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Abstract

In this paper we give rules for creating a number triangle T in a manner
analogous to that for producing Pascal’s arithmetic triangle; but all of its
elements belong to {0, 1}, and cycling of its rows is involved in the creation.
The method of construction of any one row of T from its preceding rows will
be defined, and that, together with starting and boundary conditions, will
suffice to define the whole triangle, by sequential continuation.

We shall use this triangle in order to define the so-called cycle-numbers,
which can be mapped to the natural numbers. T will be called the ‘cycle-
number triangle’.

First we shall give some theorems about relationships between the cycle-
numbers and the natural numbers, and discuss the cycling of patterns within
the triangle’s rows and diagonals. We then begin a study of figures (i.e. (0,1)-
patterns, found on lines, triangles and squares, etc.) within T. In particular,
we shall seek relationships which tell us something about the prime numbers.
For our later studies, we turn the triangle onto its side and work with a
doubly-infinite matrix C.

We shall find that a great deal of cycling of figures occurs within T and
C, and we exploit this fact whenever we can. The phenomenon of cycling
patterns leads us to muse upon a ‘music of the integers’, indeed a ‘symphony
of the integers’, being played out on the cycle-number triangle or on C. Like
Pythagoras and his ‘music of the spheres’, we may well be the only persons
capable of hearing it!
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Music is the pleasure the human mind experiences from
counting without being aware that it is counting.

G. W. Leibnitz (1646–1714)

1. Introduction

In his scholarly book on Pascal’s ‘Arithmetical Triangle’, the author AWF Edwards
[2] says of the Triangle: “It reveals patterns which delight the eye, raises questions
which tax the number-theorists, and . . . ” (he adds, quoting D. Knuth) “amongst
the coefficients there are so many relations present that, when someone finds a new
identity, there aren’t many people who get excited about it any more, except the
discoverer!”

Pascal, in his own publication on the famous triangle, in 1654, said that he was
fascinated by the mathematical richness of the patterns that he had discovered in
it, and that: “He had had to leave out more than he could put in!”

In the triangle that we are about to define, none of its elements rise above 1
(its alphabet is {0, 1}), and yet (echoing Pascal) we have found a great richness
in the geometric patterns of 0s and 1s that arise, many of which carry with them
secrets about the prime numbers. Further (again echoing Pascal), we have had to
leave out much more than we could put in.

We have called our triangle ‘the cycle-number triangle’ because of the many
cyclic phenomena involved in the (0, 1)-patterns of most interest, and because we
derive from it a new representation of the natural numbers, each one exhibiting
cyclic behaviour. We have given our triangle the general label T.

We declare that we have not seen this triangle defined before in the literature,
but, of course, it may well have been described several times in the past and pro-
duced nothing of sufficient interest to keep mathematicians using and mentioning
it. If we may quote Pascal yet again, he wrote in his autobiography, apropos his
triangle: “Let no one say I have said nothing new. The arrangement of the subject
is new. When we play tennis, we both play with the same ball, but one of us places
it better!”

Whatever is the case, we hope that our methods and studies of the cycle-number
triangle contain something new and worthy of their presentation.

2. Example, definition and construction of T

We begin by showing the cycle-number triangle T, down to row 6, in Figure 1
below. The apex triangle and directions for the central axis and i,j reference axes
are shown.

Note in Figure 1 the left- and right-boundaries of T, two sloping lines, each
containing the sequence 0, 1, 0, 0, 0. These are the given elements, to start
construction of the triangle.
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To reference an element in T we may use two coordinates (i, j), with the i, jth
element occurring at the intersection of the sloping linesRi (the ith diagonal parallel
to the right-boundary) and Lj (the jth diagonal parallel to the left-boundary).
The two directed reference lines are indicated in Figure 1 on either side of the
triangle T(6).

Figure 1: The Cycle-number Triangle T(6) (with apex triangle
defined)

The general rules for generating T now follow.

2.1. Constructing the Triangle T

(1) The apex and triangle boundaries

The cycle-number triangle T is constructed according to the following rules:

(i) The elements have alphabet {0, 1};

(ii) The apex element is 0;

(iii) The left-boundary L is (from the apex downwards to the left) 0,1,0,0,0, . . .;

(iv) The right-boundary R runs from the apex downwards to the right, with the
same (0,1)-sequence as that of L.

The rows following the apex triangle are then constructed, row by row, by
making a sequence of ‘neck-tie’ applications, as explained next.

(2) The ‘neck-tie’ figure and its uses

The figure which we use repeatedly to generate the elements of T, row-by-row,
is called a neck-tie in view of its shape. It consists of an equi-sided triangle, ∇,
supported by two long, sloping legs which are potentially infinite.

When applied to row Ri of T, the top side of the triangle is marked with the
(0, 1) elements of Ri, and the other two sides take the same markings, in order,
cycling around the triangle (see Figure 2 for an example applied to R3).

A representation of the natural numbers by means of cycle-numbers. . . 237



The side-length, defined to be the number of elements on each side, increases
by one with each row application.

The neck-tie (designated ni) is completed by adding the two spreading legs from
the lowest vertex of the neck triangle. The left leg slopes down to the left, and has
the (0,1)-pattern from the right side of ∇ appearing in it, cycling ever downwards.

