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Abstract

We consider here the sequence gn defined by the non-homogeneous recur-
rence relation gn+2 = gn+1 +gn + Atn, n ≥ 0, A 6= 0 and t 6= 0, α, β where
α and β are the roots of x2 − x− 1 = 0 and g0 = 0, g1 = 1.

We give some basic properties of gn.Then using Elmore’s technique and
exponential generating function of gn we generalize gn by defining a new
sequence Gn. We prove that Gn satisfies the recurrence relation Gn+2 =
Gn+1 +Gn +Atnext.

Using Generalized circular functions we extend the sequence Gn further
by defining a new sequence Qn(x). We then state and prove its recurrence
relation. Finally we make a note that sequences Gn(x) and Qn(x) reduce to
the standard Fibonacci Sequence for particular values.

1. Introduction

The Fibonacci Sequence {Fn} is defined by the recurrence relation

Fn+2 = Fn+1 + Fn, n ≥ 0 (1.1)

with
F0 = 0, and F1 = 1.

We consider here a slightly more general non-homogeneous recurrence relation
which gives rise to a generalized Fibonacci Sequence which we call The Pseudo
Fibonacci Sequence. But before defining this sequence let us state some identities
for the Fibonacci Sequence.
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2. Some Identities for {Fn}
Let α and β be the distinct roots of x2 − x− 1=0, with

α =
(1 +

√
5)

2
and β =

(1−
√
5)

2
. (2.1)

Note that
α+ β = 1, αβ = −1 and α− β =

√
5. (2.2)

Binets formula for {Fn} is given by

Fn =
αn − βn√

5
. (2.3)

Generating function for {Fn} is

F (x) =
∞∑

n=0

Fnx
n =

x

(1− x− x2) . (2.4)

Exponential Generating Function for {Fn} is given by

E(x) =
∞∑

n=0

Fnx
n

n!
=
eαx − eβx√

5
. (2.5)

3. Elmores Generalisation of {Fn}
Elmore [1] generalized the Fibonacci Sequence {Fn} as follows. He takes E0(x) =
E(x) as in (2.5) and then defines En(x) of the generalized sequence {En(x)} as the
nth derivatives with respect to x of E0(x). Thus we see from (2.5) that

En(x) =
αneαx − βneβx√

5
.

Note that
En(0) =

αn − βn√
5

= Fn.

The Recurrence relation for {En} is given by

En+2(x) = En+1(x) + En(x).

4. Definiton of Pseudo Fibonacci Sequence

Let t 6= α, β where α, β are as in (2.1). We define the Pseudo Fibonacci Sequence
{gn} as the sequence satisfying the following non-homogeneous recurrence relation.

gn+2 = gn+1 + gn +Atn, n ≥ 0, A 6= 0 and t 6= 0, α, β (4.1)
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with g0 = 0 and g1 = 1. The few initial terms of {gn} are

g2 = 1 +A,

g3 = 2 +A+At.

Note that for A = 0 the above terms reduce to those for {Fn}.

5. Some Identities for {gn}
Binet’s formula: Let

p = p(t) =
A

t2 − t− 1
. (5.1)

Then gn is given by

gn = c1α
n + c2β

n +
Atn

t2 − t− 1
(5.2)

= c1α
n + c2β

n + ptn, (5.3)

where
c1 =

1− p(t)(t− β)
α− β , (5.4)

c2 =
p(t)(t− α)− 1

α− β . (5.5)

The Generating Function G(x) =
∞∑
n=0

gnx
n is given by

G(x) =
x+ x2(A− t)

(1− xt)(1− x− x2) , 1− xt 6= 0. (5.6)

Note from (5.6) that if A = 0

G(x) =
x

1− x− x2 ,

which, as in section (2.4), is the generating function for {Fn}.
The Exponential Generating Function E∗(x) =

∞∑
n=0

gnx
n

n! is given by

E∗(x) = c1e
αx + c2e

βx + pext, (5.7)

where c1 and c2 are as in (5.4) and (5.5) respectively. Note that if A=0 we see
from (5.3), (5.4) and (5.5) that

p = 0, c1 =
1√
5
, c2 =

−1√
5
,

so that E∗(x) reduces to eαx−eβx√
5

which, as in (2.5), is the Exponential generating
function for {Fn}.
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6. Generalization of {gn} by applying
Elmore’s Method

Let
E∗0 (x) = E∗(x) = c1e

αx + c2e
βx + pext

be the Exponential Generating Function of {gn} as in (5.7). Further, let Gn(x) of
the sequence {Gn(x)} be defined as the nth derivative with respect to x of E∗0 (x),
then

Gn(x) = c1α
neαx + c2β

neβx + ptnext. (6.1)

Note that
Gn(0) = c1α

n + c2β
n + ptn = gn, (6.2)

which, in turn, reduces to Fn if A = 0.

