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Abstract
In this paper, we look at the invertible classes modulo M representable

as Fibonacci numbers and we ask when these classes, say FM , form a multi-
plicative group. We show that if M itself is a Fibonacci number, then M ≤ 8;
if M is a Lucas number, then M ≤ 7. We also show that if x ≥ 3, the number
of M ≤ x such that FM is a multiplicative subgroup is O(x/(log x)1/8).
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1. Introduction

Let {Fk}k≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and

Fk+2 = Fk+1 + Fk for all k ≥ 0,

with the corresponding Lucas companion sequence {Lk}k≥0 satisfying the same
recurrence with initial conditions L0 = 2, L1=1. The distribution of the Fibonacci
numbers modulo some positive integer M has been extensively studied. Here, we
put

FM = {Fn (mod M) : gcd(Fn,M) = 1}
and ask when is FM a multiplicative group. We present the following conjecture.
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Conjecture 1.1. There are only finitely many M such that FM is a multiplicative
group.

Shah [5] and Bruckner [1] proved that if p is prime and Fp is the entire mul-
tiplicative group modulo p, then p ∈ {2, 3, 5, 7}. We do not know of many re-
sults in the literature addressing the multiplicative order of a Fibonacci number
with respect to another Fibonacci number, although in [3] it was shown that if
FnFn+1 is coprime to Fm and Fn+1/Fn has order s 6∈ {1, 2, 4} modulo Fm, then
m < 500s2. Moreover, Burr [2] showed that Fn (mod m) contains a complete set
of residues modulo m if and only if m is of the forms: {1, 2, 4, 6, 7, 14, 3j}·5k, where
k ≥ 0, j ≥ 1.

In this paper, we prove that ifM = Fm is a Fibonacci number itself, orM = Lm,
then Conjecture 1.1 holds in the following strong form.

Theorem 1.2. If M = Fm and FM is a multiplicative group, then m ≤ 6. If
M = Lm and FM is a multiplicative group, then m ≤ 4.

We also show that for most positive integers M , FM is not a multiplicative
group.

Theorem 1.3. For x ≥ 3, the number of M ≤ x such that FM is a multiplica-
tive subgroup is O(x/(log x)1/8). In particular, the set of M such that FM is a
multiplicative subgroup is of asymptotic density 0.

2. Proof of Theorem 1.2

We first deal with the case of the Fibonacci numbers. It is well-known that the
Fibonacci sequence is purely periodic modulo every positive integer M . When
M = Fm, then the period is at most 4m. Thus, #FM ≤ 4m, Let ω(m) be the
number of distinct prime factors of m. Assume that X is some positive integer
such that

π(X) ≥ ω(m) + 4. (2.1)

Here, π(X) is the number of primes p ≤ X. Then there exist three odd primes p <
q < r ≤ X none of them dividing m. For a triple (a, b, c) ∈ {0, 1, . . . , b(4m)1/3c},
we look at the congruence class F a

p F
b
qF

c
r (mod M). There are (b(4m)1/3c+ 1)3 >

4m ≥ #FM such elements modulo M , so they cannot be all distinct. Thus, there
are (a1, b1, c1) 6= (a2, b2, c2) such that

F a1
p F b1

q F c1
r ≡ F a2

p F b2
q F c2

r (mod M).

Hence, F a1−a2
p F b1−b2

q F c1−c2
r ≡ 1 (mod M). Observe that the rational number

x = F a1−a2
p F b1−b2

q F c1−c2
r −1 cannot be zero because Fp, Fq, Fr are all larger than

1 and coprime any two. Thus, M divides the numerator of the nonzero rational
number x, and so we get

Fm =M ≤ F |a1−a2|
p F |b1−b2|q F |c1−c2|r . (2.2)
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We now use the fact that

αk−2 ≤ Fk ≤ αk−1 for all k = 1, 2 . . . ,

where α = (1 +
√
5)/2, to deduce from (2.2) that

αm−2 ≤ Fm ≤ (FpFqFr)
(4m)1/3 < (αX−1)3(4m)1/3 ,

so that
m < 3(4m)1/3X + 2− 3(4m)1/3 < 3(4m)1/3X,

therefore
m < 6

√
3X3/2. (2.3)

Let us now get some bounds on m. We take X = m1/2. Assuming X > 17 (so,
m > 172), we have, by Theorem 2 in [4], that

π(X) >
X

logX
=

2m1/2

logm
.

Since 2ω(m) ≤ m, we have that

ω(m) ≤ logm

log 2
.