Similarly, the right leg slopes down to the right, with the (0,1)-pattern from the
left side of ∇, cycling ever downwards, appearing in it.

Figure 2 below shows how the Cycle-Number Triangle T is constructed, row by
row, down to row R6. It also includes an expanded view of the neck-tie which is
applied to row R3.

Notation. We designate by T(i) or Ti the sub-triangle of T which extends from
the apex down to row Ri. And ni will designate the neck-tie which is applied to
row Ri of T. It must be noted that the constructed neck-tie lines are notional.
They do not appear normally in diagrams of T.

Figure 2: Constructing triangle T row-by-row T(2) → T(6)
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(3) The cycle-numbers and their fundamental cycles (f.c.s)

Observe how the string (110) from the top of the neck-tie n3 cycles around the
neck (in both directions). It also cycles down the left and right legs. This string
is defined to be the fundamental cycle (f.c.) of the cycle-number 3. Some general
properties of cycle-numbers will now be developed.

The nth cycle-number is designated by n, and its fundamental cycle by n’.

Definition 2.1. The cycle-number n is the infinite string obtained by cycling its
fundamental cycle n’ indefinitely: e.g. 3 = 110.

Evidently, for each value of n > 0, two pictorial representations of n occur in
triangle T, cycling down the left and right legs respectively of the corresponding
neck-tie.

Definition 2.2. The infinite sequence of cycle-numbers with n > 0 will be denoted
by N. (It corresponds one-to-one with the natural number sequence N.)

Later we shall display the cycle-numbers as rows of a doubly infinite matrix C.

Since we cannot apply a neck-tie to 0 in row R0, we have to define its cycle-
number specially.

Definition 2.3. The zero cycle-number is 0 ≡ 01000 · · · = (01)0. (This is the
string on the R and L diagonals of T. It is special in that its cycling does not
begin until after (01) occurs. With all the other cycle-numbers (n > 0), the cycling
begins with the first digit of the string for n.)

With Figures 1 and 2 to guide us, we can make and prove the following general
observations, as our first theorems about the cycle-number triangle, and the cycle-
numbers derived from it.

Theorem 2.4. The first six fundamental cycles (f.c.s), taken from the rows R1
to R6 of T6, are (1), (10), (110), (1010), (11110) and (100010). Generally:

(i) Every f.c. after R0 is of length n (it has n letters);

(ii) Every f.c. after R1 begins with a 1 and ends with a 10.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows, or from each other, so they will not be
spelled out.

Note that, like 0, the cycle-number 1 = 1 is ‘special’, arising from the second
row of the apex triangle. It cycles from its f.c. 1’ indefinitely, never acquiring a 0
(c.f. Peano’s first two axioms, which are needed to establish 0, and its successor
S(0) which is later labelled 1: both ‘special numbers’).
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Theorem 2.5 (Palindrome Principles).

(i) The (0, 1)-string on the upper side of a neck-tie ∇ is a palindrome; In general,
row Ri of T is a (0, 1)-palindrome of length i+ 1, for i = 1, 2, 3, . . ..

(ii) The first n−1 elements of a fundamental cycle (after R0) form a palindrome.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows of T, or from each other, so they will not
be spelled out.

As an example, the complete (0,1)-string from the upper side of neck-tie n6 is
(0100010), which is a palindrome. And the f.c. of cycle-number 6 is 6’ = (100010),
whose first five digits form a palindrome.

N.B. The Palindrome Principles, simple though they are, turn out to be power-
ful tools in enabling us to look ahead in T to discern patterns in number sequences.

3. Some theorems on lines in T

We have shown how to define the cycle-numbers, and given a few results about
their (0, 1)-patterns, and their fundamental cycles. We now begin a study of the
(0, 1)-patterns which occur on lines in T.

Theorem 3.1. We already defined above (see Figure 1) how to reference elements
(i, j) in T using the sloping reference diagonals for i and j coordinates. As explained
above, Li is the ith sloping line in T parallel to the L-boundary, and Rj is the jth
sloping line in T parallel to the R-boundary. (Thus Ri||R and Li||L.) Then:

(i) L1 and R1 are both sequences of cycled 1s, which we designate as unit-cycle
lines;

(ii) L2 and R2 are both sequences of cycles of (1, 0) (starting after the boundary
element 0), which we designate as 2-cycle lines, having pattern 10;

(iii) L3 and R3 are both sequences of cycles of (1, 1, 0) (starting after the boundary
element 0), which we designate as 3-cycle lines, having pattern 110;

(iv) L4 and R4 are both sequences of cycles of (1, 0, 1, 0) (starting after the bound-
ary element 0), which we designate as 4-cycle lines 1010;

(v) This sequence of pairs (Li,Ri) of i-cycle lines, with Li = Ri, continues in-
definitely as i increases by 1 at each row-step in T.

