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Abstract

In this paper, we look at the invertible classes modulo M representable
as Fibonacci numbers and we ask when these classes, say Far, form a multi-
plicative group. We show that if M itself is a Fibonacci number, then M < §;
if M is a Lucas number, then M < 7. We also show that if x > 3, the number
of M < z such that Fa is a multiplicative subgroup is O(z/(log x)'/®).
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1. Introduction

Let {F}}r>o0 be the Fibonacci sequence given by Fy =0, F; =1 and
Frio=Fip1 + Fy for all k>0,

with the corresponding Lucas companion sequence {Lj}r>o satisfying the same
recurrence with initial conditions Lo = 2, L1=1. The distribution of the Fibonacci
numbers modulo some positive integer M has been extensively studied. Here, we
put

Fu ={F, (mod M) :ged(F,,M)=1}

and ask when is Fj; a multiplicative group. We present the following conjecture.
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Conjecture 1.1. There are only finitely many M such that Fp; is a multiplicative
group.

Shah [5] and Bruckner [1] proved that if p is prime and F, is the entire mul-
tiplicative group modulo p, then p € {2,3,5,7}. We do not know of many re-
sults in the literature addressing the multiplicative order of a Fibonacci number
with respect to another Fibonacci number, although in [3] it was shown that if
F, F,41 is coprime to F,, and F,;/F, has order s ¢ {1,2,4} modulo F,,, then
m < 500s2. Moreover, Burr |2| showed that F,, (mod m) contains a complete set
of residues modulo m if and only if m is of the forms: {1,2,4,6,7,14,37}-5% where
k>0,5>1.

In this paper, we prove that if M = F,, is a Fibonacci number itself, or M = L,,,
then Conjecture 1.1 holds in the following strong form.

Theorem 1.2. If M = F,, and Fu; is a multiplicative group, then m < 6. If
M = L,, and Fyr is a multiplicative group, then m < 4.

We also show that for most positive integers M, Fj; is not a multiplicative
group.

Theorem 1.3. For x > 3, the number of M < x such that Fy; is a multiplica-
tive subgroup is O(z/(logx)'/®). In particular, the set of M such that Fa; is a
multiplicative subgroup is of asymptotic density 0.

2. Proof of Theorem 1.2

We first deal with the case of the Fibonacci numbers. It is well-known that the
Fibonacci sequence is purely periodic modulo every positive integer M. When
M = F,,, then the period is at most 4m. Thus, #Fy < 4m, Let w(m) be the
number of distinct prime factors of m. Assume that X is some positive integer
such that

m(X) > w(m) + 4. (2.1)
Here, m(X) is the number of primes p < X. Then there exist three odd primes p <
¢ < 7 < X none of them dividing m. For a triple (a,b,c) € {0,1,..., [(4m)'/3]},
we look at the congruence class FFF¢ (mod M). There are (L(4m)Y3] +1)% >

4m > #Fp; such elements modulo M, so they cannot be all distinct. Thus, there
are (ay,by,c1) # (as, ba, c2) such that

b — b
FQF)F = F2EP2F? (mod M).
Hence, Fg1=%2F1—b2F=¢2 = 1 (mod M). Observe that the rational number
x=Fym Fé’lfb? Ff17¢ —1 cannot be zero because F),, Fy, F, are all larger than

1 and coprime any two. Thus, M divides the numerator of the nonzero rational
number x, and so we get

Fo =M < Fn-e2l plh=bel pler—eal, (2.2)
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We now use the fact that
" 2<F, <ot forall k=1,2...,
where o = (1 +1/5)/2, to deduce from (2.2) that

06ij S Fm S (FquFT)(Alm)l/s < (aX71)3(4m)1/37
so that
m < 3(4m)Y/3X 4+ 2 — 3(4m)'/? < 3(4m)'/3 X,

therefore
m < 6v3X3/2. (2.3)

Let us now get some bounds on m. We take X = m!/2

m > 17?), we have, by Theorem 2 in [4], that

. Assuming X > 17 (so,

X 2m1/?
X)> = .
m(X) log X  logm
Since 2¢0™) < m, we have that
logm
w(m) <
log 2

Thus, inequality (2.1) holds for our instance provided that

2m'/2  logm

4,
logm log 2 +

which holds for all m > 5000. Now inequality (2.3) tells us that
m < 6vV3m>4, therefore m < (6v/3)* < 12000. (2.4)
Let us reduce the above bound on m. Since
2x3x5xT7x11 x 13 =30030 > m,

it then follows that w(m) < 5, therefore it is enough to choose X = 23 to be
the 9th prime and then inequality (2.1) holds. Thus, (2.3) tells us that m <
613 x 233/2 < 1200. We covered the rest of the range with Mathematica. That
is, for each m € [10,1200], we took the first two odd primes p and ¢ which do not
divide m and checked whether for some positive integer n < 4m both congruences
F} =1 (mod Fy,) and F' = 1 (mod Fy,). The only m’s that passed this test
were m = 10,11. We covered the rest by hand. The only values m that satisfy the
hypothesis of the theorem are m = 1,2,3,4,5,6.