Theorem 6.1. The sequence {Gn(x)} satisfies the non-homogeneous recurrence
relation

Gn+2(x) = Gn+1(x) +Gn(x) +Atnext. (6.3)

Proof.
R.H.S. = c1α

n+1eαx + c2β
n+1eβx + ptn+1ext

+ c1α
neαx + c2β

neβx + ptnext +Atnext

= c1α
neαx(α+ 1) + c2β

neβx(β + 1)

+ ptnext(t+ 1) + p(t2 − t− 1)tnext.

(6.4)

Since α and β are the roots of x2 − x− 1 = 0, α+1 = α2 and β + 1 = β2 so that
(6.4) reduces to

R.H.S = c1α
n+2eαx + c2β

n+2eβx + ptn+2ext = Gn+2(x).

7. Generalization of Circular Functions

The Generalized Circular Functions are defined by Mikusinsky [2] as follows: Let

Nr,j =
∞∑

n=0

tnr+j

(nr + j)!
, j = 0, 1, . . . , r − 1; r ≥ 1, (7.1)

Mr,j =
∞∑

n=0

(−1)r tnr+j

(nr + j)!
, j = 0, 1, . . . , r − 1; r ≥ 1. (7.2)

Observe that

N1,0(t) = et, N2,0(t) = cosh t, N2,1(t) = sinh t,

M1,0(t) = e−t, M2,0(t) = cos t, M2,1(t) = sin t.
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Differentiating (7.1) term by term it is easily established that

N
(p)
r,0 (t) =

{
Nr,j−p(t), 0 ≤ p ≤ j
Nr,r+j−p(t), 0 ≤ j < j < p ≤ r (7.3)

In particular, note from (7.3) that

N
(r)
r,0 (t) = Nr,0(t),

so that in general
N

(nr)
r,0 (t) = Nr,0(t), r ≥ 1. (7.4)

Further note that
Nr,0(0) = N

(nr)
r,0 (0) = 1.

8. Application of Circular functions
to generalize {gn}

Using Generalized Circular Functions and Pethe-Phadte technique [3] we define
the sequence Qn(x) as follows. Let

Q0(x) = c1Nr,0(α
∗x) + c2Nr,0(β

∗x) + pNr,0(t
∗x), (8.1)

where α∗ = α1/r, β∗ = β1/r and t∗ = t1/r, r being the positive integer. Now define
the sequence {Qn(x)} successively as follows:

Q1(x) = Q
(r)
0 (x), Q2(x) = Q

(2r)
0 (x),

and in general
Qn(x) = Q

(nr)
0 (x),

where derivatives are with respect to x. Then from (8.1) and using (7.4) we get

Q1(x) = c1αNr,0(α
∗x) + c2βNr,0(β

∗x) + ptNr,0(t
∗x),

Q2(x) = c1α
2Nr,0(α

∗x) + c2β
2Nr,0(β

∗x) + pt2Nr,0(t
∗x),

Qn(x) = c1α
nNr,0(α

∗x) + c2β
nNr,0(β

∗x) + ptnNr,0(t
∗x). (8.2)

Observe that if r = 1, x = 0, A = 0, {Qn(x)} reduces to {Fn}.

Theorem 8.1. The sequence {Gn(x)} satisfies the non-homogeneous recurrence
relation

Qn+2(x) = Qn+1(x) +Qn(x) +AtnNr,0(t
∗x). (8.3)
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Proof.

R.H.S. = c1α
n+1Nr,0(α

∗x) + c2β
n+1Nr,0(β

∗x) + ptn+1Nr,0(t
∗x)

+ c1α
nNr,0(α

∗x) + c2β
nNr,0(β

∗x) + ptnNr,0(t
∗x) +AtnNr,0(t

∗x)

= c1α
nNr,0(α

∗x)(α+ 1) + c2β
nNr,0(β

∗x)(β + 1) + tnNr,0(t
∗x)(pt+ p+A). (8.4)

Using the fact that α and β are the roots of x2 − x − 1 = 0 and (5.1) in (8.4) we
get

R.H.S. = c1α
n+2Nr,0(α

∗x) + c2β
n+2Nr,0(β

∗x) + ptn+2Nr,o(t
∗x) = Qn+2(x).

It would be an interesting exercise to prove 7 identities for Qn(x) similar to
those proved in Pethe-Phadte with respect to Pn(x) [3].
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