Proof. The proofs of each item follow immediately from the neck-tie construction
and applications to the sequence of rows of T, or from each other, so they will not
be spelled out.
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The above theorem has shown that there is an ordered sequence of cycling (0, 1)-
strings down the left- and right- diagonals, equal in pairs. The next Theorem 3.2
will prove that the same sequences occur in vertical columns, the pairs being equi-
distant from the central axis of T. Before presenting this theorem, let us define
the Cartesian axis frame, to which we can refer elements in horizontal and vertical
directions.

3(2) The (x, y) Cartesian axes

The origin of the frame is at the apex of T so the apex is at point (0, 0). The
Cartesian y-axis is oriented vertically, with direction downwards. The Cartesian
x-axis is the horizontal through the apex, with positive direction to the right. Its
scale unit is that distance which separates the columns of T (equally spaced).

We shall use Cn to denote the nth column, which contains the (0,1)-string
which appears down the vertical line x = n, for n = 1, 2, 3, . . ..

3(3) The axis line and its (0,1) pattern

The axis line is x = 0. Thus the column C0 is the T-triangle axis, and each digit
appearing on it below the apex triangle is the lower vertex of a neck-triangle, which
in turn is a cycling of a boundary digit 0 (after n1). Hence the axis bears the same
(0, 1) pattern as do the boundaries, viz. 01000. . . .

To the left of the axis, x will take corresponding negative values.
It follows from Theorem 2.5(i) (Palindrome Principle), that we need only deal

with the columns Cn when n is positive. The corresponding columns in the neg-
ative direction will carry the same cycle-number sequence. On the few occasions
which we refer to columns to the left of the axis we shall write C(-n).

We have shown that the sets of L-diagonals and R-diagonals are equal in pairs,
w.r.t. their (0,1)-patterns. The next Figure and theorem shows that this same
phenomenon occurs in the vertical columns, when taken in pairs equidistant from
the axis of T.

Figure 3: Triangle T(7), indicating the rows Rj and cols. Cj for
j = 1, 2, 3, 4
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Theorem 3.2 (The vertical column patterns).
Diagram. Refer to Figure 3. Recall that Ri||R, where R is the right-boundary
of T.

Let us abbreviate the phrase ‘the (0,1)-pattern in column Cn’ to ‘the Cn-
pattern’.

Subsection 3(3) above proved the case C0 = R0.
Now we assert that (refer to Figure 3):

(i) The Cj-pattern is equal to the Rj-pattern, for j = 1, 2, 3, . . .
And by axis-symmetry of T the C(-j)-pattern is also equal to the Rj-pattern.

(ii) The Cj-pattern lies along both the lines x = j and x = −j.

Proof. (i) Referring to the diagram of T7 above, we construct an inductive proof,
using properties of the neck-tie triangles (see Figure 2 and 3): we begin by showing
the theorem to be true for j = 1.

We note that the (0,1) elements of C1 occur in rows R1, R3, R5, etc. (i.e. in
the odd rows). The first element of C1 is 1, by definition of the diagonal pattern
in R0.

Then the following statements are evidently true:
The second element of C1 is in row R3, which is the third element of diagonal

R1, which is equal to 1 (by Theorem 3.1(i); R1 is a unit-line).
The third element of C1 is in row R5, which is the fifth element of R1, which

equals 1 since R1 is a unit-line.
In general, the ith element of C1 is in rowR(i+2), which is the (i+2)th element

of R1 and hence is equal to 1.
The proof that the C1-pattern is a string of 1s is now easily completed by

induction, using the neck-tie construction rules. Then, by the Palindrome Principle,
we can assert that the C(-1) pattern is also a string of 1s.

We can apply the same arguments to determine that the C2-pattern is the same
as the R2-pattern, and equals the C(-2)-pattern.

Induction can now be used to generalize this overall argument, to prove the
statement that for all j > 0 the Cj-pattern is the same as the Rj-pattern, and
equals the C(-j)-pattern. This will complete the proof of Theorem 3.2, for the
(0,1)-patterns in the columns of T.

Before going on to study (0,1)-patterns in T other than those occurring in
straight lines, as treated above, we shall now present an alternative method for
generating the elements of T. The starting triangle for this method bears compari-
son with the Pascal triangle in ‘binomial coefficient form’. Moreover, it immediately
shows how the rows of T relate to the natural numbers in N (in two directions)
and their ‘coprimeness properties’.
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4. A second method for generating the cycle-number
triangle T

4.1. The enteger triangle E
The cycle-number triangle T(6) was shown in Figure 1, Section 2, and then it was
shown how to generate T generally by the neck-tie algorithm. Now we shall obtain
the triangle T(6) by writing down a triangle E of ordered pairs of integers, called
entegers, and then operating on each enteger by the so-called “coprime-function”
named kappa (κ). (N.B. We introduced the notion of ‘enteger’ in [4] and [5]. We
write nm for an enteger. Two entegers are added as with vectors.) Before defining
kappa, below we give the enteger triangle E (on the left) of entegers down to R6,
and (on the right) the triangle after the transformations by kappa have taken place.