If M = L,,, then, the argument is similar to the one above up and we point out
the differences only. The period of the Fibonacci numbers modulo a Lucas number
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L., is at most 8m, and so #Fy; < 8m. As before, one takes X as in (2.1), and the
triple (a,b,c) € {0,1,...,[2m'/3]}, implying an inequality as in (2.2), namely

Ly =M < Flmmalplh=balples=eal, (2.5)
Since for all k£ > 1, o' < Li, < aF*1, then
0"V < Ly < (FpFy )" < oS 0m!,
and so, m < 6m'/3X + 1+ 6m'/3 < 13m!/3X, which implies
m < 13%/2X3/2, (2.6)

The argument we used before with X = m!/? works here, as well, rendering the
bound m < 135 = 4,826,809. We can decrease the bound by using the fact that
the product of all primes up to 19 is 9,699,690 > 4,826,809, and so, w(m) < 7,
therefore, it is enough to choose X = 31 (the 11th prime) for the inequality (2.1)
to hold. We use X = 31 in the formula before (2.6) to get m — 192 -m!'/? —1 < 0,
which implies m < 143 = 2744 (to see that, label y := m!/? and look at the sign of
the polynomial y3 — 192y — 1).

To cover the range from 10 to 2744, we used the same trick as before (which
works, since by Fa,, = Ly, Fpp,, then ged(Fy, Ly,) = ged(Fp, Fom/Fm)| ged(Fyp, Fam)
= Fgcd(p,zm))- To speed up the computation we used the fact that one can choose
one of the primes p, g to be 5, since a Lucas number is never divisible by 5. The only
m’s that passed the test were 10, 12,15, 21, which are easily shown (by displaying
the corresponding residues) not to generate a multiplicative group structure. The
only values of m, for which we do have a multiplicative groups structure for Fjs
when M = L,, are m € {1,2,3,4}.

3. Proof of Theorem 1.3

Consider the following set of primes

rfeor ()0 () (8)-

Here, for an integer a and an odd prime p, we use (£) for the Legendre symbol
of a with respect to p. Let M be the set of M such that Fj; is a multiplicative
subgroup. We show that M is free of primes from P. Since P is a set of primes
of relative density 1/8 (as a subset of all primes), the conclusion will follow from
the Brun sieve (see [6, Chapter 1.4, Theorem 3]). To see that M is free of primes
from p, observe that since F3 = 2, Fy = 3, and F); is a multiplicative subgroup,
it follows that there exists n such that F,, =6 (mod M). If p | M for some p € P,
it follows that

F,—6=0 (mod p). (3.1)
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Since (g) =1, it follows that both V5 and « are elements of F,. With the Binet
formula, we have
B a — Bn

F, =
Vb

Put t, = a”, &, = (—1)". Thus, 8" = (—a~H)" = e,t, !, so congruence (3.1)
becomes
tn —ent !

75 —6=0 (mod p)

giving

t2 —6V5t, —e, =0 (mod p).
Thus, one of the quadratic equations t> — 61/5¢ + 1 = 0 must have a solution ¢
modulo p. Since the discriminants of the above quadratic equations are 176 =

16 x 11 and 184 = 4 x 46, respectively, and since neither 11 nor 46 is a quadratic
residue modulo p, we get the desired conclusion.

4. Comments

The bound O(z/(log z)'/®) of Theorem 1.3 is too weak to allow one to decide via
the Abel summation formula whether

>

MeM

is finite or not. Of course Conjecture 1.1 would imply that the above sum is finite.
We leave it as a problem to the reader to improve the bound on the counting
function of M N [1, 2] from Theorem 1.3 enough to decide that indeed the sum of
the above series is convergent.

Acknowledgment. F. L. was supported in part by Project PAPIIT IN104512
and a Marcos Moshinsky Fellowship. P. S. acknowledges a research sabbatical leave
from his institution.

References

[1] G. BRUCKNER, Fibonacci Sequence Modulo a Prime p = 3 (mod 4), Fibonacci Quart.
8 (1970), 217-220.

[2] S. A. BURR, On Moduli for Which the Fibonacci Sequence Contains a Complete
System of Residues, Fibonacci Quart. 9 (1971), 497-504.

[3] T. KomaTsu, F. Luca, On the multiplicative order of F},11/F,, modulo F,,, Preprint,
2012.

[4] J. B. ROSSER, L. SCHOENFELD, Approximate formulas for some functions of prime
numbers, [llinois J. Math. 6 (1962), 64-94.



270 F. Luca, P. Stanica, A. Yalginer

[5] A. P. SuAH, Fibonacci Sequence Modulo m, Fibonacci Quart. 6 (1968), 139-141.

[6] G. TENENBAUM, Introduction to Analytic and Probabilistic Number Theory, Cam-
bridge University Press, 1995.