Thus, inequality (2.1) holds for our instance provided that

2m1/2

logm
>

logm

log 2
+ 4,

which holds for all m > 5000. Now inequality (2.3) tells us that

m < 6
√
3m3/4, therefore m < (6

√
3)4 < 12000. (2.4)

Let us reduce the above bound on m. Since

2× 3× 5× 7× 11× 13 = 30030 > m,

it then follows that ω(m) ≤ 5, therefore it is enough to choose X = 23 to be
the 9th prime and then inequality (2.1) holds. Thus, (2.3) tells us that m ≤
6
√
3 × 233/2 < 1200. We covered the rest of the range with Mathematica. That

is, for each m ∈ [10, 1200], we took the first two odd primes p and q which do not
divide m and checked whether for some positive integer n ≤ 4m both congruences
Fn
p ≡ 1 (mod Fm) and Fn

q ≡ 1 (mod Fm). The only m’s that passed this test
were m = 10, 11. We covered the rest by hand. The only values m that satisfy the
hypothesis of the theorem are m = 1, 2, 3, 4, 5, 6.

IfM = Lm, then, the argument is similar to the one above up and we point out
the differences only. The period of the Fibonacci numbers modulo a Lucas number
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Lm is at most 8m, and so #FM ≤ 8m. As before, one takes X as in (2.1), and the
triple (a, b, c) ∈ {0, 1, . . . , b2m1/3c}, implying an inequality as in (2.2), namely

Lm =M ≤ F |a1−a2|
p F |b1−b2|q F |c1−c2|r . (2.5)

Since for all k ≥ 1, αk−1 ≤ Lk ≤ αk+1, then

αm−1 ≤ Lm ≤ (FpFqFr)
2m1/3 ≤ α6(X+1)m1/3

,

and so, m < 6m1/3X + 1 + 6m1/3 < 13m1/3X, which implies

m < 133/2X3/2. (2.6)

The argument we used before with X = m1/2 works here, as well, rendering the
bound m < 136 = 4, 826, 809. We can decrease the bound by using the fact that
the product of all primes up to 19 is 9,699,690 > 4,826,809, and so, ω(m) ≤ 7,
therefore, it is enough to choose X = 31 (the 11th prime) for the inequality (2.1)
to hold. We use X = 31 in the formula before (2.6) to get m− 192 ·m1/3 − 1 < 0,
which implies m < 143 = 2744 (to see that, label y := m1/3 and look at the sign of
the polynomial y3 − 192y − 1).

To cover the range from 10 to 2744, we used the same trick as before (which
works, since by F2m = LmFm, then gcd(Fp, Lm) = gcd(Fp, F2m/Fm)| gcd(Fp, F2m)
= Fgcd(p,2m)). To speed up the computation we used the fact that one can choose
one of the primes p, q to be 5, since a Lucas number is never divisible by 5. The only
m’s that passed the test were 10, 12, 15, 21, which are easily shown (by displaying
the corresponding residues) not to generate a multiplicative group structure. The
only values of m, for which we do have a multiplicative groups structure for FM

when M = Lm are m ∈ {1, 2, 3, 4}.

3. Proof of Theorem 1.3

Consider the following set of primes

P =

{
p > 5 :

(
5

p

)
= 1,

(
11

p

)
=

(
46

p

)
= −1

}
.

Here, for an integer a and an odd prime p, we use
(
a
p

)
for the Legendre symbol

of a with respect to p. Let M be the set of M such that FM is a multiplicative
subgroup. We show that M is free of primes from P. Since P is a set of primes
of relative density 1/8 (as a subset of all primes), the conclusion will follow from
the Brun sieve (see [6, Chapter I.4, Theorem 3]). To see that M is free of primes
from p, observe that since F3 = 2, F4 = 3, and FM is a multiplicative subgroup,
it follows that there exists n such that Fn ≡ 6 (mod M). If p |M for some p ∈ P,
it follows that

Fn − 6 ≡ 0 (mod p). (3.1)
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Since
(
5
p

)
= 1, it follows that both

√
5 and α are elements of Fp. With the Binet

formula, we have

Fn =
αn − βn

√
5

.

Put tn = αn, εn = (−1)n. Thus, βn = (−α−1)n = εnt
−1
n , so congruence (3.1)

becomes
tn − εnt−1n√

5
− 6 ≡ 0 (mod p)

giving
t2n − 6

√
5 tn − εn ≡ 0 (mod p).

Thus, one of the quadratic equations t2 − 6
√
5 t ± 1 = 0 must have a solution t

modulo p. Since the discriminants of the above quadratic equations are 176 =
16 × 11 and 184 = 4 × 46, respectively, and since neither 11 nor 46 is a quadratic
residue modulo p, we get the desired conclusion.

4. Comments

The bound O(x/(log x)1/8) of Theorem 1.3 is too weak to allow one to decide via
the Abel summation formula whether

∑

M∈M

1

M

is finite or not. Of course Conjecture 1.1 would imply that the above sum is finite.
We leave it as a problem to the reader to improve the bound on the counting
function ofM∩ [1, x] from Theorem 1.3 enough to decide that indeed the sum of
the above series is convergent.
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