 

R0                              00                                                                          0 

R1                          10     11                                                                  1     1 

R2                      20     21     22                        T = κκκκE                      0     1     0 

R3                  30     31     32     33                                                  0     1     1     0 

R4              40     41     42     43     44                                           0     1     0     1     0 

R5          50       51     52     53     54     55                                  0     1     1     1     1     0 

R6      60      61     62     63     64     65     66                           0     1     0     0     0     1     0 

              The enteger triangle  E(6)                          The cycle-number triangle T(6) 

 

 Figure 4: The triangle E of entegers (ordered pairs), transformed
by κ to T

We shall define E by giving its nth line, then define the function kappa, and
then establish the validity of the general transformation κE = T

Definition 4.1. The general row Rn for the enteger triangle E is:

n0, n1, n2, . . . , nn−1, nn.

(For comparison, in Pascal’s triangle the row is
(
n
0

)
,
(
n
1

)
, . . . ,

(
n

n−1
)
,
(
n
n

)
.)

Lemma 4.2. Given the triangle T(n), we can extend it to T(n+1) thus: add
10 (‘vectorial’ enteger addition) to the last enteger in each left diagonal Li for
i = 0, 1, 2, . . ., n, and add 11 to the last enteger nn of Rn.

Definition 4.3. Let e = st , with s,t ∈ N. Then the ‘coprime operator (kappa)’
is defined as follows:

κ(e) ≡
{
1, if s and t are coprime;
0, otherwise (see also special cases below).
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Special cases: κ(00) ≡ 0; κ(10) ≡ 1; κ(t0) ≡ 0 for all t > 1, where e = st is the
general notation for an enteger, with s and t written diagonally.

Without using the notion of divisibility, we can determine when a number pair
is coprime by means of the ‘repeated-pair-subtraction method’ used in the simplest
version of Euclid’s Algorithm (call it EA) (some examples of this are given in
Figure 5).

Lemma 4.4. Let kappa be applied (element-wise) to the nth row of E. Then the
result is a palindromic (0, 1)-string.

Proof. Consider the elements of Rn of E, taken in pairs symmetrically placed
relative to the axis of E. The ith pair, after applying kappa to each, is κ(ni) and
κ(nn-i). Applying only the first subtraction in Euclid’s Algorithm, we find from the
second of our pairs that after this one subtraction κ(nn-i) = κ(in) = κ(ni). This
is true for all pairs in the row (if there is a single central enteger, as in the even-
numbered rows, then it is immaterial what kappa-value it takes) so a palindromic
(0,1)-string results from the row Rn.

4.2. Relationships between E and T
We claimed in Figure 4 that κ(E) = T, the cycle-number triangle. This sub-section
is concerned with proving this claim.

We have already shown that the nth rows of both triangles κ(E) and T have
the same lengths n+1, and that these rows each consist of a (0,1)-string which is
palindromic. So both triangles are symmetric w.r.t. their axis-lines.

It is immediate that they both have the same R and L diagonals, and that in
both, the R1 and L1 diagonals are unit-lines. The two both have the same axis
lines, since in E the axis x = 0 carries the entegers 00, 21, 42, . . ., which is an A.P.
of entegers having common difference 21. (We can extend Lemma 4.2 to show that
this sequence extends indefinitely.) Applying kappa to the sequence, we get 0, 1,
0, 0, . . ., which is the axis pattern in T.

Recall that T was constructed by applying a neck-tie construction, say nn, to
each row Rn, We shall show how the same type of construction can be used to build
E, and moreover that the same type of cycling around and down the neck-ties, as
in T, then occurs in κE. The construction of neck-tie nn = ∇n for E requires the
following steps:

(i) the top side of ∇n is n0, n1, n2, . . ., nn-1, nn (see Definition 4.1)

(ii) the left side of ∇n is n0, (n+1)1, (n+2)2, . . ., (2n-1)n-1, (2n)n

(iii) the right side of ∇n is nn, (n+1)n, (n+2)n, . . ., (2n-1)n, (2n)n

(iv) the left leg is a continuation of the sequence in (iii)

(v) the right leg is a continuation of the sequence in (ii)
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To exemplify this definition of ∇n we will show the neck-tie ∇3, and on its right,
show what happens to it when certain of its elements are reduced by applying the
‘pair subtraction’ method of Euclid’s Algorithm to them (recall that such applica-
tions do not change the kappa values from those of the original pairs). We show
only the neck, and one cycle of the left leg and the right leg. It will be evident how
the leg cycles must continue.

                 30    31    32    33                  30    31    32    03                    0    1    1    0 

                    41           43                           31           13                           1          1     

                       52    53                                  32    23                                  1    1                     

                           63                                         30                                        0                    

                       73      74                                  13    31                                  1    1                     

                   83            85                           23           32                           1          1                          

                93                  96                     03                 30                     0                0                         

 

Figure 5: The neck-tie ∇3; then same with appropriate EA
changes; then κ(∇3)

Remarks. The left diagram shows the neck-tie as defined for row R3 of E. The cen-
tre diagram is attractive, found by applying EA (Euclid’s Algorithm) subtractions
appropriately, to elements of ∇3. It shows how the kappa values of elements of n3
must cycle in the desired way and become equal to corresponding values in T.

Its generalization to the neck-tie ∇n and to T is automatic.
The claim that κ(E) = T now follows by induction on ∇n. Thus, if we verify

it for n = 1 and 2, we can extend those to verify it for n = 3, and so on.

