence 11
15 = 8

11 + 1
165 .

The multiplicative inverse of 8 modulo 11 is 7, hence 8
11 = 5

7 + 1
77 .

The multiplicative inverse of 5 modulo 7 is 3, hence 5
7 = 2

3 + 1
21 .

Finally, the multiplicative inverse of 2 modulo 3 is 2, hence 2
3 = 1

2 + 1
6 .

Summarizing these equations, it follows that the Egyptian fraction expansion
by Golomb’s method is

47

64
=

1

2
+

1

6
+

1

21
+

1

77
+

1

165
+

1

960
.

Continued fraction method The Euclidean algorithm gives the finite simple
continued fraction expansion 47

64 = 〈0, 1, 2, 1, 3, 4〉 and the sequences (ak)
5
k=0 =

(0, 1, 2, 3, 11, 47), (bk)5k=0 = (1, 1, 3, 4, 15, 64). Then the continued fraction method
works as follows:
First, by application of the odd subscript case we obtain 47

64 = 11
15 + 1

960 .
Thereafter we apply the even subscript case twice to get 11

15 = 2
3 + 1

21 + 1
77 + 1

165
and 2

3 = 1
2 + 1

6 .
Consequently, the Egyptian fraction expansion by this method is

47

64
=

1

2
+

1

6
+

1

21
+

1

77
+

1

165
+

1

960
,

which is the very same as above.

132 E. Gyimesi, G. Nyul



4. Connection with the Farey sequence method

Our observation could be verified also through Farey sequences. Denote by Fn

the Farey sequence of order n, that is the list of all reduced rational numbers in
[0, 1], having denominators less than or equal to n, in increasing order. The main
properties of Farey sequences can be found in [8, 9].

In [1], see also [3], the Farey sequence method is presented to obtain an Egyptian
fraction expansion of a positive rational number. Let 0 < a

b < 1 be a rational
number, where a and b are positive integers with gcd(a, b) = 1. If c

d is the preceding
fraction in Fb, then

a

b
=
c

d
+

1

db
,

where d < b, and we can continue the method on c
d .

We have to notice that in practice this form of the Farey sequence method
is only an algorithm in principle, because it says nothing about how to find the
preceding fraction in Fb.

Then it is straightforward that Golomb’s method coincides with the Farey se-
quence method, since ad = bc + 1 and 0 < d < b is the multiplicative inverse of a
modulo b.

On the other hand, the Farey sequence method gives the same result as the
continued fraction method, which can be deduced from the following fact: For odd
n, the preceding fraction of a

b = 〈c0, c1, . . . , cn〉 (c0 = 0) in Fb is 〈c0, c1, . . . , cn−1〉.
While for even n, the preceding fraction is 〈c0, c1, . . . , cn−2〉 if cn = 1, furthermore
〈c0, c1, . . . , cn−1, cn − 1〉 if cn ≥ 2. Thus the preceding fraction is a primary or
secondary convergent, which is already mentioned in a half sentence in [3].

5. Teaching possibilities

Elementary number theory textbooks, lecture notes (see e.g. [8, 9]) and under-
graduate courses often deal with Farey sequences and continued fractions. Our
experiences show that these topics are rather popular among university students.
Because of their interesting properties, they are also suitable to be the subject
of popular science lectures or mathematics study circles for advanced secondary
school students. At a higher level, in the theory of diophantine approximation,
both Farey sequences and continued fractions are used to give alternative proofs
of Hurwitz’s theorem. Nevertheless, these topics are always handled in separate
chapters, we can hardly find any sources about their connection.

Thanks to the simplicity of the necessary notions and the historical background,
we think that Egyptian fractions also give a rewarding topic to popularize mathe-
matics. On the other hand, at university level, as the lecturer’s material or as the
subject of students’ project work, it can be an unordinary base to introduce both
Farey sequences and continued fractions, as well as their properties. And it allows
us not only to study them separately, but one can find out their close connection,
as we have done above.
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