4.3. On ‘Coprimeness’ and ‘Primeness’ in the Cycle-Numbers
This is an appropriate moment for us to link the cycle-numbers to the natural
numbers with regard to the concepts of coprimeness and primeness, in such a way
that the two number systems can be said to represent one another exactly in those
regards.

Consider the two triangles T and E in Figure 4, where T = κE. It is seen
that each row of T (e.g. Rn) carries a complete record of what we shall call the
coprimeness relation of n with each of the integers i = 1, 2, 3, . . ., n. This gives rise
to the following lemma, which directly relates fundamental cycles and the totient
function of Euler:

Lemma 4.5. Let ω(n), the weight of cycle-number n, be the sum of the elements
of n’ in row Rn of T. Then ω(n) = ϕ(n), where ϕ (i.e. phi) is Euler’s totient
function.

Proof. This follows immediately from Definition 4.1, T = κE and the definition
of ϕ.
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We can with reason speak of the coprimeness of a cycle-number n and assign a
measure of it by the ratio (or index) ω(n)/n = ϕ(n)/n .

We continue these notions by coining the slogan that “coprimeness begets prime-
ness”, and presenting the following definitions to add precision to it.

Definition 4.6 (Coprimeness index, and primeness of n). We define a cycle-
number n to be prime if its coprimeness index has value (n − 1)/n = 1 − 1/n.
The value of the index can never be 1, since κ(nn) = 0.

Note that with this definition, it can be shown that n is a prime cycle-number
iff n is a prime integer. For if n is not prime, there exists some integer m < n such
that κ(nm) = 0, and the coprimeness index of n is less than 1 − 1/n, so n is not
prime.

Conversely, if n is prime, then ϕ(n) = n − 1 = ω(n), the coprimeness index is
(n-1)/n , and so n is prime.

Examples may be seen in rows 2, 3, 5, and 7 of T in Figure 3.

5. Three operations on cycle-numbers

5.1. Definitions of the operators
The following three operations and their symbols are defined on the cycle-numbers,
which allow us to discover and develop various algebraic relationships between the
cycle-numbers. We shall not report on the subsequent algebra further than we need
to, in order to study (0,1)-patterns in the triangle T and a later-derived matrix C.

The three operators and their symbols are:

(1) ‘star’ (∗) , (2) ‘add’ (‘+’), and (3) ‘multiply’ (∧).

Definition 5.1. The ‘star’ (or ‘conjoin’) operation is one of conjoinment of two
given (0,1)-vectors or strings. Thus if m and n are two (0,1)-strings, then m ∗ n
is the string obtained by writing first the m-string, and then continuing with the
n-string, thus creating a string of length m+n. Clearly this operation does not
generally commute.
It can be extended in the obvious way to deal with three or more strings.

Care must be taken when interpreting the conjoin of two f.c.s of cycle-numbers.
The result is not necessarily another cycle-number f.c.; in fact, it usually isn’t .

Definition 5.2. Two cycle-numbers m and n are added in a natural way as follows
(letting their ‘sum’ be m ‘+’ n ≡ s).
Let s = m+n (sum of the two cycle-number f.c. lengths), and find from rowR(m+n)
of the enteger triangle E the enteger string which, on applying κ to its elements,
yields s’. Using Def. 4.1 we find the required string to be (m+n)1, (m+n)2, . . . ,
(m+n)s-1, (m+n)s. Applying κ to this string yields s’, and hence s.
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Note: To make full sense of this operation, we must think of it as taking place
between rows Rm and Rn of the enteger triangle E. We are extending the triangle
in the ‘natural way’, by ‘adding’ (strictly ‘appending’) n further rows to it (down
from Rm) according to theorems previously given for patterns on the diagonal
lines.

Finally, having reached Rm+n = Rs, we drop the first element s0 and we are
left with s’ as required. (As an example, see Figure 3 and add 2 to 3 to get 5.)

Definition 5.3 (The cap product). Two cycle-numbers m and n in N (not includ-
ing 0) are ‘multiplied’ (in a not-so-natural way), as defined below. Again we carry
out the initial operations upon the two respective f.c.s, m’ and n’ and arrive at the
fundamental cycle of a new cycle-number which we shall call the Boolean Product
(B.P.), or the ‘cap product’, of the two cycle-numbers. This ‘product’ is a powerful
tool for us in our study of cycle-number patterns. Its definition is as follows:
Let mn = k. Then the Boolean Product of m and n is a cycle-number whose f.c.
is of length k, and is found from the following formula: k’ = (n ∗m’) ∧ (m ∗ n’).
The left-hand bracket contains the (0,1)-string of n conjoined cycles of the f.c. of
m, and the right-hand bracket contains the (0,1)-string of m conjoined cycles of
the f.c. of n. The cap symbol between the two bracketed terms indicates that
an element-wise product has to be computed, according to the following binary
multiplication table (Boolean): 0∧0 = 0∧1 = 1∧0 = 0, and 1∧1 = 1.

It is easy to see that the two multiplication sets from N(x) and N(∧) are
isomorphic.

A simple example will illustrate the use of the operation ∧.

Example. Let m = 2 and n = 3. Then

(n ∗m’)∧(m ∗ n’) = (101010)∧(110110).

Note that each string is of length 2x3 =6. Applying ∧ element-wise gives the result
(100010), which is the f.c. of 6.

The reader should check this result in Fig. 3, and observe how the 2-cycles and
3-cycles arrive at R6 in their respective neck-ties, with their end 0s filling three
places in 6’. If one lays either 2’ or 3’ along the length of 6’, as with two moving
rulers, one finds that each ruler cycles 6’ exactly, with regard to their end 0s. We
say (using Euclid’s language) that both 2’ and 3’ measure 6’ because of this.

It is helpful to place n ∗m’ above m ∗ n’, and apply the cap products vertically,
in the k resulting 2x1 columns. Thus, with the example:

3 ∗ 2′ = 101010

2 ∗ 3′ = 101110

∧ = 100010

Note that for a 1 to occur in the result, there must be two 1s above it. We shall
exploit this fact later.
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Before leaving our discussion of the cycle-number triangle T, we remark that
all manner of patterns can be discovered in T, based on the arrangements of the
0s and 1s, and how they are related to the cycle-numbers.

We have already discussed many of the most obvious patterns, and built def-
initions and theorems about them. We shall end this Section by presenting an
interesting theorem that demonstrates a fractal property, namely that T can prop-
erly include a copy of itself . . . indeed an infinite sequence of such copies. Our
proof will be ‘pictorial’, extending to two inclusions only.

Theorem 5.4. T ⊃ T ⊃ T ⊃ . . . (proper inclusions).

Proof. Pictorial Proof (See Figure 6).

The Figure 6 first shows T to row 10 (i.e. T(10)), with its first two neckties,
coloured black and blue respectively. The second and third Ts of the theorem are
shown below the first one.

Clearly the second two triangles have elements which map directly to themselves
and to those of the original T. They are mapped from the original neck-ties, but
with changed Euclidean shapes. They remain similar in congruent triples. In terms
of cycle-numbers their necks are still equi-sided triangles, and their legs still carry
the same (0,1)-patterns. The neck-ties undergo anti-clockwise, Euclidean rotations.

Figure 6: A fractal property of T

This sequence of included Ts and their corresponding triangles and neck-ties
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can be extended, and other Ts and sequences of Ts can be found elsewhere in the
original triangle.

6. Definition of the cycle-number matrix C

Our construction of the cycle-number triangle T enabled us to introduce the notion
of cycle-numbers and define various of their properties and operations on them.
We now wish to display all the cycle-numbers in a doubly-infinite matrix called
C, which provides a more convenient view-point of their domain for us to proceed
with their study. It is easy to produce C, for it is just a matter of turning triangle
T ‘on its side’ and ‘dropping’ the boundary diagonals R and L. Sub-section 6.1
clarifies this.

6.1. Producing C by using the f.c.s from T
To be more precise, we place the fundamental cycles of the cycle-numbers in the
rows of C, with n’ (from 1’ onwards) occupying the first n elements of row Rn.
Then we allow each number to cycle indefinitely in its row, from the leading diag-
onal (l.d.) towards the right, potentially filling all the rows of C.

To reference elements in the matrix, we shall envisage perpendicular Cartesian
axes y (vertically down) and x (horizontally across) both taking all values in positive
N. The following diagram exemplifies all these arrangements up to n = 13.

Row          y/x      1     2     3     4     5     6     7     8     9   10    11   12   13 

  R1           1         1     1     1     1     1     1     1     1     1     1     1     1     1 

  R2           2         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R3           3         1     1     0     1     1     0     1     1     0     1     1     0     1 

  R4           4         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R5           5         1     1     1     1     0     1     1     1     1     0     1     1     1 

  R6           6         1     0     0     0     1     0     1     0     0     0     1     0     1 

  R7           7         1     1     1     1     1     1     0     1     1     1     1     1     1 

  R8           8         1     0     1     0     1     0     1     0     1     0     1     0     1 

  R9           9         1     1     0     1     1     0     1     1     0     1     1     0     1 

  R10        10        1     0     1     0     0     0     1     0     1     0     1     0     1 

  R11        11        1     1     1     1     1     1     1     1     1     1     0     1     1 

  R12        12        1     0     0     0     1     0     1     0     0     0     1     0     1 

  R13        13        1     1     1     1     1     1     1     1     1     1     1     1     0  (l. d.) 

 

 

 Figure 7: The Cycle-Number matrix C(13)

Observe that the triangle beneath (and including) the l.d., is the cycle-number
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triangle ‘left-justified’ and with the zero-lines removed. Its rows are the fundamen-
tal cycles (f.c.s) of the cycle-numbers.

Remarks. (On the column elements in C(13).) We are now going to observe what
happens in columns C1, C2, . . . as the rows are introduced sequentially, R1 to R2
to R3 etc. In order to describe what we are doing we need to add to our vocabulary
several graphic terms and notations, such as ‘potential prime (pP)’, ‘potential twin
prime (pT or pTP)’, ‘stalactite in Cj (j-stal)’ and ‘n-sieve’ or ‘p-sieve’. Each of these
will be defined when introduced.

Observations. (Many have already been noted earlier, from T.)

(i) C is symmetric about the leading diagonal, so Rn = Cn.

(ii) The leading diagonal (l.d.) is 1, 0, 0, 0, . . .

(iii) The f.c. n’ of cycle-number n, in Rn, runs across from C1 to the l.d. Its
transpose, in Cn, is equal to it and runs from R1 down to the l.d.

(iv) All elements in R1 are 1, being placed there by 1’ as it cycles along to the
right.

(v) We say that all elements in the columns of R1 are potentially prime (pP),
and that each begins ‘growing a stalactite of 1s’ in its column (c.f. a real
stalactite, starting to grow down from the roof of a cave).

(vi) All elements in R2 are produced by 2’ cycling to the right; thus 1, 0, 1, 0, . . .
are the elements placed in R2 of columns C1, C2, etc.

(vii) We now think of the process in (vi) as being a ‘sieving’ action, thus: the 0s
are placed in the even cols., and each one ‘stops’ the stalactite above it from
growing its column of 1s any further. Thus all stalactites in the even columns
are now ‘stopped’ at R2.

(viii) The stalactite in C2 ‘has reached’ the l.d. of C, and the f.c. composition
(10) satisfies our definition of primeness. So we say that the 2-stal is prime;
sometimes we say that the stalactite in col. 2 is prime, and even that C2 is
prime (if n is prime, then Cn contains a prime stalactite). Thus ‘2 is P’.

(ix) In all even cols. after C2, the pP stalactites are stopped when the 2-sieve
cycles by; and their stalactites become nonP (or nP, or not-prime). When
this happens, we say that the stalactite has reached its final length in its
column. This length is the number of 1s acquired, plus a 1 for the final 0.

(x) Stalactites which reach the l.d. are ‘prime stals’. Their columns are ‘prime
cols’.
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(xi) In all odd columns the stalactites are not ‘stopped’ by the 2-sieve. Their
lengths all ‘grow’ by 1, and they remain as potential primes (pPs). We say
they have passed through the 2-sieve. Now we imagine the 3-sieve beginning
its cycling, and we ask how many of the remaining pP stalactites will survive
its passage.

(xii) We can carry on this process for ever, letting the row sieves pass along to the
right, here and there stopping a stalactite from growing further.

(xiii) Observe that some pairs of rows have identical (0,1)-patterns. Examples are:
R2, R4, R8; and R3, R9; and R6, R12. Conditions for this are given by:

Theorem 6.1. Two cycle-numbers m and n have the same (0, 1)-pattern in their
rows if and only if m and n have the same radical; that is, iff r(m) = r(n). In case
m < n, we have m measures n, and m’ cycles in n’.

Proof. The proof is left to the reader.

Example.

(i) 2, 4, and 8 have the same (0, 1) pattern, since r(2) = 2 = r(4) = r(8). The
f.c.s are respectively 10, 1010, and 10101010; 2’ cycles in 4’ and 8’; and 4’
cycles in 8’.

(ii) 6 and 12 have the same (0, 1) pattern, since r(6) = 6 = 2 · 3 and r(12) =
r(22 · 3) = 2 · 3. We have 6’= 100010, which cycles in 12’= 100010100010.

Definition 6.2. The relation ‘has the same (0,1)-pattern’ is denoted by ρ(rho). It
is easy to show that ρ is an equivalence relation on the rows of C. Hence the set
of rows of C is partitioned by ρ.

We now introduce a matrix derived from C, denoted by PBPS(C), and ob-
tained by sequentially computing its rows.

6.2. The PBPS matrix
A useful pictorial device is obtained by transforming the matrix C as we go along,
row by row, and placing the modified rows in a new matrix, say S ≡ PBPS(C).
The acronym stands for Partial Boolean Product (row)-Sequence. The rows of C
form the sequence N, of the cycle-numbers n. The ith partial BP of this sequence,
denoted by si, is the ith row of S. Thus the rules of the computations are as follows:

Row computation Rules:
Let n denote the nth row of C, and sn denote the corresponding row in S. Then

(i) s1 = 1 = 1; and

(ii) sn = factorial n (using BP multiplication) = primorial i (using BP multipli-
cation, and lemma 6.3 below).
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Example.

s6 = 1∧2∧3∧4∧5∧6 which reduces to
= 2∧3∧5,
= primorial 5.

(The notation for this (see [6]) is 5# where cap or BP multiplication is un-
derstood. We occasionally use a personal notation Xi for primorial pi, where X is
capital ‘chi’. Thus for example, 5# = X3 .)

The sequence of primorials rises rapidly in lengths, since pn+1#= pn+1 ∧pn#.

Lemma 6.3. factorial n = primorial pn, where pn is the greatest prime cycle-
number less than or equal to n.

Proof. Any n-sieve which is not a prime sieve cannot supply a 0 to a column which
has an unstopped stalactite in it, and hence can be ignored. For if n were not
prime, it would be measurable by one or more primes, p say, with p<n, and one
of the p-sieves arising from them would already have stopped the stalactite.

Example. In s6, the 4 and 6 cycle-numbers are not prime.

(i) Now 2 ∧ 4 ≡ 2 (in its whole (0,1)-string) so a stalactite which has passed
through the 2-sieve must also pass through the 4-sieve. Thus the 4 may be
ignored.

(ii) For 6, the other non-prime, we have 6 = 2 ∧ 3. Therefore any 0 presented to
a column in 6! by the 4-sieve or the 6-sieve will find that the stalactite has
already been stopped by either the 2-sieve or the 3-sieve. The computation
of 6’ shows how this must happen:

101010

∧ 110110

100010

The resulting PBPS matrix need show only the C1 column of 1s, and the
completed stalactites (with their final 0s) in the other columns. In the leading
diagonal we place a P in each prime column, for ease of locating prime rows. All
other entries in the matrix are 0s, and these are not shown (i.e. their cells are left
blank).

Below is the reduced matrix PBPS(C13). (See Lemma 6.3 for explanation of
why we can write factorial n for obtaining each row Rn . For each prime row, we
could write p#, and for each non-prime row we would have n! ≡ p# where p is
the greatest prime < n; and all multiplication is ∧.)
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             y/x      1     2     3     4     5     6     7     8     9   10    11   12   13 

1!         1         1     1     1     1     1     1     1     1     1     1     1     1     1 

2!         2         1     P     1     0     1     0     1     0     1     0     1     0     1 

3!         3         1            P            1            1            0            1            1 

4!         4         1                   0     1            1                          1            1 

5!         5         1                          P            1                          1            1 

6!         6         1                                 0     1                          1            1 

7!         7         1                                        P                          1            1 

8!         8         1                                               0                   1            1 

9!         9         1                                                      0            1            1 

10!      10        1                                                             0     1            1 

11!      11        1                                                                    P            1 

12!      12        1                                                                           0     1 

13!      13        1                                                                                  P 

 

 

Figure 8: The matrix PBPS(C13) (a prime rib diagram)

The reader will appreciate why we have added the bracketed phrase to the
figure’s caption. The prime and twin prime stalactites stand out like ribs in a
rib-cage.

Note in particular that when a growing stalactite acquires a 0 from a passing
sieve, it ‘stops growing’. More precisely, its pattern now ends in (1,0), and the next
∧ operation in its column is 1∧0 = 0. This happens to all stalactites eventually
(except the stal. in C1). Those which reach the l.d. become primes; whilst those
pPs which are not destined to become primes are stopped by a 0 above the l.d.

Much more can be said, and deduced from, the C and PBPS matrices. This
must all be left for a segue paper. To end this one, we shall include a Section
7 which muses upon the ‘music’ made by cycling (0,1)-patterns formed within T
and C.

7. Musings on the ‘music of the cycle-numbers’

At the head of this paper (p. 2), we gave a quote by Leibnitz which expresses very
beautifully a relationship he claims between music, man and mathematics, one
with which we whole-heartedly empathize. Here we take up his theme with some
of our own feelings (well, Turner’s anyway!) about musical images arising from
studies of the cycle-numbers in T. The author du Sautoy, in his book Music of the
Primes [1], traces many connections between mathematics and music, stemming
from work due to Pythagoras, Euler, and so on up to the present day, where his
focus of attention is on the distribution of the primes and their relations to the
zeros of the zeta function and Riemann’s Hypothesis, and on related musical ideas.

With our cycle-numbers, we have shown that each number n has an interior
pattern, or structure, with a fundamental cycle (a (0,1)-string of length n) which
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cycles around its n-necktie and down the two legs indefinitely, within the cycle-
number triangle T. Similarly, in matrix C, the cycling takes place linearly in two
(and more) directions. It is easy to compare these ‘movements’ with the vibrations
of tuned strings on a musical instrument, or on bars of a xylophone. One can even
turn the cycled patterns into music, by clapping or drumming the (0,1)-strings
using Morse-code rhythms, and accenting beats on the starts of each cycle. For
example, the number 2 has f.c. (10), which can be clapped in 2/4 time as it cycles,
thus: da-di, da-di, da-di, . . . with stresses on each da . Similarly 3, with f.c.
(110), can be clapped in 3/4 or 3/8 time as da-da-di, da-da-di, etc. with stresses
on each first da. The notion of polyphony is easily introduced via the cap product.
For example, 2 and 3 can oscillate together, as the joint vector 2 ∧ 3 = 6. This
has f.c. (100010) (clapped as da-di-di-di-da-di),which can be stressed in various
ways to produce differing rhythms and ‘sounds’.

In this manner, one can think of each twin prime having its own distinctive
rhythms and sounds; e.g. (3, 5) resonates with 15, and so on. These patterns, or
pieces of linear patterns, occur and recur in different ways and places throughout
the matrix C, causing ‘overtones’ or ‘harmonics’ in the ‘music’.

One interesting comment, about the entrance of each successive prime, will
suffice to end this musing. When a new prime arises in T, it breaks various previous
symmetries, and introduces its own distinctive rhythm into the music which is
sounding within and about its new linear ‘melodies’, on its own grid in T or C.

Perhaps, like Pythagoras and his ‘music of the spheres’, we (i.e. Turner) may
well be the only person capable of hearing the ‘music of the cycle-numbers’.
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